
MIC2005: The Sixth Metaheuristics International Conference ??-1

An ant colony optimization inspired algorithm for the

Set Packing Problem with application to railway infrastructure

Xavier Gandibleux∗ Julien Jorge† Sébastien Angibaud† Xavier Delorme‡

Joaquin Rodriguez§

∗Laboratoire d’Informatique de Nantes Atlantique, Université de Nantes
2 rue de la Houssinière BP92208, F-44322 Nantes cedex 03, France

Xavier.Gandibleux@univ-nantes.fr

†Université de Nantes
2 rue de la Houssinière BP92208, F-44322 Nantes cedex 03, France

{jorge,angibaus}@ensinfo.univ-nantes.fr

‡Centre Génie Industriel et Informatique, École des Mines de Saint-Etienne
158 cours Fauriel, 42023 Saint-Etienne cedex 2, France

delorme@emse.fr

§Institut National de Recherche sur les Transports et leur Sécurité - ESTAS
20 rue Élisée Reclus, F-59650 Villeneuve d’Ascq, France

joaquin.rodriguez@inrets.fr

1 Introduction

The paper concerns an Ant Colony Optimisation (ACO) procedure as approximation method
for the railway infrastructure capacity (RIC) problem. Railway infrastructure managers now
have to deal with operators’ requests for increased capacity. Planning the construction or
reconstruction of infrastructures must be done very carefully due to the huge required invest-
ments and the long term implications. Usually, assessing the capacity of one component of a
rail system is done by measuring the maximum number of trains that can be operated on this
component within a certain time period. In our work, we deal with two real situations. The
first is Pierrefitte-Gonnesse crossing point located at the north of Paris. The second is the
Lille-Flandres station which is the largest station in North of France. Measuring the capacity
of junctions is a matter of solving an optimisation problem called the saturation problem [1],
and which can be formulated as a Set Packing Problem (SPP). Given a finite set I = {1, . . . , n}
of items and {Tj}, j ∈ J = {1, . . . ,m}, a collection of m subsets of I, a packing is a subset
P ⊆ I such that |Tj ∩ P | ≤ 1,∀j ∈ J . The set J can be also seen as a set of exclusive con-
straints between some items of I. Each item i ∈ I has a positive weight denoted by ci and the
aim of the SPP is to calculate the packing which maximises the total weight. This problem

Vienna, Austria, August 22–26, 2005

??-2 MIC2005: The Sixth Metaheuristics International Conference

can be summarized as follows:

Max z =
∑

i∈I

cixi

∑

i∈I

ti,jxi ≤ 1,∀j ∈ J

xi ∈ {0, 1} ,∀i ∈ I

ti,j ∈ {0, 1} ,∀i ∈ I,∀j ∈ J

(1)

In the above model, the variables are the xi’s with xi = 1 if item i ∈ P , and xi = 0 otherwise.
The data ti,j,∀i ∈ I,∀j ∈ J , enable us to model the exclusive constraints with ti,j = 1 if item
i belongs to set Tj, and ti,j = 0 otherwise.

The SPP is known to be strongly NP-Hard, according to Garey and Johnson [4]. The
most efficient exact method known for solving this problem (as suggested in [5]) is a Branch
& Cut algorithm based on polyhedral theory and the works initiated by Padberg [7] to obtain
facets. Zwaneveld et al. [8] proposed reduction tests and a Branch & Cut method to solve to
optimality a railway planning problem written as an SPP. However, only small-sized instances
or characteristic configurations of trains can be solved to optimality. To the best of our knowl-
edge, and also according to Osman and Laporte [6], few metaheuristics have been applied to
the solution of the SPP. Delorme, Gandibleux and Rodriguez have proposed heuristic algo-
rithms for SPP and evaluated on RIC problems [1, 2]. Recently, Gandibleux, Delorme and
T’kindt presented an ACO algorithm for the SPP [3].

In this paper, an evolution of this ACO algorithm is presented. It integrates all features for
dealing efficiently with weighted (W-) instances of SPP (i.e. instances in which there exists,
at least, ci and cj such that cj 6= ci) and unicost (U-) SPP (i.e. those instances with ci = cj ,
∀i, j ∈ I). The local search routines have been re-designed and a dynamic stopping condition
is integrated. Default value of parameters is integrated in the procedure and used at the
startup, avoiding additional efforts for tuning the parameters. The static management of the
data structures has been replaced by a dynamic management based on AVL-tree structure.
The algorithm is evaluated on RIC instances which are large size USPP problems, and also
on a set of public WSPP and USPP instances randomly generated. The results obtained are
compared with the former version of our ACO procedure [3] and the best known solutions (the
exact solutions when they are available, or approximations obtained with the GRASP [2] and
ACO procedures [3]).

2 Outline of the ACO heuristic for the SPP

The general outline of the proposed ACO heuristic is given in Algorithm 1. (The arrows
↓, ↑ and l specify the transmission mode of a parameter to a procedure; they correspond
respectively to the mode IN, OUT and INOUT.) Initially, a greedy heuristic is applied to
provide the initial best solution. It works as follows (procedure elaborateSolutionGreedy).
Iteratively the candidate variable which involves a minimum number of constraints with a
maximum value is selected. This process is repeated until there is no more candidate variable

Vienna, Austria, August 22–26, 2005

MIC2005: The Sixth Metaheuristics International Conference ??-3

Algorithm 1 The main procedure

- -| Generate an initial solution using a greedy algorithm and a local search
elaborateSolutionGreedy(sol ↑); localSearch(sol l); copySolution(sol ↓ , bestSolKnown ↑)

- -| ACO Algorithm
initPheromones(φ ↑); iter ← 0
while not(isFinished?(iter ↓)) do

resetToZero(bestSolIter ↑)
for ant in 1. . . maxAnt do

if isExploitation?(ant ↓, iter ↓, iterOnExploit ↓, maxIter ↓) then

elaborateSolutionGreedyPhi(φ ↓ , solution ↑); localSearch(sol l)
else

elaborateSolutionSelectionMethod(φ ↓ , solution ↑); localSearch(sol l)
end if

if performance(sol) > performance(bestSolIter) then

copySolution(sol ↓ , bestSolIter ↑)
if performance(sol) > performance(bestSolKnown) then

copySolution(sol ↓ , bestSolKnown ↑)
end if

end if

end for

managePheromones(φ l , bestSolKnown ↓ , bestSolIter ↓); iter++
end while

available. In addition, a local search procedure is applied to this solution. The neighbourhood
N used for this local search procedure is based on a classic k−p exchanges. The k−p exchange
neighbourhood of a solution x is the set of solutions obtained from x by changing the value
of k variables from 1 to 0, and changing p variables from 0 to 1. Due to the combinatorial
explosion of the number of possible exchanges when k and p increase, we decided to implement
the 1− 2 exchanges and the 1 − 1 exchanges (which are respectively triggered for USPP and
WSPP). Moreover, the search procedure was implemented using a non-iterative first-improving
strategy (i.e. we selected the first neighbour whose value is better than the current solution).

Let φ be the pheromone matrix and φi be the probability of having item i in a good packing
for the SPP. Initially, the pheromones are initialized (routine initPheromones) by assigning
φi ← phiInit for all variables i ∈ I, with phiInit a given value. Each ant elaborates a
feasible saturated solution (i.e. a solution in which it is impossible to add one more variable
without violating the constraints set) starting from the trivial feasible solution, xi = 0,∀i ∈ I.
Some variable are set to 1, as long as the solution is maintained feasible. Changes concern
only one variable at each step and there is no more change when no variable can be fixed to
1 without losing feasibility. The choice of a variable xi to be set to 1 is done either in the
exploration mode or the exploitation mode. In the exploration mode a roulette wheel is applied
on the set of candidate variables whilst in the exploitation mode the candidate variable with
the greatest value of pheromone is selected. The ceil probability P which is used to determine
the mode selected, evolves along the solution process following a logarithmic curve regurlarly
restarted. This mechanism enables the ants to periodically strongly diversify their search for
a good solution. Notice that for some ants when the predicate isExploitation? is true,
a solution is built by applying the greedy strategy on the current level of pheromones. The
above predicate is true for each first ant of an iteration, every iterOnExploit iterations.

After all ants have built a solution, the local search procedure is applied to all of them.

Vienna, Austria, August 22–26, 2005

??-4 MIC2005: The Sixth Metaheuristics International Conference

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200

z(
x)

#iterations x #ants

USPP : GON9 | seed : 0.40 | GR+LS : 85 | ACO : 98

Figure 1: Behavior of the ACO heuristic on the RIC instance ‘Gon09’

Among all these solutions, the best one for the current iteration is retained and evaporation

and deposition of pheromones is performed. It means that we increase the pheromones φi cor-
responding to the items selected in the best packing of the current iteration, whilst we decrease
the other pheromones. Besides a disturbance strategy (see figure 1) has been integrated to
this management procedure. This strategy is triggered when two conditions are true: (1) the
convergence of the ACO is in stagnation, and (2) at least one pheromone has its level set to
zero. Finally, the procedure is stopped when the predicate isFinished? is true, which occurs
when the pheromones are stabilized, after at least two applications of the disturbance.

3 Numerical Experiments and Analysis

Implementation of algorithms have been performed with C language. The results were obtained
on a Pentium IV 1.8Ghz with 512Mb for all ACO versions. In a previous work, we calculated
the optimal solutions with a Cplex solver. As Cplex was not capable of solving all mid and
large instances, we consider in this case the best known integer solution which is compared
to the heuristics. Roughly speaking, this best solution is taken, for a given instance, as the
one returned by GRASP, ACO (former version), Cplex (when time limited) which yields the
highest value of the total cost.

Characteristics of the instances and results are given for 12 selected instances in Table 1.
For each instance, #variables and #constraints give respectively the number of variables and
the number of constraints. The Density column corresponds to the percentage of non-null
elements in the constraint matrix. The column weight indicates the interval in which the costs
ci are comprised. Notice that instances for which the interval is [1 − 1] are USPP instances.
For 4 ACO versions, we report the average objective function value (column avg value) found
over 16 runs. We also give the maximum objective function value found (column best value)
and the average required CPU time (column CPUt). A column reports also the average

Vienna, Austria, August 22–26, 2005

MIC2005: The Sixth Metaheuristics International Conference ??-5

iteration corresponding to the detection of the best value. Only for the version 2.0, the average
number of iteration performed before stopping the procedure (dynamic stopping criterion) is
given. All the 64 tested random instances are freely available at www.univ-valenciennes.fr
/ROAD/Delorme/Instances-fr.html. The 15 RIC instances are private.

No room is available in this abstract for a discussion of results. A deep analysis, all details
about algorithmic aspects, and all results over 16 runs of the 79 instances will be provided
during the talk. Nevertheless, two important facts deserve to be underlined. First, the new
data structure allows now the ACO algorithm to deal with large-size instances (not possible
with the former version). But in looking the CPU times between the version 1.1 and 1.2,
improvements can be again expected on that matter. Second, the quality of solutions for
USPP instances has been clearly improved with the new versions of the algorithm. The new
stopping criterion and the new local search procedure is profitable for USPP in general, which
is not so obvious for WSPP. Here again, improvements can be expected shortly.

4 Acknowledgment

We would like to thank Vincent T’kindt (University of Tours, France) who is our collaborator
working on related open questions with this work.

References

[1] X. Delorme. Modélisation et résolution de problèmes liés à l’exploitation d’infrastructures

ferroviaires. PhD thesis, Université de Valenciennes, Valenciennes, France, 2003.

[2] X. Delorme, X. Gandibleux, and J. Rodriguez. GRASP for set packing problems. Euro-

pean Journal of Operational Research, 153 (3):564–580, 2004.

[3] X. Gandibleux, X. Delorme and V. T’Kindt. An Ant Colony Algorithm for the Set
Packing Problem In M. Dorigo, M. Birattari, Ch. Blum, L. Gambardella, Fr. Mondada,
and Th. Stutzle, editors, Ant Colony Optimization and Swarm Intelligence, volume 3172
of Lecture Notes in Computer Sciences, pages 49–60. Springer, 2004.

[4] M.R. Garey and D.S. Johnson. Computers and intractability : a guide to the theory of

NP-Completeness. V.H. Freeman and Company, San Francisco, 1979.

[5] G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization. Willey-
Interscience, New York, 1999.

[6] I.H. Osman and G. Laporte. Metaheuristics : a bibliography. Annals of Operations

Research, 63:513–623, 1996.

[7] M.W. Padberg. On the facial structure of set packing polyhedra. Mathematical Program-

ming, 5:199–215, 1973.

[8] P.J. Zwaneveld, L.G. Kroon, H.E. Romeijn, M. Salomon, S. Dauzère-Pérès, Stan P.M.
Van Hoesel, and H.W. Ambergen. Routing trains through railway stations : Model
formulation and algorithms. Transportation Science, 30(3):181–194, august 1996.

Vienna, Austria, August 22–26, 2005

??-6 MIC2005: The Sixth Metaheuristics International Conference

Table 1: A selection of instances and results on 16 runs

* : it indicates that we don’t know if the best known solution is optimal
. : new best known value found

Inst. Characteristics ACO 2.0
#

va
ri

a
b
le

s

#
co

n
st

ra
in

ts

d
en

si
ty

w
ei

g
h
t

b
es

t
k
n
ow

n
va

lu
e

b
es

t
va

lu
e

av
g

va
lu

e

C
P

U
t

(s
)

av
g

it
er

b
ef

.
1
st

b
es

t
va

l.

av
g

#
it
er

p
er

fo
rm

ed

100r1 100 500 2.0% [1-20] 372 372 372,00 0,88 11,06 90,50
100r8 100 100 3.1% [1-1] 39 39 38,94 0,56 2,06 67,50

200r3 200 1 000 1.0% [1-20] 731 731 721,44 5,56 45,69 118,19
200r16 200 600 1.0% [1-1] 79 79 78,69 4,13 6,00 67,06

500r3 500 2 500 0.7% [1-20] 776* 776 761,81 68,31 80,94 177,81

500r14 500 1 500 1.2% [1-1] 37* 38 37,00 42,13 12,50 67,13

1000r3 1 000 5 000 0.60% [1-20] 661* 643 627,63 195,75 105,19 201,25
1000r8 1 000 1 000 0.60% [1-1] 175* 175 173,06 832,75 28,25 70,38

2000r7 2 000 2 000 0,56% [1-20] 1784* 1796 1766,44 3048,13 462,06 645,44
2000r6 2 000 2 000 2,56% [1-1] 9* 9 8,81 42,50 16,19 67,88

gon4 1 240 23 736 0,16% [1-1] 94 94 94,00 677,00 0(GR+LS) 69,13

gon9 3 720 482 887 0,05% [1-1] 93* 98 95,44 5039,67 60,78 80,33

Inst. ACO 1.2 ACO 1.1 ACO 1.0

b
es

t
va

lu
e

av
g

va
lu

e

C
P

U
t

(s
)

av
g

it
er

b
ef

.
1
st

b
es

t
va

l.

b
es

t
va

lu
e

av
g

va
lu

e

C
P

U
t

(s
)

av
g

it
er

b
ef

.
1
st

b
es

t
va

l.

b
es

t
va

lu
e

av
g

va
lu

e

C
P

U
t

(s
)

av
g

it
er

b
ef

.
1
st

b
es

t
va

l.

100r1 372 372,00 1,83 8,44 372 372,00 2,56 10,88 372 372,00 2,62 15,00
100r8 39 39,00 1,50 2,25 39 39,00 0,56 4,50 39 38,62 0,19 24,69

200r3 731 725,75 7,37 53,81 731 725,75 14,56 59,69 729 725,06 18,18 53,38
200r16 79 78,94 8,64 8,75 79 78,75 13,69 20,69 79 78,31 5,18 56,88

500r3 776 765,88 90,98 92,06 776 764,44 36,06 112,62 776 771,88 104,90 71,62
500r14 38 37,56 136,02 65,31 38 37,56 24,69 48,88 37 36,44 7,82 95,69

1000r3 649 632.94 199,06 119,25 661 632,50 56,56 118,12 649 637,81 323,00 92,19
1000r8 174 173.71 2495.71 78.71 174 173,75 224,50 65,88 172 171,12 29,03 166,38

ACO 2.0: version 1.2 with dynamic stopping criterion ACO 1.2: version 1.1 with dynamic memory management
ACO 1.1: version 1.0 with new local search procedures ACO 1.0: previous published version; total iterations = 200

Vienna, Austria, August 22–26, 2005

