Stability evaluation of a railway timetable at the station level

Xavier Delorme 1 , Xavier Gandibleux 2 and Joaquín Rodriguez 3

1. École Nationale Supérieure des Mines de Saint-Etienne, Centre Génie Industriel et Informatique

2. Université de Nantes, Laboratoire d'Informatique de Nantes Atlantique

3. Institut National de Recherche sur les Transports et leur Sécurité, Unité de Recherche Évaluation des Systèmes de Transports Automatisés et de leur Sécurité

- **Railroad infrastructure operation planning**
- RECIFE project
- **I** Stability evaluation model
- Example of stability evaluation
- **D** Conclusion

Rail transport

- Interest revival as road alternative
- Competition with other transport modes
 - \Rightarrow Traffic increase and evolution

Tools are needed for

- evaluating networks limits
- **I** studying modifications of the network
- determining a commercial strategy

How to plan railroad infrastructure operation?

Main questions considered

Homogeneous zones (lines)

Analytical methods [UIC, 1978]

Heterogeneous zones (junction, station, network)

G Simulation

- Constructive methods
 - DONS [van den Berg and Odijk, 1994]
 - CAPRES [Hachemane, 1997]
 - DÉMIURGE [Labouisse and Djellab, 2001]

 \Rightarrow mainly on network level

Railroad infrastructure capacity

Safety rules

- + { Rolling stock technical characteristics Service quality
- How many trains can be routed through the junction within a time interval ?
- □ What is the best solution to route these trains?

RECIFE project

- Railroad infrastructure operation planning
- RECIFE project
- **I** Stability evaluation model
- Example of stability evaluation
- **D** Conclusion

The RECIFE project

Objective of RECIFE

- Models to evaluate railroad infrastructure capacity of junction or station
- Solvers based on combinatorial optimization algorithms
- Application on Pierrefitte-Gonesse node and Lille-Flandres station

\Rightarrow Decision support software

Partners involved

- **French institute on transport (INRETS)**
- □ French railway society (SNCF)
- **Ecole des mines de Saint-Etienne**
- Nantes university
- □ Valenciennes university

Global scheme of the RECIFE

software

Model for capacity evaluation

Assumptions

- □ All possible routes are given
- □ All possible arrival-date are given

Combinatorial optimization model [Delorme, 2003]

- multiobjective extension of STATIONS model [Zwaneveld et al, 1996]
- based on binary decision variables

 $x_{t,r,\delta} = \begin{cases} 1 \text{ if the train } t \text{ is assigned to the route } r \text{ on clear-line} \\ \text{with a delay } \delta \text{ on its arrival-date} \\ 0 \text{ otherwise} \end{cases}$

Visualization of timetables

Gantt chart

Visualization of timetables

GRILLE HORAIRE DU PARCOURS LN2_D2D

Visualization of timetables

SRILLE HORAIRE DU PARCOURS LN2 D2

Gantt chart **D** Space-time diagram □ Tracks map □ Simulation

Þ Đ,

ର୍ i C113Q

№ ¥

C113

1.1AR C605

C637

C703

C723

627123

Z370

ZARI

INCOM'06 - Stability evaluation of a railway timetable at the station level - p.11/24

- **Railroad infrastructure operation planning**
- RECIFE project
- **Stability evaluation model**
- Example of stability evaluation
- **D** Conclusion

Classic methods are based on :

- either Petri nets
- □ or Max-plus algebra

Type of stability evaluation

- $\begin{tabular}{ll} \blacksquare Recovering time for a cyclic timetable \\ \Rightarrow impossible if non-cyclic \\ \end{tabular}$
- $\begin{tabular}{ll} \hline \Box & \end{tabular} Time margin of the trains \\ & \Rightarrow nearly null for saturated timetable \end{tabular}$

New model based on delay propagation

2 types of delay

- primary delay caused by a disruption
- secondary delay due to interactions between trains

Impact of a primary delay

secondary delays generated directly or indirectly

How to prevent conflicts

- delay of arrival-date of other trains
- Same routes and scheduling (no on-line Reoptimizing)

\Rightarrow only short primary delay

Graph of potential direct conflicts

Use of potential direct conflict

Represented with a graph G(V, E, w)

Graph of potential direct conflicts

Use of potential direct conflict

Represented with a graph G(V, E, w)

Graph of potential direct conflicts

Use of potential direct conflict

Represented with a graph G(V, E, w)

the conflict occurs

Computation of stability evaluation

Computation of the secondary delays generated

Time margin between Train A and B =

shortest path in G(V, E, w)

Secondary delay generated by a primary delay of Train A on Train B =

 $\max(0, \operatorname{Primary} \operatorname{delay}(A) - \operatorname{Shortest} \operatorname{path}(A, B))$

Stability evaluation of a timetable

- Sum of all the secondary delays generated by each train
- Inspired by the know-how
- Importance of the primary delay

 \Rightarrow several values considered

Example of stability evaluation

- **Railroad infrastructure operation planning**
- RECIFE project
- **Stability evaluation model**
- Example of stability evaluation
- **D** Conclusion

Didactic instance on Pierrefitte-Gonesse node

- □ 6 possible trains considered
- □ 450s between the first and last arrival dates

Optimization problem

- Conflicts determined with SYSIFE simulator [Fontaine and Gauyacq, 2001]
- □ Heuristic solver GRASP [Delorme et al, 2004]

 $\Rightarrow \begin{cases} 5 \text{ trains routed (optimal solution)} \\ 15 \text{ different timetables generated} \end{cases}$

Stability evaluation of one timetable

Shortest path computation

Shortest path computation

Resulting stability evaluation

Resulting stability evaluation

Secondary delays computation

for a primary delay of 180 s : 309 s

Comparison of the timetables

2 stability evaluation for each timetable

Conclusion

- Railroad infrastructure operation planning
- RECIFE project
- **G** Stability evaluation model
- Example of stability evaluation
- **Conclusion**

Conclusion

A new model for stability evaluation

- □ railroad timetable of junction or station
- delay propagation method
- using shortest path computation

 \Rightarrow integrated in a decision support system for railroad capacity evaluation

Future research works

- □ integratation of multi-criteria analysis
- **d** stability optimization