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Abstract

The orthogonal projection associated to optimal interpolation in a Hilbert subspace is
characterized by the spectral decomposition of problem adapted integral operators. We
then propose a methodology to construct interpolators that take into account an infinite
number of informations. As an application, we illustrate how boundary constraints can
be enforced in Gaussian process models.
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1. Introduction

Let E be a separated topological real vector space and let E′ be its topological dual.
Let M be a linear subspace of E′ and fixed ϕ ∈ E. An element f ∈ E is said to be an
interpolator of ϕ for M if

∀e′ ∈M, 〈f, e′〉E,E′ = 〈ϕ, e′〉E,E′ .
The interpolation theory is consisted of the characterization and the construction of
such interpolators. If E is also locally convex and quasi-complete, L. Schwartz theory of
Hilbert subspaces of E (see [1]) gives an interesting and efficient framework for interpo-
lation. Giving a Hilbert subspace H of E and ϕ ∈ H ⊂ E, one can easily characterize the
set of all interpolators, in H, of ϕ for M from orthogonal projections in H (see section 2
for details). Let us also remark that interpolation in Hilbert subspaces and conditioning
of Gaussian processes are intrinsically linked since the Hilbert structures appearing in
each case are isometric (see [2, 3, 4]). Nevertheless, we will not address the more general
problem of conditioning in this work.

In the most part of application cases, the set M is of finite dimension, which traduces
the knowledge of a finite number of information about the unknown target element ϕ.
To be more precise, we assume that we know the values 〈ϕ, e′i〉E,E′ for 1 6 i 6 n, with
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e′i ∈ E′ (M is the linear subspace of E′ spanned by the µi, 1 6 i 6 n). The interpolation
problem is then associated with an orthogonal projection of H onto a linear subspace
HM of finite dimension. Due to its finite character, the construction of interpolators can
in this case be numerically achieved.

In the present work, we are particularly interested in cases in which the subspace HM
is of infinite dimension (but separable), traducing the knowledge of an infinite number
of (linearly independent) informations of type 〈ϕ, e′〉E,E′ , e′ ∈ M ⊂ E′ (M is then
necessarily of infinite dimension). For instance, if H is composed of real-valued functions
on a subspace X of Rd, such a situation would appear if one assumes that informations
about the target function ϕ are known one continuous subset of X (for example, boundary
values). Our aim is to give a way to numerically construct interpolators that take account
of an infinite number of informations, or at least to approximate such interpolators (but
without discretize the data set). In [5], a similar study has been accomplished for optimal
interpolation in reproducing kernel Hilbert spaces (RKHS, see [6] and [1§9.]) of real-
valued functions on a set X for information of the type “the values ϕ(s) are known
on a subspace S of X” (Dirichlet boundary conditions, results for the conditioning of
Gaussian process with continuous sample paths with such conditions can also be found
in [7]). This paper is a generalization of the ideas appearing in [5] to L. Schwartz Hilbert
subspaces and for general sets HM (see remark 3.7).

The first part (section 2) of this article is devoted to the description of the theoretical
background of interpolation in Hilbert subspaces. In section 3, we present interpolation-
adapted integral operators and discuss their properties. We next use the spectral de-
composition of the those operators in order to construct interpolators. In section 5, we
consider the case of a finite number of informations. We prove that the spectral represen-
tation formula for the optimal interpolation given in section 4 is equivalent to its usual
expression. We conclude with an example of application, we consider a Hilbert subspace
composed of continuously derivable real-valued functions on R2 and show how one can
enforce constraints to the normal derivatives and the values of interpolators on a cir-
cle. We illustrate our results with an example of their potential application in Gaussian
process models (kriging models).

2. Theoretical Background : Optimal interpolation in Hilbert subspaces

Let E be a quasi-complete, locally convex, separated topological real-vector space (see
for instance [8]) and denote E′ its topological dual space. Let H be a Hilbert subspace
of E, we use the notation H ∈ Hilb(E). We denote TH the Hilbert kernel naturally
associated with H. We remind that TH : E′ → H ⊂ E verify

∀h ∈ H, ∀e′ ∈ E′, 〈h, e′〉E,E′ = (h|THe′)H ,
where (·|·)H is the inner product of H.

Let M be a linear subspace of E′, we pose

M0 =
{
e ∈ E : ∀e′ ∈M, 〈e, e′〉E,E′ = 0

}
.

We define H0 = M0 ∩ H = TH (M)⊥, where TH (M)⊥ denotes the orthogonal, in H, of
TH (M). Hence, for a fixed ϕ ∈ H,

ϕ+
(
M0 ∩H)

2



is the set of all interpolators, in H, of ϕ for M .
By definition, ϕ+

(
M0 ∩H) is a non-empty, closed affine subspace ofH, hence convex.

Thus ϕ +
(
M0 ∩H) admits a minimal norm element, which we denote hϕ,M and call

minimal norm interpolator, or optimal interpolator. hϕ,M is the orthogonal projection
of 0 onto ϕ+

(
M0 ∩H).

By definition of the orthogonal projection, hϕ,M is orthogonal to H0, i.e.

hϕ,M ∈ H⊥0 =
(
TH (M)⊥

)⊥
= TH (M)

H
= HM ,

with HM the closure, in H, of the linear space spanned by THe′, e′ ∈M .
Because of the orthogonal decompositionH = H0+HM , hϕ,M is the only interpolator,

in HM , of ϕ for M .
Finally, let PHM be the orthogonal projection of H onto HM . ϕ−PHM [ϕ] is orthog-

onal to HM , thus ϕ − PHM [ϕ] ∈ H0, i.e. PHM [ϕ] interpolates ϕ for M , which means
that

hϕ,M = PHM [ϕ] .

H0

ϕ +H0

ϕ
hϕ,M

HMH

0

Figure 1: Schematic representation of optimal interpolation in a Hilbert subspace.

In practice, the set of all interpolators is characterized by hϕ,M and the kernel TH0

(the knowledge of those two objects allows the construction of all the interpolators, in
H, of ϕ for M).

The Hilbert kernel THM of the Hilbert subspace HM , (·|·)H is linked with TH by the
relation

THM = PHMTH,

this result being true for all closed linear subspace of H. Hence, the knowledge of THM
defines the orthogonal projection PHM and reciprocally.

At least, note that if {hi, i ∈ I} is a Hilbert basis of H ∈ Hilb(E), the Hilbert kernel
TH of H can be written under the form :

TH =
∑
i∈I

hi ⊗ hi, i.e. ∀e′ and f ′ ∈ E′, 〈THe′, f ′〉E,E′ =
∑
i∈I
〈hi, e′〉E,E′ 〈hi, f ′〉E,E′ .
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Remark 2.1 : The following result is specially motivated by the example treated in
section 6.2. It shows how to solve the interpolation problem associated with a
linear subspace M of E′ by splitting M in several linear subspaces.

Let M1 and M2 be two linear subspaces of E′. We introduce

HM1 = TH (M1)
H

and H01 = H⊥M1.

Let us denote PHM1 and PH01 the orthogonal projection of H onto respectively
HM1 and H01 and let TH01 = PH01TH be the Hilbert kernel of H01. Finally, let

H01,M2 = TH01 (M2)
H
.

Then, for ϕ ∈ H, the optimal interpolator of ϕ for M = M1 +M2 is given by

PHM [ϕ] = PHM1 [ϕ] + PH01,M2 [ϕ− PHM1 [ϕ]] ,

and TH0 = PH01,02PH01TH, with PH01,M2 the orthogonal projection of H01 onto
H01,M2, and H01,02 the orthogonal of H01,M2 in H01.

3. Problem Adapted Integral Operator

Let H ∈ Hilb(E) and let M be a linear subspace of E′. We use the same notations
and definitions than in section 2.

In this section, we will show how, from compact integral operators spectral decom-
position, one can build a Hilbert basis of the linear subspace HM of H (note that such
a HM would then be necessarily separable, see for instance corollary 3.2).

Let S be a general set endowed with a σ-algebra and let ν be a σ-finite measure on
S. Let γ : S → E′ be such that, for all h ∈ H, the function fh : s ∈ S 7→ 〈h, γs〉E,E′ ∈ R
is measurable and

∀h ∈ H,
∫
S
〈h, γs〉2E,E′ dν(s) < +∞. (3.1)

We assume that the linear space spanned by the γs, s ∈ S is M (i.e. M = span {γ(S)}).
Let L2(S, ν) be the Hilbert space of square-integrable real-valued functions with re-

spect to ν (L2(S, ν) is obviously a quotient space), note that L2(S, ν) has not to be
necessarily separable. Let (·|·)L2 and ‖·‖L2 be its inner product and norm. We remind
that

(f |g)L2 =
∫
S
f(s)g(s)dν(s).

Equation (3.1) means that, for all h ∈ H, fh ∈ L2(S, ν). We then define the applica-
tion F : H → L2(S, ν), h 7→ fh. Because M = span {γ(S)}, we have F(H0) = 0, i.e. in
terms of set, F(H) = F(HM ).

We add the following hypotheses :

H-i. the application (s, t) ∈ S × S 7→ 〈THγs, γt〉E,E′ = (THγs|THγt)H is measurable,

H-ii. N =
∫
S ‖THγs‖2H dν(s) < +∞,
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H-iii. for h ∈ H, ‖fh‖L2 = 0 if and only if h ∈ H0.

Remark 3.1 : Hypothesis H-i and H-ii imply that, for all h ∈ H,

‖fh‖2L2 =
∫
S
〈h, γs〉2E,E′ dν(s) =

∫
S

(h|THγs)2H dν(s) 6 N ‖h‖2H . (3.2)

Furthermore, from Cauchy-Schwarz inequality :∫
S

∫
S
〈THγs, γt〉2E,E′ dν(s)dν(t) =

∫
S

∫
S

(THγs|THγt)2H dν(s)dν(t)

6
∫
S

∫
S
‖THγs‖2H ‖THγt‖2H dν(s)dν(t) = N2.

We will call ‖TH‖2γ,ν this quantity, i.e.

‖TH‖2γ,ν =
∫
S

∫
S
〈THγs, γt〉2E,E′ dν(s)dν(t)

(
6 N2

)
. (3.3)

Hypothesis H-iii will be realized for example if S is a topological space (en-
dowed with its Borel σ-algebra), if γ is continuous for the weak topology of E′

and if supp(ν) = S (with supp(ν) the support of ν).

Finally, note that H-iii and equation (3.2) imply that F : HM → L2(S, ν) is a
continuous injection.

We endowed F(H) = F(HM ) of the following inner-product,

∀f and g ∈ HM , (fh|fg)F(H) = (h|g)H . (3.4)

From H-iii, F(H) = F(HM ), (·|·)F(H) is a Hilbert space and, by construction, it is isomet-
ric to HM , (·|·)H. In addition, from equation (3.2), the inclusion of F(HM ) into L2(S, ν)
is continuous (i.e. F (HM ) ∈ Hilb (L2(S, ν)

)
, see remark 3.2).

We now introduce the operator Lν , which is at this moment correctly define from
L2(S, ν) onto RS (with RS the space of real-valued functions on S). We pose :

∀s ∈ S and ∀f ∈ L2(S, ν), Lν [f ](s) =
∫
S

(THγt|THγs)H f(t)dν(t).

Proposition 3.1

The linear space spanned by the Lν [f ], f ∈ L2(S, ν) is dense in F (HM ), (·|·)F(H).

Furthermore, for all f ∈ L2(S, ν) and h ∈ H,

(fh|Lν [f ])F(H) = (fh|f)L2 . (3.5)

Proof : For a fixed f ∈ L2(S, ν), we define the linear application If : L2(S, ν) → R such
that, for g ∈ L2(S, ν), If [g] = (f |g)L2 . Thus, for h ∈ H,

|If [fh]| 6 ‖f‖L2 ‖fh‖L2 6 ‖f‖L2

√
N ‖h‖H

(
= ‖f‖L2

√
N ‖fh‖F(H)

)
.
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If is a linear and continuous application from the Hilbert F(H), (·|·)F(H) onto R, thus,
for all h ∈ H there exists a unique Rf ∈ HM such that

If [fh] =
(
fh|fRf

)
F(H)

= (h|Rf )H .

Nevertheless, for all s ∈ S,

fRf (s) = 〈Rf , γs〉E,E′ = (Rf |THγs)H = (f |fTHγs)L2

=

∫
S

(THγt|THγs)H f(t)dν(t) = Lν [f ](s),

which proves that Lν [f ] ∈ F (HM ). To obtain equation (3.5), we just have to remark
that for f ∈ L2(S, ν) and h ∈ H,

(fh|Lν [f ])F(H) = (h|Rf )H = (fh|f)L2

Finally, if h ∈ HM verify

∀f ∈ L2(S, ν), (fh|Lν [f ])F(H) = 0,

then, from hypothesis H-iii, h = 0.

Remark 3.2 : Proposition 3.1 is similar to
Corollaire 3.1

Lν is the Hilbert kernel of the Hilbert subspace F (HM ) of L2(S, ν).

In fact, L2(S, ν) being a Hilbert space, one can identify its topological dual to
itself.

Lν :
(
L2(S, ν)

)′
= L2(S, ν)→ F (HM ) ⊂ L2(S, ν)

verify equation 3.5, which is exactly the characterization of the Hilbert kernel
associated to F (HM ) ∈ Hilb (L2(S, ν)

)
.

In a same way, the application f 7→ Rf appearing in the proof of proposition
3.1 could be seen as the Hilbert kernel of HM relatively to L2(S, ν) in the sense
that, for all h ∈ HM and f ∈ L2(S, ν), (f |fh)L2 = (h|Rf )H.

Proposition 3.1 authorizes us to see Lν as an operator from L2(S, ν) onto L2(S, ν).
The Hilbert kernel TH and the application γ define a symmetric and positive-definite

kernel K(·, ·) on S × S :

∀(s, t) ∈ S × S, K (s, t) = (THγt|THγs)H . (3.6)

From equation (3.3), K(·, ·) ∈ L2(S × S, ν × ν) (we have ‖K‖L2 = ‖TH‖γ,ν), hence Lν
can be seen as a classic Hilbert-Schmidt integral operator and is therefore compact (see
for instance [9§10]).

Because K(·, ·) is symmetric, Lν is self-adjoint ; further Lν is positive, apply for
example equation (3.5). One also can note that Lν is continuous :

∀f ∈ L2(S, ν), ‖Lν [f ]‖2L2 6 ‖TH‖2γ,ν ‖f‖2L2 .

So Lν : L2(S, ν)→ L2(S, ν) is diagonalizable and its eigenvalues are positive.
6



Remark 3.3 : The fact that Lν : L2(S, ν) → L2(S, ν) is a symmetric, positive and
continuous operator can also be seen as a trivial consequence of corollary 3.1 and
[1].

We denote λi those eigenvalues and φ̃i ∈ L2(S, ν) their associated eigenfunctions,
i ∈ I. We remind that

{
φ̃i, i ∈ I

}
form a orthonormal basis of L2(S, ν). Finally, we

will denote by {λn, n ∈ I+} the countable set (i.e I+ ⊂ N) off all strictly positive
eigenvalues with multiplicity.

Equation (3.5) implies that, for all n ∈ I+,

∀h ∈ H,
(
φ̃n
∣∣fh)

F(H)
=

1
λn

(
Lν
[
φ̃n

] ∣∣fh)
F(H)

=
1
λn

(
φ̃n
∣∣fh)

L2
. (3.7)

Proposition 3.2{√
λnφ̃n, n ∈ I+

}
is a Hilbert basis of F(H), (·|·)F(H).

Proof : The fact that
{√

λnφ̃n
}

is an orthonormal system of F(H) is consequence of equa-

tion (3.7). We just have to show that span
{√

λnφ̃n
}

is dense in F(H) which is a

consequence of proposition 3.1.

Remark 3.4 : The two spaces F(H)
L2

, (·|·)L2 and F(H), (·|·)F(H) are isometric. The
isometry is given by :

∀n ∈ I+, φ̃n ↔
√
λnφ̃n.

In fact, this isometry is the restriction, at F(H)
L2

, of the square-root of Lν :
L2(S, ν)→ L2(S, ν),

L 1
2
ν

[∑
i∈I

αiφ̃i

]
=
∑
i∈I+

αi
√
λiφ̃i with,

for i ∈ I\I+, i.e. λi = 0, L 1
2
ν

[
φ̃i

]
= 0. Obviously, Lν = L 1

2
ν ◦ L

1
2
ν .

As we have seen, F : HM → F(HM ) define an isometry between the two Hilbert
spaces F(HM ), (·|·)F(H) and HM , (·|·)H. We then introduce F−1 : F(HM ) → HM , the
inverse isometry of F.

For n ∈ I+, we denote φn = F−1φ̃n ∈ HM . We call φn the regularized eigenfunc-
tions associated with the eigenvalue λn, we will also say that φn is the regularization of
φ̃n ∈ L2(S, ν).

Corollaire 3.2{√
λnφn, n ∈ I+

}
is a Hilbert basis of HM (·|·)H (and HM is obviously separable).

Remark 3.5 : The application F−1 is the generalization of the notion of regulariza-
tion (or regularized eigenfunctions) that can be found in [5].
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The definition φn = F−1φ̃n, n ∈ I+ correctly characterizes the regularized eigenfunc-
tions as elements of HM . Nevertheless, in practice, we will need explicit formulas for the
φn (in order to compute them for example). So, we consider the application f 7→ Rf
appearing in the proof of proposition 3.1 and which we now denote F−1Lν (coherent
notation). We remind that, ∀f ∈ L2(S, ν) and ∀s ∈ S,

〈
F−1Lν [f ], γs

〉
E,E′

=
∫
S

(THγt|THγs)H f(t)dν(t). (3.8)

From this equation, one can write F−1Lν [f ], f ∈ L2(S, ν), under a vectorial integral
form (see [10]),

F−1Lν [f ] =
∫
S
f(t)THγt dν(t) ∈ HM . (3.9)

Finally, we obtain (by using the linearity of F−1), for all n ∈ I+,

φn = F−1φ̃n =
1
λn

F−1Lν
[
φ̃n

]
=

1
λn

∫
S
φ̃n(t)THγt dν(t), (3.10)

the expression (3.10) having to be understood in the sense of equation (3.8).
Remark 3.6 (an equivalent way to proceed) : Instead of transporting the Hilbert

structure of HM onto the subspace F(HM ) of L2(S, ν), one can remark that equa-
tion (3.1) allows us to define on H the symmetric and positive bilinear form

∀h and g ∈ H, (h|g)γ,ν =
∫
S
〈h, γs〉E,E′ 〈g, γs〉E,E′ dν(s). (3.11)

We denote ‖h‖2γ,ν = (h|h)γ,ν .

H-iii, implies that the null space of (·|·)γ,ν is H0, i.e. for h ∈ H, ‖h‖γ,ν = 0 if
and only if h ∈ H0. We have, for all h ∈ H, ‖h‖γ,ν = ‖fh‖L2 and HM , (·|·)γ,ν is a
pre-Hilbert space isometric to F(HM ), (·|·)L2 , the isometry being the application
F. The completed HMγ,ν

of HM for ‖·‖γ,ν is then isometric, in terms of Hilbert

structure, to the space F(H)
L2

of remark 3.4.

We next define the analogous Lν of Lν , firstly on HM , by

∀h ∈ HM , ∀s ∈ S, 〈Lν [h], γs〉E,E′ = Lν [fh] (s), or, (3.12)

equivalently, by Lν [h] = F−1Lν [fh]. As mentioned in equation (3.9), Lν can be
written under the vectorial integral form

∀h ∈ HM , Lν [h] =
∫
S
〈h, γs〉E,E′ THγs dν(s). (3.13)

Lν is next extended to HMγ,ν
by continuity. Then, one can proof that Lν is a

Hilbert-Schmidt operator onHMγ,ν
, (·|·)γ,ν . Lν is symmetric and positive definite,

its eigenvalues are λn, n ∈ I+ and each ones are associated with the eigenfunction
φn.
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We finally obtain the same Hilbert basis
{√

λnφn, n ∈ I+
}

of HM (·|·)H than
in corollary 3.2.

Note that one can also directly proof that Lν , seen as an operator from H
onto HM , is a positive and symmetric Hilbert-Schmidt operator. The eigenspace
associated with the null eigenvalues is H0 and

√
λnφn, n ∈ I+ are the (normed)

eigenfunctions associated with the eigenvalues λn.

As an illustration, we will use this point of view in section 5.

Remark 3.7 (link with preceding works) : In [5] and [7], H is a reproducing ker-
nel Hilbert space (RKHS, see [6]) of real-valued function defined on a general set
X , i.e. H is a Hilbert subspace of E = RX with RX the space of real valued
functions on X endowed with the simple convergence topology (see [1§.9]). E′ is
the linear space spanned by the δx, x ∈ X where δx is the Dirac measure at x, i.e.
for f ∈ RX , f(x) = 〈f, δx〉E,E′ . We remind that the reproducing kernel K(·, ·) of
H is linked with its Hilbert kernel TH by the relation

∀x and y ∈ X , K(x, y) = 〈THδx, δy〉E,E′ .
For a subset S ⊂ X endowed with a σ-algebra and a σ-finite measure ν on S, the
studied integral operator is

∀f ∈ L2(S, ν), Lν [f ](s) =
∫
S
K(s, t)f(t)dν(t).

Hence, the implicitly considered application γ is γ : S → E′, s 7→ δs (and M is
the linear subspace of E′ spanned by the δs, s ∈ S). So, the integral operators
defined in section 3 generalize the ones considered in [5] and [7].

4. Representation and Approximation of the Optimal Interpolator

Let H ∈ Hilb(E) and let M be a linear subspace of E′. In order to apply section
3, we assume that M is such that HM is separable. We then consider the Hilbert basis{√

λnφn, n ∈ I+
}

of HM , (·|·)H which is defined in corollary 3.2. Knowing a Hilbert
basis of HM , one can easily expressed, in terms of this basis, the orthogonal projection
of H onto HM , i.e. expressed, for a fixed ϕ ∈ H, the optimal interpolator of ϕ for M
(see section 2). Finally, the property of the basis

{√
λnφn, n ∈ I+

}
allows us to give

a formula for the optimal interpolator PHM [ϕ] which explicitly depends of the values
〈ϕ, γs〉E,E′ , s ∈ S, i.e. of the 〈ϕ, e′〉E,E′ , e′ ∈M .

Theorem 4.1

Let ϕ ∈ H and let M be a linear subspace of E′ such that HM is separable. Let us
consider the Hilbert basis

{√
λnφn, n ∈ I+

}
of HM defined in corollary 3.2, then we

have

PHM [ϕ] =
∑
n∈I+

φn

∫
S
〈φn, γs〉E,E′ 〈ϕ, γs〉E,E′ dν(s). (4.1)
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Proof : It is a simple consequence of equation (3.7) :

PHM [ϕ] =
∑
n

√
λnφn

(√
λnφn

∣∣ϕ)
H

=
∑
n

λnφn
(
φ̃n|fϕ

)
F(H)

=
∑
n

φn
(
φ̃n|fϕ

)
L2
.

Remark that, by construction, the sum appearing in equation (4.1) converges in H.
Since H ∈ Hilb(E), it also converges for the initial topology of E and for its weak
topology σ(E,E′). Then, in particular, for all e′ ∈ E′,

〈PHM [ϕ] , e′〉E,E′ =
∑
n∈I+

〈φn, e′〉E,E′
∫
S
〈φn, γs〉E,E′ 〈ϕ, γs〉E,E′ dν(s).

In [7, section 3], we show examples where HM is of infinite dimension (i.e. I+ = N)
and where the expression (4.1) can be analytically expressed (i.e. the limit of the sum
can be analytically calculated).

Nevertheless, in certain cases, for instance for numerical reasons, we will not be able
to consider all the terms in

∀e′ and f ′ ∈ E′, 〈THM e′, f ′〉E,E′ =
∑
n∈I+

λn 〈φn, e′〉E,E′ 〈φn, f ′〉E,E′ .

We assume that we dispose of an approximated kernel defined from a subset Iapp of I+,
i.e.

∀e′ and f ′ ∈ E′,
〈
THappM

e′, f ′
〉
E,E′

=
∑
n∈I+

λn 〈φn, e′〉E,E′ 〈φn, f ′〉E,E′ .

Hence, for ϕ ∈ H, we obtain an approximation of the optimal interpolator PHM [ϕ] that
we note PHappM

[ϕ] :

∀e′ ∈ E′,
〈
PHappM

[ϕ] , e′
〉
E,E′

=
(
ϕ

∣∣∣∣THappM
e′
)
H

=
∑
n∈Iapp

√
λnφn(x)

(√
λnφn

∣∣∣∣ϕ)
H
,

with HappM the closure in H of the subspace spanned by the φn, n ∈ Iapp.
We pose Ierr = I+\Iapp. Hence, we find the following expression for the approximation

error, for all e′ ∈ E′,〈
PHM [ϕ]− PHappM

[ϕ] , e′
〉
E,E′

=
(
ϕ
∣∣THM e′ − THappM

e′
)
H

=

(
ϕ

∣∣∣∣∣ ∑
n∈Ierr

λn 〈φn, e′〉E,E′ φn
)
H

. (4.2)

Finally, applying the Cauchy-Schwarz inequality to equation (4.2) allows us to control
the error of approximation :
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Theorem 4.2

∀e′ ∈ E′,
∣∣∣∣〈PHM [ϕ]− PHappM

[ϕ] , e′
〉
E,E′

∣∣∣∣2 6 ‖ϕ‖2H
∑
n∈Ierr

λn 〈φn, e′〉2E,E′ (4.3)

and
∥∥∥PHM [ϕ]− PHappM

[ϕ]
∥∥∥2

γ,ν
6 ‖ϕ‖2H

∑
n∈Ierr

λn. (4.4)

We call
∑
n∈Ierr λn the spectral error term.

Remark 4.1 : In the most part of application cases, the analytical spectral decom-
position of Lν would be unknown. Nevertheless, one should dispose of a numerical
approximation of this spectral decomposition, obtained from an algorithm of spec-
tral approximation. It should be interesting to study the behavior of theorems 4.1
and 4.2 in such cases.

5. Finite Case

We suppose that M is of finite dimension, i.e. M = {µ1, · · · , µn}, n ∈ N. We also
assume, for simplicity and without loss of generality, that the µi ∈ E′ are such that the
symmetric and positive matrix

T ∈ Rn×n, defined by, for 1 6 i, j 6 n, Ti,j = (THµi|THµj)H is invertible. (5.1)

For convenience, we introduce the matricial type notations

µ = (µ1, · · · , µn)T and T =
(
THµ|THµT

)
H =

〈
THµ,µT

〉
=
〈
µ, THµT

〉
,

where THµ = (THµ1, · · · , THµn)T . Hence, for ϕ ∈ H, the optimal interpolator of ϕ for
M can be written under the form :

hϕ,M = THµTT−1 〈µ, ϕ〉 , (5.2)

with 〈µ, ϕ〉 =
(
〈ϕ, µ1〉E,E′ , · · · , 〈ϕ, µn〉E,E′

)T
. Remark for instance that, with our no-

tation,

〈µ, ϕ〉T =
〈
ϕ,µT

〉
, and for e ∈ E and e′ ∈ E′, 〈e, e′〉E,E′ = 〈e, e′〉 = 〈e′, e〉 ,

so, we will write, for e′ ∈ E′, 〈e′, hϕ,M 〉E,E′ =
〈
e′, THµT

〉
T−1 〈µ, ϕ〉.

The aim of this section is to proof, by direct calculation, that the expression of the
optimal interpolator given in equation (5.2) is equal to the one given in theorem 4.1.

The linear operator, of remark 3.6 type, Lν is defined by

∀h ∈ H, Lν [h] =
n∑
i=1

wi 〈h, µi〉E,E′ THµi, (5.3)

11



with wi > 0 for all 1 6 i 6 n. Introducing the matrix W = diag (w1, ·, wn), Lν can be
written under the matricial form :

∀h ∈ H, Lν [h] = THµTW 〈µ, h〉 .

The finiteness of the sum (5.3) assures us that Lν verifies the whole properties required
in section 3. The symmetric and positive bilinear form (·|·)γ,ν on H and associated with
Lν by equation (3.11) is, for h and g ∈ H,

(h|g)γ,ν =
n∑
i=1

wi 〈h, µi〉E,E′ 〈g, µi〉E,E′ =
〈
h,µT

〉
W 〈µ, g〉 .

Remark 5.1 : We easily re obtain the properties of self-adjunction and symmetry of
Lν by matricial calculations :

∀h and k ∈ H, (h|Lν [k])H =
(
h|THµTW 〈µ, k〉)H =

(
h|THµTW (THµ, k)H

)
H

=
(
h|THµT

)
HW (THµ, k)H = (Lν [h]|k)H ,

∀h and k ∈ H, (h|Lν [k])γ,ν =
(
h|THµTW 〈µ, k〉)

γ,ν
=
〈
h,µT

〉
W
〈
µ, THµTW 〈µ, k〉〉

=
〈
h,µT

〉
W
〈
THµ,µT

〉
W 〈µ, k〉 = (Lν [h]|k)γ,ν ,

∀h and k ∈ H, (h|Lν [k])H =
(
h|THµT

)
W 〈µ, k〉 =

〈
h,µT

〉
W 〈µ, k〉 = (h|k)L2 .

For α ∈ Rn, let φ̂α = THµTα ∈ HM . We have

Lν

[
φ̂α

]
= THµTW

〈
µ, THµT

〉
α = THµTWTα.

Hence, the eigenvalues of Lν onHM and the ones of WT are the same. Let λ1, · · · , λn > 0
be those eigenvalues (the strict positivity is a consequence of the hypothesis (5.1)) and
let v1, · · · ,vn their associated eigenvectors, i.e. WT = PΛP−1 with Λ = diag (λ1, ·, λn)
and P = (v1| · · · |vn). We have, for all 1 6 i 6 n,

Lν

[
φ̂vi

]
= λiφ̂vi .

We define :
φ̂ =

(
φ̂v1 , · · · , φ̂vn

)T
= PTTHµ.

We have :(
φ̂|φ̂T

)
H

= PTTP and
(
φ̂|φ̂T

)
γ,ν

= PTTWTP = PTTPΛ = ΛPTTP. (5.4)
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From equation (5.4), the matrix PTTP is diagonal, which is then also the case for
PTTWTP. As expected, the relation

∥∥∥φ̂vi

∥∥∥
γ,ν

= λi

∥∥∥φ̂vi

∥∥∥
H

is verified.

Thus, the eigenfunctions (normalized) of Lν on HM , (·|·)γ,ν are the components of
the vector

φ =
(
PTTWTP

)− 1
2 φ̂.

Finally, we obtain

THµTT−1 〈µ, ϕ〉 = THµTT−1W−1W 〈µ, ϕ〉 = THµTPΛ−1P−1W 〈µ, ϕ〉
= THµTPΛ−1P−1T−1P−TPTTM 〈µ, ϕ〉
= THµTP

(
PTTWTP

)−1
PTTW 〈µ, ϕ〉

= φ̂
T (

PTTWTP
)−1

〈
φ̂,µT

〉
W 〈µ, ϕ〉

=
n∑
k=1

φk

∫
S
〈φk, γs〉E,E′ 〈ϕ, γs〉E,E′ dν(s).

6. Example of application

Let X = R2 and H be the RKHS of real-valued functions on X (see remark 3.7)
associated with the kernel (squared exponential or Gaussian kernel, see for example [3]),
for x and y ∈ X ,

K(x, y) = e−
‖x−y‖2

σ2 , with σ > 0 and ‖ · ‖ the euclidean norm.

For m ∈ N, we consider Em ⊂ RX the subspace of functions of class Cm endowed with the
topology of the uniform convergence on the compact subsets of X for all the derivatives
of order 6 m (or of general order if m = +∞). Then, from [1, proposition 25], for all
m ∈ N (and also for m = +∞), H is a Hilbert subspace of Em.

In, [5], we have considered the case where M = span {δs, s ∈ S}, with S ⊂ R2 the
circle of center 0 and radius R > 0 (Dirichlet condition on the circle S). In this present
work, our aim is, in a first time, to impose constraints to the normal derivative of the
interpolator on the circle (Neumann condition), which is possible because H in a Hilbert
subspace of E1. Following remark 2.1, we next combine our results with the ones of [5]
to obtain a model in which both value and normal derivative are controlled on the circle
(Robin condition).

6.1. Derivative Constraint
We consider L2(S, ν) = L2([0, 2π]), the space of 2π-periodic squared integrable func-

tions (with respect to the Lebesgue measure) on [0, 2π], endowed with the Hilbert norm

∀f ∈ L2([0, 2π]), ‖f‖2L2 =
∫ 2π

0

f(θ)2Rdθ.

Let x = (x1, x2) be a point of X , for convenience, we will use a polar coordinates
system, that is x = (rx cosαx, rx sinαx) with rx ∈ R+ and αx ∈ [0, 2π]. For x ∈ X , let
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us define µx ∈ E′ such that, for all h ∈ H,

〈h, µx〉E,E′ =
∂

∂rx
h(x).

We consider M = span {µs, s ∈ S}. Then, γ : S → M ⊂ E′ is given by γs = µs and
compactness and continuity arguments assure us that HM is separable.

The polar coordinates expression of the kernel K(·, ·) is

K(x, y) = e−
1
σ2 (r2x+r2y−2rxry cos(αx−αy)), then

∂

∂rx
K(x, y) = − 2

σ2

(
rx − ry cos(αx − αy)

)
K(x, y) and

∂2

∂ry∂rx
K(x, y) =

2
σ2

cos(αx − αy)K(x, y)

+
4
σ4

(
rx − ry cos(αx − αy)

)(
ry − rx cos(αx − αy)

)
K(x, y).

For f ∈ L2([0, 2π]), our “problem adapted” integral operator is, for α ∈ [0, 2π],

Lν [f ](α) =
∫ 2π

0

∂2

∂rs∂rx
K (xR,α, sR,θ) f(θ)Rdθ, (6.1)

with sR,θ = (R cos θ,R sin θ) and xR,α = (R cosα,R sinα).
Let us pose A = 2

σ2 − 8R2

σ4 and B = 4R2

σ4 . Then, straightforward calculations show
(using parity arguments) that the eigenvalues of Lν are

for n > 0, λn =
∫ 2π

0

[
A cos θ +B(1 + cos2 θ)

]
e−

2R2

σ2 (1−cos θ) cos(nθ)Rdθ.

For n = 0, λ0 is associated with the eigenfunction, for α ∈ [0, 2π], φ̃0(α) = 1√
2πR

.
For n > 1, λn are of multiplicity 2, associated with, for α ∈ [0, 2π],

φ̃cn(α) =
1√
πR

cosnα, and φ̃sn(α) =
1√
πR

sinnα.

Finally, the spectral decomposition of Lν is completed because the eigenfunctions φ̃0, φ̃cn
and φ̃sn is a Hilbert basis of L2([0, 2π]).

We next define the regularized eigenfunctions φ0, φcn and φsn ∈ HM (see equation
(3.10)). In our case with have, for instance,

∀n > 1, ∀x ∈ X , φcn(x) =
1
λn

∫ 2π

0

∂

∂rs
K(sR,θ, x)

cos(nθ)√
πR

Rdθ. (6.2)

Remark 6.1 : Let us consider the values of the eigenfunctions φ0, φcn and φsn on
the circle S. From equation (6.2), it appears that those ones are linked with the
integral operator, for xR,α = (R cosα,R sinα) and f ∈ L2 ([0, 2π]),

Jν [f ](α) =
∫ 2π

0

∂

∂rs
K (xR,α, sR,θ) f(θ)Rdθ. (6.3)
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Jν is not self-adjoint and positive, but we remark that for, n > 0,

ρn =
∫ 2π

0

−2R
σ2

(1− cos θ)e−
2R2

σ2 (1−cos θ) cos(nθ)Rdθ, (with ρn ∈ R)

are eigenvalues of Jν . For n = 0, ρ0 is associated with the same eigenfunction
than λ0, that is for α ∈ [0, 2π], φ̃0(α) = 1√

2πR
.

For n > 1, the ρn are also associated with the same eigenfunctions than λn,
so the ρn are of multiplicity 2, associated with, for α ∈ [0, 2π],

φ̃cn(α) =
1√
πR

cosnα, and φ̃sn(α) =
1√
πR

sinnα.

The eigenfunctions φ̃n of Jν form an Hilbert basis of L2 ([0, 2π]), hence, the opera-
tor Jν is diagonalizable on L2 ([0, 2π]), its spectrum is composed by the eigenvalues
ρn associated with φ̃0, φ̃cn and φ̃sn.

We finally obtain that the values of the regularized eigenfunctions of Lν on
the circle S are, for xR,α = (R cosα,R sinα),

φ0(xR,α) =
ρ0

λ0
φ̃0(α), φcn(xR,α) =

ρn
λn
φ̃cn(α) and φsn(xR,α) =

ρn
λn
φ̃sn(α).
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Figure 2: Graphical representation of ρn, 0 6 n 6 30 for R = 3 and σ2 = 2.

Numerical Applications. We fix R = 3 and σ2 = 2, we next compute the eigenvalues and
regularized eigenfunctions of Lν . The obtained results are represented on figures 3 and
4, integrals have been performed with Monte-Carlo algorithms.

Following section 4, we approximate the kernel THM with the 31 eigenfunctions asso-
ciated with the most important eigenvalues, that is, for all x and t ∈ R2

Kapp
M (x, t) = λ0φ0(x)φ0(t) +

15∑
n=1

λn [φcn(x)φcn(t) + φsn(x)φsn(t)] ,
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Figure 3: Graphical representation of Lν spec-
trum, 0 6 n 6 30, R = 3 and σ2 = 2.
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Figure 4: Eigenfunction φcn on [−5, 5]2 for n =4.

with Kapp
M (x, t) =

〈
THappM

δx, δt

〉
E,E′

. We have

Trace (Lν) =
4πR
σ2

= 18.84956 and
∑
k∈Iapp

λk = λ0 + 2
15∑
n=1

λn = 18.84928.

Hence, we obtain for the spectral error term :∑
k∈Ierr

λk = 2.797111e-04. (6.4)

We next approximate the kernel K0(·, ·) = K(·, ·) − KM (·, ·) of the sub-RKHS H0

with, for all x and t ∈ R2,

Kapp
0 (x, t) = K(x, t)−Kapp

M (x, t).

We remind that H0 is the subspace of functions h ∈ H such that ∂
∂rs

h(s) = 0 for all
s ∈ S.

Figure 5 shows the sample path of a centered Gaussian process with covariance
Kapp

0 (·, ·). As expected, this approximates a centered Gaussian process of covariance
K(·, ·) conditioned to have null normal derivative on S. In this example, instead of being
null, each normal derivative on S follows a centered normal distribution with variance

1
2πR

∑
k∈Ierr

λk = 1.483913e-05.

Remark 6.2 : For s ∈ S, we have

Kapp
0 (s, s) = 1− ρ2

0

λ02πR
−

15∑
n=1

ρ2
n

λnπR
= 0.9568043.
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Figure 6: Graphical representation of x 7→
Kapp

0 (x, x) on [−4, 4]2 .

6.2. Double Constraint
In this last section, the results of the preceding section and the ones of [5] are combined

in order to obtain a model that takes into account the values of the function and of its
normal derivative on S. We proceed in a same way than in remark 2.1. We first consider
the problem of the normal derivatives and, in a second time, the problem of the values.
We present an efficient way to approximate the kernel K00(·, ·) of the subspace H00 of
functions h ∈ H such that

∀s ∈ S, 〈h, µs〉E,E′ = 0 and 〈h, δs〉E,E′ = 0.

Nevertheless, in what follows, one can find the necessary informations allowing to treat
the general problem (that is imposed constraints on the values and on the normal deriva-
tives).

We rename LNν the operator of equation (6.1) (N for Neumann). We also pose, for
n > 1, λNn = λn.

In [5], we have study the integral operator LDν (D for Dirichlet) on L2([0, 2π]) asso-
ciated to K(·, ·),

LDν [f ](α) =
∫ 2π

0

K (xR,α, sR,θ) f(θ)Rdθ.

From [5], we know that the eigenfunctions of LDν are the same than the one LNν (LNν and
LDν are diagonalizable in the same basis, which is also the case for the operator Jν of
remark 6.1). For n ∈ N, let us denote λDn the eigenvalues of LDν .

We consider the integral operator on L2([0, 2π]) associated to the kernel K0(·, ·) of
section 6.1, that is,

LRν [f ](α) =
∫ 2π

0

K0 (xR,α, sR,θ) f(θ)Rdθ,
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(R for Robin). From remark 6.1, we find that the eigenvalues λRn , n ∈ N, of LRν are given
by

λRn = λDn −
ρ2
n

λNn
.

λR0 is associated with φ̃0, for n > 1, λRn is of multiplicity 2 and associated with φ̃cn and
φ̃sn.

Considering the operator LNν , we respectively denote φN0 , φcNn and φsNn its regularized
eigenfunctions. For example, we have, for n > 1,

φcNn =
1
λNn
LNν [φ̃cn].

In a same way, we denote φD0 , φcDn and φsDn the regularized eigenfunctions of LDν . We
finally introduce φR0 , φcRn and φsRn the regularized eigenfunctions of LRν .

Straightforward calculations give that, for all x ∈ X ,

φR0 (x) =
1
λR0

(
λD0 φ

D
0 (x)− ρ0φ

N
0 (x)

)
,

∀n > 1, φcRn (x) =
1
λRn

(
λDn φ

cD
n (x)− ρ0φ

cN
n (x)

)
and

φsRn (x) =
1
λRn

(
λDn φ

sD
n (x)− ρ0φ

sN
n (x)

)
.

As an illustration, we compute the kernel Kapp
00 (·, ·) given by, for x and t ∈ X ,

Kapp
00 (x, t) = Kapp

0 (x, t)− λR0 φR0 (x)φR0 (t)

−
15∑
n=1

λRn
[
φcRn (x)φcnR(t) + φsRn (x)φsRn (t)

]
.

Finally, figure 7 shows the sample path of an centered Gaussian process with covariance
Kapp

00 (·, ·).
As in section 6.1, instead of being null, the normal derivatives on the circle follow a

centered normal distribution with variance 1.483913e-05. For the values of the sample
path on S, those ones follow a centered normal distribution with variance, for s ∈ S,

Kapp
00 (s, s) = Kapp

0 (s, s)− 1
2πR

(
λR0 + 2

15∑
n=0

λRn

)
= 1.402309e-06,

the value Kapp
0 (s, s) = 0.9568043 being given in remark 6.2.
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