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Abstract

The orthogonal projection associated to optimal interpolation in a Hilbert subspace is
characterized by the spectral decomposition of problem adapted integral operators. We
then propose a methodology to construct interpolators that take into account an infinite
number of informations. As an application, we illustrate how boundary constraints can
be enforced in Gaussian process models.
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1. Introduction

Let F be a separated topological real vector space and let E’ be its topological dual.
Let M be a linear subspace of E’ and fixed ¢ € E. An element f € F is said to be an
interpolator of ¢ for M if

ve' e M, (f,€)pp = (0.€)pp -

The interpolation theory is consisted of the characterization and the construction of
such interpolators. If E' is also locally convex and quasi-complete, L. Schwartz theory of
Hilbert subspaces of E (see [1]) gives an interesting and efficient framework for interpo-
lation. Giving a Hilbert subspace H of F and ¢ € H C E, one can easily characterize the
set of all interpolators, in H, of ¢ for M from orthogonal projections in H (see section 2
for details). Let us also remark that interpolation in Hilbert subspaces and conditioning
of Gaussian processes are intrinsically linked since the Hilbert structures appearing in
each case are isometric (see [2, 3, 4]). Nevertheless, we will not address the more general
problem of conditioning in this work.

In the most part of application cases, the set M is of finite dimension, which traduces
the knowledge of a finite number of information about the unknown target element .
To be more precise, we assume that we know the values (i, e;>E7E, for 1 < ¢ < n, with
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e} € E' (M is the linear subspace of E’ spanned by the p;, 1 <14 < n). The interpolation
problem is then associated with an orthogonal projection of H onto a linear subspace
‘Hys of finite dimension. Due to its finite character, the construction of interpolators can
in this case be numerically achieved.

In the present work, we are particularly interested in cases in which the subspace H s
is of infinite dimension (but separable), traducing the knowledge of an infinite number
of (linearly independent) informations of type (p,€¢')p g, € € M C E’ (M is then
necessarily of infinite dimension). For instance, if H is composed of real-valued functions
on a subspace X of R?, such a situation would appear if one assumes that informations
about the target function ¢ are known one continuous subset of X (for example, boundary
values). Our aim is to give a way to numerically construct interpolators that take account
of an infinite number of informations, or at least to approximate such interpolators (but
without discretize the data set). In [5], a similar study has been accomplished for optimal
interpolation in reproducing kernel Hilbert spaces (RKHS, see [6] and [1§9.]) of real-
valued functions on a set X for information of the type “the values ¢(s) are known
on a subspace S of X7 (Dirichlet boundary conditions, results for the conditioning of
Gaussian process with continuous sample paths with such conditions can also be found
in [7]). This paper is a generalization of the ideas appearing in [5] to L. Schwartz Hilbert
subspaces and for general sets Hjs (see remark 3.7).

The first part (section 2) of this article is devoted to the description of the theoretical
background of interpolation in Hilbert subspaces. In section 3, we present interpolation-
adapted integral operators and discuss their properties. We next use the spectral de-
composition of the those operators in order to construct interpolators. In section 5, we
consider the case of a finite number of informations. We prove that the spectral represen-
tation formula for the optimal interpolation given in section 4 is equivalent to its usual
expression. We conclude with an example of application, we consider a Hilbert subspace
composed of continuously derivable real-valued functions on R? and show how one can
enforce constraints to the normal derivatives and the values of interpolators on a cir-
cle. We illustrate our results with an example of their potential application in Gaussian
process models (kriging models).

2. Theoretical Background : Optimal interpolation in Hilbert subspaces

Let E be a quasi-complete, locally convex, separated topological real-vector space (see
for instance [8]) and denote E’ its topological dual space. Let H be a Hilbert subspace
of E, we use the notation H € Hilb(E). We denote T3y the Hilbert kernel naturally
associated with H. We remind that Ty : B/ — H C E verify

Vhe M, Ve € B, (he) g = (h|Twe )y,

where (-]-),, is the inner product of H.
Let M be a linear subspace of E’, we pose

MO ={ecE Ve €M, (e,¢)p =0}
We define Hy = MO NH = Ty (M)L, where Ty (M)l denotes the orthogonal, in H, of
Ty (M). Hence, for a fixed ¢ € H,

gp—l—(MoﬂH)
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is the set of all interpolators, in H, of ¢ for M.

By definition, ¢+ (M N H) is a non-empty, closed affine subspace of H, hence convex.
Thus ¢ + (M°NH) admits a minimal norm element, which we denote hy, ps and call
minimal norm interpolator, or optimal interpolator. h, s is the orthogonal projection
of 0 onto ¢ + (MO ﬂH).

By definition of the orthogonal projection, A, s is orthogonal to Ho, i.e.

L
hoat € HE = (TH (M)l) =Ty (M) = Ha,

with Hps the closure, in H, of the linear space spanned by Tye', ¢’ € M.

Because of the orthogonal decomposition H = Ho+H s, hy,as is the only interpolator,
in Hyy, of ¢ for M.

Finally, let Pj,, be the orthogonal projection of H onto Has. ¢ — Py, [¢] is orthog-
onal to Hyys, thus ¢ — Py, [¢] € Ho, i.e. Py, [¢] interpolates ¢ for M, which means
that

h@aM = P'HM [90] .
© + Hy
®
hoat o
0
H Hur

Figure 1: Schematic representation of optimal interpolation in a Hilbert subspace.

In practice, the set of all interpolators is characterized by hy s and the kernel T,
(the knowledge of those two objects allows the construction of all the interpolators, in
H, of ¢ for M).

The Hilbert kernel T3, of the Hilbert subspace Hay, (-|)5, is linked with T3 by the
relation

Trpy = PrpTh,
this result being true for all closed linear subspace of H. Hence, the knowledge of T%,,
defines the orthogonal projection Pj,, and reciprocally.

At least, note that if {h;, i € I'} is a Hilbert basis of H € Hilb(FE), the Hilbert kernel
Ty of H can be written under the form :

Ty = hi@h;, ie. Ve and f' € B, (Tue', f) g =D (his€') g o (his ) p o
i€l icl
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Remark 2.1: The following result is specially motivated by the example treated in
section 6.2. It shows how to solve the interpolation problem associated with a
linear subspace M of E’ by splitting M in several linear subspaces.

Let M1 and M2 be two linear subspaces of E’. We introduce
Har =T (M1)  and Hor = Hyyq-
Let us denote P,,, and Py, the orthogonal projection of H onto respectively
Har and Hop and let Ty, = Py, T be the Hilbert kernel of Hp;. Finally, let

—_—H
Ho1, a2 = Tryy (M2) .
Then, for ¢ € ‘H, the optimal interpolator of ¢ for M = M1+ M2 is given by

Py, [90] = Py, [90] + PHm.Mz [90 = Py [4,0]] ’

and Ty, = Py, 00 Pro T, With Py, ., the orthogonal projection of Ho; onto
Ho1,m2, and Ho1,02 the orthogonal of Ho1,m2 in Hos. |

3. Problem Adapted Integral Operator

Let H € Hilb(E) and let M be a linear subspace of E’. We use the same notations
and definitions than in section 2.

In this section, we will show how, from compact integral operators spectral decom-
position, one can build a Hilbert basis of the linear subspace Hjs of H (note that such
a Hps would then be necessarily separable, see for instance corollary 3.2).

Let S be a general set endowed with a o-algebra and let v be a o-finite measure on
S. Let v: S — E’' be such that, for all h € H, the function f, : s € S — (h,vs)p p €R
is measurable and 7

Vh e H, / (h,’ys>2E’E/ dv(s) < +o0. (3.1)
s

We assume that the linear space spanned by the s, s € S is M (i.e. M = span {7(S)}).

Let L%(S,v) be the Hilbert space of square-integrable real-valued functions with re-
spect to v (L?(S,v) is obviously a quotient space), note that L?(S,v) has not to be
necessarily separable. Let (-|-);. and ||| = be its inner product and norm. We remind
that

(Fl9) > = /5 £(8)9(s)dv(s).

Equation (3.1) means that, for all h € H, §, € L?(S,v). We then define the applica-
tion § : H — L?(S,v), h — f,. Because M = span {v(S)}, we have F(Ho) = 0, i.e. in
terms of set, F(H) = F(Har)-

We add the following hypotheses :

H-i. the application (s,t) € S x 8 — (T8, 7) g g = (Try8|THt)4, is measurable,

H-ii. N = [ | Trys||3, dv(s) < +oo,



H-iii. for h € H, |[fa]| > = 0 if and only if h € Hp.

Remark 3.1: Hypothesis H-i and H-ii imply that, for all h € H,

2. = / (8% g d(s) = / (W)l dv(s) < NI (3.2)
S S

Furthermore, from Cauchy-Schwarz inequality :
[ st pavtsiavty = [ [ @erslTrtys, av(s)avte
sJs sJs

/5 /S | Tovs 12, | Tt |2, du(s)d(t) = N2,

N

We will call ||TH||?W this quantity, i.e.

1Tl = /S /S (Toys, 11’ g div(s)du(t) (< N?). (3.3)

Hypothesis H-iii will be realized for example if S is a topological space (en-
dowed with its Borel o-algebra), if v is continuous for the weak topology of E’
and if supp(v) = S (with supp(v) the support of v).

Finally, note that H-iii and equation (3.2) imply that § : Hyr — L%(S,v) is a
continuous injection. |

We endowed §F(H) = F(Has) of the following inner-product,
Vf and g € Hay, (fh|fg)5(71) = (h|g)H. (3.4)

From H-iii, §(H) = §(Har), ()33 is a Hilbert space and, by construction, it is isomet-
ric to Haz, (+|+)4- In addition, from equation (3.2), the inclusion of F(H ) into L*(S,v)
is continuous (i.e. §F (Has) € Hilb (L*(S,v)), see remark 3.2).

We now introduce the operator £,, which is at this moment correctly define from
L*(S,v) onto RS (with RS the space of real-valued functions on S). We pose :

Vs €S and Vf € I(S,0), L,111(5) = [ (Tt Tors)ye FO()

Proposition 3.1

The linear space spanned by the L,[f], f € L*(S,v) is dense in § (Hyr), (~|~)3(H).
Furthermore, for all f € L?(S,v) and h € H,

(ol g = (alf)p - (3.5)

Proof: For a fixed f € L*(S,v), we define the linear application Iy : L*(S,v) — R such
that, for g € L*(S,v), If[g] = (f|g) 2. Thus, for h € H,

]l < 1l 2 Inll e < NNl VN (1Bl (= 1£1l 2 \/N”fh”g(n)) :
)



Iy is a linear and continuous application from the Hilbert §(H), (-|')z 4, onto R, thus,
for all h € H there exists a unique Ry € Has such that

Islfnl = (Fnlfrs ) 5 0 = (BIRp)g, -
Nevertheless, for all s € S,
fri(s) = (Rpv8) g = (RplTrs)y = (flfrys) L2
= [ @atmas),, st = L1,

which proves that £,[f] € §(Ham). To obtain equation (3.5), we just have to remark
that for f € L?(S,v) and h € H,

(lLo LD e = (AR )y = (1) 2
Finally, if h € Has verify

Vf e LQ(SaV)’ (fh|£l'[f])g(7-¢) =0,
then, from hypothesis H-iii, h = 0. |

Remark 3.2: Proposition 3.1 is similar to

Corollaire 3.1

L, is the Hilbert kernel of the Hilbert subspace § (Has) of L*(S,v).

In fact, L?(S,v) being a Hilbert space, one can identify its topological dual to
itself.

L,: (L3S, v)) = L*(S,v) — F (Hum) C L3(S,v)
verify equation 3.5, which is exactly the characterization of the Hilbert kernel
associated to § (Har) € Hilb (L*(S,v)).
In a same way, the application f +— Ry appearing in the proof of proposition

3.1 could be seen as the Hilbert kernel of Hy; relatively to L?(S,v) in the sense
that, for all h € Hys and f € L*(S,v), (fIfn) 2 = (h|Ry)y,- |

Proposition 3.1 authorizes us to see £, as an operator from L%(S,v) onto L%(S,v).

The Hilbert kernel T3, and the application « define a symmetric and positive-definite
kernel (-,-) on & x S :

V(S,t) €S x S, K (S,t) = (Tprt'TH’ys)H . (36)

From equation (3.3), K(:,-) € L*(S x S,v x v) (we have ||K||;. = |T%ll., ), hence L,
can be seen as a classic Hilbert-Schmidt integral operator and is therefore compact (see
for instance [9§10]).

Because K(-,-) is symmetric, £, is self-adjoint ; further £, is positive, apply for
example equation (3.5). One also can note that £, is continuous :

Vf € L2(S,v), 1L 172 < Ty, 117

So L, : L?(S,v) — L*(S,v) is diagonalizable and its eigenvalues are positive.
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Remark 3.3: The fact that £, : L*(S,v) — L?(S,v) is a symmetric, positive and
continuous operator can also be seen as a trivial consequence of corollary 3.1 and
[1]. ]

We denote \; those eigenvalues and 51- € L*(S,v) their associated eigenfunctions,
i € I. We remind that {(EH 1€ ]I} form a orthonormal basis of L?(S,v). Finally, we

will denote by {\,, n € I} the countable set (i.e I C N) off all strictly positive
eigenvalues with multiplicity.
Equation (3.5) implies that, for all n € T,

Vh € H, (&nm)m) — Tln (£ 0] \fh)m) = % (@nlfn) - (3.7)

Proposition 3.2
{\/)\ngn, n € H+} is a Hilbert basis of §(H), (:|')z()-

Proof: The fact that {\/)\nqgn} is an orthonormal system of §(H) is consequence of equa-

tion (3.7). We just have to show that span{\/knqgn} is dense in F(H) which is a
consequence of proposition 3.1. |

2
Remark 3.4: The two spaces §(H) , (). and §(H), (-|')z( are isometric. The
isometry is given by : B N
Vn € H+, (bn — )\n(bn
2

In fact, this isometry is the restriction, at F(H) , of the square-root of £, :
L3(8,v) — L*(S,v),

£§ lz Oéigﬁi} = Z aiv/\ig; with,

i€l i€l
for i e I\Iy, i.e. \; =0, Eé [51} = 0. Obviously, £, = Eé o [é. |

As we have seen, § : Hy — §(Has) define an isometry between the two Hilbert
spaces §(Hur), ()3 and Har, (-[-)y. We then introduce ' F(Hm) — Hu, the
inverse isometry of §. _

For n € I, we denote ¢,, = ¢, € Har. We call ¢,, the regularized eigenfunc-
tions associated with the eigenvalue A, we will also say that ¢, is the regularization of
¢n € L2(S,v).

Corollaire 3.2

{VAndn, n €1} is a Hilbert basis of Has (+|-), (and Hay is obviously separable).

Remark 3.5: The application §~! is the generalization of the notion of regulariza-
tion (or regularized eigenfunctions) that can be found in [5]. |
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The definition ¢, = Silgn, n € 1 correctly characterizes the regularized eigenfunc-
tions as elements of Hj;. Nevertheless, in practice, we will need explicit formulas for the
¢n (in order to compute them for example). So, we consider the application f — Ry
appearing in the proof of proposition 3.1 and which we now denote 'L, (coherent
notation). We remind that, Vf € L?*(S,v) and Vs € S,

5Ll = [ Pt Treys)ye (O(0) (3.8)

From this equation, one can write §~1L,[f], f € L?(S,v), under a vectorial integral
form (see [10]),

SLf] = /S F(O Tyt dv(t) € Ha. (3.9)

Finally, we obtain (by using the linearity of 1), for all n € I,

i~ 1 ~ 1 ~

the expression (3.10) having to be understood in the sense of equation (3.8).

Remark 3.6 (an equivalent way to proceed) : Instead of transporting the Hilbert
structure of H s onto the subspace F(Has) of L?(S,v), one can remark that equa-
tion (3.1) allows us to define on H the symmetric and positive bilinear form

Vh and g € H, (h|g),, = /s (hs¥8) g (9, 78) v AV(8). (3.11)

We denote [|h]2, = (hlh), -

H-iii, implies that the null space of (-|-), , is Ho, i.e. for h € H, ||A[[, , = 0 if
and only if h € Ho. We have, for all h € H, ||h]|, , = [Ifnllz> and Har, (), is a
pre-Hilbert space isometric to §(Har), (+|-) 2, the isometry being the application
3. The completed Hy; " of Hyy for [[[l,,, is then isometric, in terms of Hilbert

2

structure, to the space F(H) of remark 3.4.
We next define the analogous L, of L,, firstly on Hys, by

Vh € Har, Vs € S, (Lu[h,v8) g = Lo [f] (5), or, (3.12)

equivalently, by L,[h] = §7 1L, [f]. As mentioned in equation (3.9), L, can be
written under the vectorial integral form

Vh € Hy, Ly[h] = / (hyv8) g g Trys dv(s). (3.13)
s

L, is next extended to Hy; " by continuity. Then, one can proof that L, is a
. . a7V . . .. .
Hilbert-Schmidt operator on Hps *, (-]-) - Lv is symmetric and positive definite,
its eigenvalues are A\, n € I and each ones are associated with the eigenfunction

P



We finally obtain the same Hilbert basis {v/An¢n, n € I} of Has (+|-), than
in corollary 3.2.

Note that one can also directly proof that L,, seen as an operator from H
onto Hyy, is a positive and symmetric Hilbert-Schmidt operator. The eigenspace
associated with the null eigenvalues is Ho and /A,¢n, n € [, are the (normed)
eigenfunctions associated with the eigenvalues A,,.

As an illustration, we will use this point of view in section 5. |

Remark 3.7 (link with preceding works) : In [5] and [7], H is a reproducing ker-
nel Hilbert space (RKHS, see [6]) of real-valued function defined on a general set
X, i.e. H is a Hilbert subspace of E = RY with R the space of real valued
functions on X endowed with the simple convergence topology (see [1§.9]). E’ is
the linear space spanned by the J,, z € X where §, is the Dirac measure at z, i.e.
for f € RY, f(x) = (f, 6z)p - We remind that the reproducing kernel K(-,-) of
‘H is linked with its Hilbert kernel T by the relation

Ve and y € X, K(x,y) = <TH51’6ZI>E,E’ .

For a subset S C X endowed with a o-algebra and a o-finite measure v on S, the
studied integral operator is

Vi € L3(S,v), Lulf](s) = /S K (s,£) f(£)du ().

Hence, the implicitly considered application v is v : S — E’, s — d, (and M is
the linear subspace of E’ spanned by the d5, s € §). So, the integral operators
defined in section 3 generalize the ones considered in [5] and [7]. |

4. Representation and Approximation of the Optimal Interpolator

Let H € Hilb(E) and let M be a linear subspace of E’. In order to apply section
3, we assume that M is such that Hj, is separable. We then consider the Hilbert basis
{VAndn, n €1y} of Har, (+]-);, which is defined in corollary 3.2. Knowing a Hilbert
basis of H s, one can easily expressed, in terms of this basis, the orthogonal projection
of H onto Hyys, i.e. expressed, for a fixed ¢ € H, the optimal interpolator of ¢ for M
(see section 2). Finally, the property of the basis {\/Egbm n e H+} allows us to give
a formula for the optimal interpolator Pjy,, [¢] which explicitly depends of the values
(<p,'ys>E,E,, s €8, i.e. of the ((p,e’>E’E,, eeM.

Theorem 4.1

Let ¢ € H and let M be a linear subspace of E’ such that H,; is separable. Let us
consider the Hilbert basis {\//\ngbn, n e H+} of Hys defined in corollary 3.2, then we
have

Pry [ = 3 6 / b V5) 0 (975) . A (5): (4.1)

(
nel S
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Proof: It is a simple consequence of equation (3.7) :

Pry le] = Z Vnén <\/E¢n‘50)7_‘ = Z Antn (gn”w)
> 6n (Bulfe) -

3(H)

Remark that, by construction, the sum appearing in equation (4.1) converges in H.
Since H € Hilb(E), it also converges for the initial topology of E and for its weak
topology o(E, E'). Then, in particular, for all ¢/ € E’,

(Proy ] a€/>E,E’ = Z <¢na€/>E,E’ /S <¢m’75>E,E' <%’YS>E,E' dv(s).

nely

In [7, section 3], we show examples where H )y is of infinite dimension (i.e. I, = N)
and where the expression (4.1) can be analytically expressed (i.e. the limit of the sum
can be analytically calculated).

Nevertheless, in certain cases, for instance for numerical reasons, we will not be able
to consider all the terms in

Ve’ and f/ € Elv <T'HMe,7 f/>E,E’ = Z )‘n <¢nv 6/>E,E/ <¢n7 fI>E,E’ .

nel

We assume that we dispose of an approximated kernel defined from a subset I, of Ly,
ie.

Ve’ and f' € E, <Tﬂﬁpe',f'>E = Ml (O

nely

Hence, for ¢ € H, we obtain an approximation of the optimal interpolator Py, [p] that
we note Pyarv [¢] :

Ve € El, <PHK§’P [(p] 7€/>E,E/ = <<p‘THtﬁp€/)H
n€lapp H

with H3? the closure in H of the subspace spanned by the ¢, n € Ly,
We pose Loy = 14\, Hence, we find the following expression for the approximation
error, for all ¢/ € F’,

(PualdlPrgrl ), = (o~ i)

E.E'
(cp

Finally, applying the Cauchy-Schwarz inequality to equation (4.2) allows us to control
the error of approximation :

H

n€lerr

> An<¢n,e’>E7E/¢>n> . (42
H
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Theorem 4.2

2
2

2
ve' € B (Bruy o] = Prgpr o)) | <ol D0 Anldniepm (43)
’ n€lerr
2
2
and By, [¢] = Brege ]| <llellze 30 A (4.4)
v n€lerr

We call 3, o A, the spectral error term.

Remark 4.1: In the most part of application cases, the analytical spectral decom-
position of £, would be unknown. Nevertheless, one should dispose of a numerical
approximation of this spectral decomposition, obtained from an algorithm of spec-
tral approximation. It should be interesting to study the behavior of theorems 4.1
and 4.2 in such cases. u

5. Finite Case

We suppose that M is of finite dimension, i.e. M = {1, -+ ,un}, n € N. We also
assume, for simplicity and without loss of generality, that the p; € E' are such that the
symmetric and positive matrix

T € R™™", defined by, for 1 <4, <n, T;; = (Trpi|Trpj)y, is invertible. (5.1)
For convenience, we introduce the matricial type notations

H = (/j/la T 7Mn)T and T = (THH|THNT)H = <THIJ’7IJ’T> = <IJ’7THHT>a

where Tpp = (Typ, - - ,TH,un)T. Hence, for ¢ € 'H, the optimal interpolator of ¢ for
M can be written under the form :
et = T T () (5.2)
T
with (p, o) = (((p,uﬁE’E, S 7((,0,;LH>E’E,) . Remark for instance that, with our no-

tation,
()" = {p,pn") ,and for e € E and €’ € E/, (e,¢)pp = (e;€) = (€, e),

so, we will write, for ¢’ € E', (¢/, h%M>E,E' = <e’7THuT> T {u, ).
The aim of this section is to proof, by direct calculation, that the expression of the
optimal interpolator given in equation (5.2) is equal to the one given in theorem 4.1.
The linear operator, of remark 3.6 type, L, is defined by

Vh € M, Lyh] =Y wi (h, i) g g Trapti, (5.3)

i=1

11



with w; > 0 for all 1 < ¢ < n. Introducing the matrix W = diag (w1, -, w,), L, can be
written under the matricial form :

Vh € H, Ll/[h‘] - T'HIJ‘TW <,Ll,, h> :

The finiteness of the sum (5.3) assures us that L, verifies the whole properties required
in section 3. The symmetric and positive bilinear form (-[-)., , on H and associated with
L, by equation (3.11) is, for h and g € H,

(hlg),,, = > wi(hypi)p g (9 1) g g = (hot”) W (p, g) -
=1

Remark 5.1: We easily re obtain the properties of self-adjunction and symmetry of
L, by matricial calculations :

Vhand k € H, (h|Ly[K])y, = (BT W (u,k)),, = (BT W (Trp, k)y),,
= (h|THNT)H W (Trp, k)gy = (Ly[R]|k)s

Vhand k € 1, (h|Ly[K]),, = (WD W (p,k)) = (hw") W (p, Trp" W (s, k))
(hy ) W Ty, ) W (1, k) = (L [B][K).,

Vhoand k € M, (h|Ly[K])y = (hTrp") W p k) = (h, n) W (p, k) = (hlk) 2 -

]
For a € R", let qAba =Typ"a € Hyr. We have
L, [&a] = Ty ™ W (1, o™y o = Ty " WTar.
Hence, the eigenvalues of L,, on H s and the ones of WT are the same. Let A,--- , A, >0

be those eigenvalues (the strict positivity is a consequence of the hypothesis (5.1)) and
let vy, -, v, their associated eigenvectors, i.e. WT = PAP~! with A = diag (\1,-, \,,)
and P = (vq|--|vy). We have, for all 1 < i < n,

Lu [5‘,7} = )\i(gvi'
We define : -
3 SR i L
We have :

($|$T)H — PTTP and ($|$T) — PTTWTP = PTTPA = APTP.  (5.4)
Y

WV
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From equation (5.4), the matrix PTTP is diagonal, which is then also the case for
PTTWTP. As expected, the relation ‘ (/#EW =\ (}EW " is verified.
¥,V

Thus, the eigenfunctions (normalized) of L, on Hys, (-
the vector

) . are the components of

[N

¢ = (PTTWTP) ? 6.

Finally, we obtain
Tup" T () = Tup" T'WTI'W (1, 0) = Typ" PAT'PT'W (11, )
= TuuTPAT'PIT'P-TPTTM (i, ©)
= Tyupu"P (PTTWTP) ' PTTW (i, o)

- ¢ (PTTWTP) ' <<$, uT> Wn, ¢)

= Z¢k/ ¢k7’75>E,E'<W775>E,E'dy(3)-
k=1

(
s

6. Example of application

Let X = R? and H be the RKHS of real-valued functions on X (see remark 3.7)
associated with the kernel (squared exponential or Gaussian kernel, see for example [3]),
for z and y € X,

I =y
K(z,y)=e" ¥, with o > 0 and I - || the euclidean norm.

For m € N, we consider £™ C R? the subspace of functions of class C™ endowed with the
topology of the uniform convergence on the compact subsets of X’ for all the derivatives
of order < m (or of general order if m = +00). Then, from [1, proposition 25], for all
m € N (and also for m = +00), H is a Hilbert subspace of £™.

In, [5], we have considered the case where M = span {J,, s € S}, with S C R? the
circle of center 0 and radius R > 0 (Dirichlet condition on the circle §). In this present
work, our aim is, in a first time, to impose constraints to the normal derivative of the
interpolator on the circle (Neumann condition), which is possible because H in a Hilbert
subspace of £1. Following remark 2.1, we next combine our results with the ones of [5]
to obtain a model in which both value and normal derivative are controlled on the circle
(Robin condition).

6.1. Derivative Constraint

We consider L?(S,v) = L?([0,27]), the space of 27-periodic squared integrable func-
tions (with respect to the Lebesgue measure) on [0, 27|, endowed with the Hilbert norm

27
vf e L2([0,2x), | fllz. = | f(6)*Rdb.
0
Let © = (x1,z2) be a point of X, for convenience, we will use a polar coordinates

system, that is = (ry cos ay, ry sina,) with r, € Ry and a, € [0,27]. For z € X, let
13



us define p, € E’ such that, for all h € H,

(hs ) g = Tmh@)'

We consider M = span{ps, s € S}. Then, v: S — M C E’ is given by vs = pus and
compactness and continuity arguments assure us that Hj; is separable.
The polar coordinates expression of the kernel K (-, ) is

K(l‘,y) _ efa%(rijw"if?rzry cos(ozggfozy))7 then

0 2
K(xvy) = -

5 —5 (re =y cos(a — o)) K (z,y) and

52
Or,0r,

2
K(SC,y) = ; COS(O{z - ay)K(‘ray)

+ oy (re — rycos(ag — ay)) (ry — re cos(ay — ay)) K (z,y).

For f € L?([0,27]), our “problem adapted” integral operator is, for o € [0, 27],
2 82

L,[f](a) = ; mK

(‘TR,O”SR,Q) f(9)Rd97 (61)

with sp g = (Rcosf, Rsinf) and xg o = (Rcosa, Rsina).
Let us pose A = % — 8%2 and B = 40%2. Then, straightforward calculations show
(using parity arguments) that the eigenvalues of £, are

2m 2
forn >0, \, = / [Acos® + B(1+ cos®0)] e E (1=030) o5 (nf) Rdo.
0

For n = 0, Ao is associated with the eigenfunction, for « € [0, 27, ¢o(a) = 2171'R'

For n > 1, A, are of multiplicity 2, associated with, for « € [0, 27],

~ 1 ~ 1
@5 (o) = ——=cosna, and ¢; (o) = ——= sinna.

VTR VTR

Finally, the spectral decomposition of £, is completed because the eigenfunctions %0, (E%
and @2 is a Hilbert basis of L2([0, 2n]).

We next define the regularized eigenfunctions ¢g, ¢S and ¢2 € Hjys (see equation
(3.10)). In our case with have, for instance,

1 2m
Vn>1l, Vee X, ¢)(x) = I B%K(SR,Q,JC) C(\);(Tl]g) Rdp. (6.2)
n Jo s

Remark 6.1: Let us consider the values of the eigenfunctions ¢g, ¢, and ¢ on
the circle S. From equation (6.2), it appears that those ones are linked with the
integral operator, for 5, = (Rcosa, Rsina) and f € L2 (]0,27]),

J[fl(e) = | ' a(st(:vR,a,sRﬂ)f(Q)Rde. (6.3)




Jy, is not self-adjoint and positive, but we remark that for, n > 0,

2m —2R _2R2(1_ 9) .

Pn :/ 5~ (L —cosf)e” = °®" cos(nf)Rd, (with p, € R)
0 g

are eigenvalues of J,. For n = 0, po is associated with the same eigenfunction

than Ag, that is for a € [0, 27|, ¢o(a) = ﬁ.

For n > 1, the p,, are also associated with the same eigenfunctions than A\,
so the p,, are of multiplicity 2, associated with, for « € [0, 27],

~ 1 ~ 1
‘() = ——=cosna, and ¢’ (o) = —— sinna.
Sl = = Srle) = =
The eigenfunctions (En of J,, form an Hilbert basis of L? ([0, 27]), hence, the opera-
tor J, is diagonalizable on L? ([0, 27]), its spectrum is composed by the eigenvalues

pr associated with ¢g, ¢, and ¢;.

We finally obtain that the values of the regularized eigenfunctions of £, on
the circle S are, for g o = (Rcos o, Rsina),

£200(0), ¢ (wn.a) = £-8(a) and ¢} (zn.a) = £207 ().

¢o(TR,a) = o

0.2
I

0.0
I

eigenvalues p,,

-0.2

-0.4
I

Figure 2: Graphical representation of p,, 0 <7 < 30 for R =3 and 02 = 2.

Numerical Applications. We fix R = 3 and 02 = 2, we next compute the eigenvalues and
regularized eigenfunctions of £,. The obtained results are represented on figures 3 and

4, integrals have been performed with Monte-Carlo algorithms.
Following section 4, we approximate the kernel T%,, with the 31 eigenfunctions asso-
ciated with the most important eigenvalues, that is, for all 2 and t € R?

15
KPP (x,t) = Xodo(x)do(t) + > An [0 (2) 85 (1) + 65 ()05, (1)]
"5
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3 0.1 «s\’s\
e
o i - 0. §Q!

Figure 3: Graphical representation of £, spec-

trum, 0 <n <30, R=3 and 02 = 2.
L ES TS anc.g Figure 4: Eigenfunction ¢¢ on [—5, 5]? for n =4.

with K377 (z,t) = <TH%JP6M 6t>E o We have

)

AR 15

Trace (L,) = —— = 18.84956 = =
(L) =3 and Y A=A +2) A, =18.84928.
k€lapp n=1
Hence, we obtain for the spectral error term :
> Ak =2.797111e-04. (6.4)

ke€lerr

We next approximate the kernel Ky(-,-) = K(-,) — Kp(-,-) of the sub-RKHS H,
with, for all z and t € R?,

Ko (x,t) = K(z,t) — Kj* (x,t).

We remind that Hj is the subspace of functions h € H such that aimh(s) = 0 for all
seS.

Figure 5 shows the sample path of a centered Gaussian process with covariance
K{PP(-,-). As expected, this approximates a centered Gaussian process of covariance
K(-,-) conditioned to have null normal derivative on S. In this example, instead of being
null, each normal derivative on S follows a centered normal distribution with variance

Z Ak = 1.483913e-05.

27TR
ke]le’r‘r

Remark 6.2: For s € S, we have

0% Py
K%P(s,s) = 1 — ~ N P _ . 9568043.
0 (5:) N2tR 2= X,mR -

16
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Figure 5: Sample path of a centered Gaussian Figure 6: Graphical representation of z
process with covariance Kg*P(-,-). Ky (z,z) on [—4,4]?

6.2. Double Constraint

In this last section, the results of the preceding section and the ones of [5] are combined
in order to obtain a model that takes into account the values of the function and of its
normal derivative on §. We proceed in a same way than in remark 2.1. We first consider
the problem of the normal derivatives and, in a second time, the problem of the values.
We present an efficient way to approximate the kernel Koo(+,-) of the subspace Hoo of
functions h € H such that

Vs €S, (hps)p g =0 and (h,ds) g g = 0.

Nevertheless, in what follows, one can find the necessary informations allowing to treat
the general problem (that is imposed constraints on the values and on the normal deriva-
tives).

We rename L)) the operator of equation (6.1) (N for Neumann). We also pose, for
n>=1, AN =\,

In [5], we have study the integral operator L2 (D for Dirichlet) on L2([0,27]) asso-

ciated to K (-, ),
27

LY [fl(a) = ) K (2R,a: sr.0) f(0)RA6.
From [5], we know that the eigenfunctions of £ are the same than the one £Y (£ and
LD are diagonalizable in the same basis, which is also the case for the operator .J, of
remark 6.1). For n € N, let us denote A2 the eigenvalues of L2
We consider the integral operator on L2([0,27]) associated to the kernel Ky(-,-) of
section 6.1, that is,

27
LI () = Ko (TR,a 5R,0) f(O)RAY,
17



(R for Robin). From remark 6.1, we find that the eigenvalues A\, n € N, of LZ are given
by
R b Pu

Al is associated with 50, for n > 1, A% is of multiplicity 2 and associated with 5% and
P

Considering the operator L, we respectively denote ¢, ¢<¥ and ¢V its regularized
eigenfunctions. For example, we have, for n > 1,

c 1 “c

In a same way, we denote ¢, ¢¢P and ¢3P the regularized eigenfunctions of L. We

finally introduce ¢, ¢¢f and ¢2F the regularized eigenfunctions of L.
Straightforward calculations give that, for all z € X,

o () = jR (APGP(2) — podd) (2)) .

Vn > 1, 650@) = 5 (D652() — pogs (@) and
Bw) = 35 (AP (@) — pod¥ (@)

As an illustration, we compute the kernel KjJ¥(-,-) given by, for x and t € X,

Ko (2,t) = Ko (1) — ATo5 () (¢)

15
= SN [65R@) S R (1) + 037 (2) 3R (1)) -

Finally, figure 7 shows the sample path of an centered Gaussian process with covariance
KEP(,-)

As in section 6.1, instead of being null, the normal derivatives on the circle follow a
centered normal distribution with variance 1.483913e-05. For the values of the sample
path on S, those ones follow a centered normal distribution with variance, for s € S,

15
1
app _ gapp R R\ _ _
Ky)P(s,s) = Ky (s, s) — o ()\O +2 E )\n> = 1.402309e-06,

n=0

the value K;"”(s,s) = 0.9568043 being given in remark 6.2.
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