
Research paper
DOI 10.1007/s00158-003-0320-9
Struct Multidisc Optim

A constrained, globalized, and bounded Nelder–Mead method
for engineering optimization

M.A. Luersen, R. Le Riche, F. Guyon

Abstract One of the fundamental difficulties in engin-
eering design is the multiplicity of local solutions. This
has triggered much effort in the development of global
search algorithms. Globality, however, often has a pro-
hibitively high numerical cost for real problems. A fixed
cost local search, which sequentially becomes global,
is developed in this work. Globalization is achieved by
probabilistic restarts. A spacial probability of starting
a local search is built based on past searches. An improved
Nelder–Mead algorithm is the local optimizer. It accounts
for variable bounds and nonlinear inequality constraints.
It is additionally made more robust by reinitializing de-
generated simplexes. The resulting method, called the
Globalized Bounded Nelder–Mead (GBNM) algorithm,
is particularly adapted to tackling multimodal, discon-
tinuous, constrained optimization problems, for which it
is uncertain that a global optimization can be afforded.
Numerical experiments are given on two analytical test
functions and two composite laminate design problems.
The GBNM method compares favorably with an evolu-
tionary algorithm, both in terms of numerical cost and
accuracy.

Key words global constrained optimization, Nelder–
Mead method, composite laminated plates

Received: 24 May 2002
Revised version: 3 May 2003
Published online: 7 October 2003
 Springer-Verlag 2003

M.A. Luersen1,�, R. Le Riche2 and F. Guyon3

1 CNRS UMR 6138, Lab. deMécanique de Rouen, France, and
Mechanical Department, CEFET-PR, Brazil
e-mail: Marco.Luersen@insa-rouen.fr
2 CNRS URA 1884 / SMS, Ecole des Mines de Saint Etienne,
France
e-mail: leriche@emse.fr
3 Lab. de Bio-statistiques Bio-mathématiques, Univ. Paris 7,
France
e-mail: guyon@urbb.jussieu.fr

1
Introduction

Complex engineering optimization problems are charac-
terized by calculation-intensive system simulations, diffi-
culties in estimating sensitivities (when they exist), the
existence of design constraints, and a multiplicity of local
solutions.
Acknowledging the last point, much research has been

devoted to global optimization (e.g., Törn and Zilinskas
1989; Bäck 1996). The high numerical cost of global opti-
mizers has been at the heart of subsequent efforts to speed
up the search either by adding problem-specific know-
ledge to the search, or by mixing efficient local algorithms
with global algorithms. There are many ways in which
local and global searches can cooperate.
The simplest strategy is to link the searches in series,

meaning that firstly, a global optimization of limited cost
is executed, the solution of which is refined by a local
search. An example of the serial hybrid is given in Shang
et al. (2001), in which simulated annealing, the global op-
timizer, is coupled with a sequential quadratic program-
ming and a Nelder–Mead algorithm.
A large number of parallel local-global searches have

been proposed (Törn and Zilinskas 1989; Durand and
Alliot 1999; Okamoto et al. 1998) and analyzed (Törn
1978; Goldberg and Voessner 1999). In these cases, it-
erations of global and local algorithms are intertwined.
One can further classify parallel hybrids into those in
which the local searches converge, and those in which
local searches may be prematurely stopped. Memetic ge-
netic algorithms (Moscato 1989) and multistart methods
(e.g., deterministic restart in Barhen et al. (1997); ran-
dom restarts in Hu et al. (1994)) are examples of the
former. The latter are usually based on clustering steps,
in which local searches approaching already explored re-
gions of the design space are abandoned (Törn 1978;
Hickernell and Yuan 1997).
When considering a real engineering optimization

problem, a common situation is that the affordable total
number of analyses is limited, that the presence of spuri-

ous local minima is unknown, and that it is uncertain if it
will be possible to complete as few as two local searches.
Nevertheless, achieving global results remains an objec-
tive of the optimizer. This typically occurs when dealing
with an unknown function of less than 20 variables, for
which one is willing to wait for about 1000 evaluations
of the objective function. In such a case, a local-global
method based on restarts is the safest strategy because
it can terminate in a short time (the length of a single
local search). The method described in this article, the
Globalized Bounded Nelder–Mead algorithm, GBNM, is
meant to be a black-box local-global approach to real
constrained optimization problems. A restart procedure
that uses an adaptive probability density keeps a mem-
ory of past local searches. Constraints and limits on
variables are taken into account through adaptive pe-
nalization and projection, respectively. Finally, GBNM
can be applied to discontinuous (no gradient information
needed), non-convex functions, since the local searches
are based on a variant of the Nelder–Mead algorithm
(Nelder and Mead 1965). Improvements to the Nelder–
Mead algorithm consist of simplex degeneracy detection
and handling through reinitialization.
This paper is structured as follows. The GBNM al-

gorithm is described in Sect. 2. The constraint handling
technique is presented in Sect. 3. Section 4 reports nu-
merical experiments on two analytical functions and two
composite laminated plate design problems. The GBNM
algorithm is compared with a steady-state evolutionary
algorithm (Bäck 1996).

2
Globalization of a local search by probabilistic
restarts

Local optimizers can make up a global search when
repeatedly started from different points. The simplest
restart methods initialize the search either from a regu-
lar grid of points, or from randomly chosen points. In the
first case, one needs to know how many restarts will be
performed to calculate the size of the mesh. In the other
case, knowledge of past searches is not used, so that the
same local optima may be found several times, costing
vast unnecessary effort. In the current work, the number
of restarts is unknown beforehand because a maximum
number of analyses is imposed and the cost of each local
search is unknown. A gridmethod cannot be applied here.
Also, a memory of previous local searches is kept by build-
ing a spacial probability density of starting a search.

2.1
Probabilistic restart

The probability, p(x), of having sampled a point x is
described here by a Gaussian Parzen-windows approach
(Duda et al. 2001). This method can be considered as
a smoothed version of the histogram technique, the his-

tograms being centered at selected sampled points p(x) is
written as

p(x) =
1

N

N∑

i=1

pi(x) , (1)

where N is the number of points already sampled, and
pi is the normal multi-dimensional probability density
function,

pi(x) =
1

(2π)
n
2 (det(Σ))

1
2

×

exp

(
−
1

2
(x−xi)

T
Σ−1(x−xi)

)
, (2)

n is the dimension (number of variables), and Σ is the
covariance matrix,

Σ =





σ21 0

. . .

0 σ2n



 . (3)

The variances, σ2j , are estimated by the relation

σ2j = α
(
xmaxj −xminj

)2
, (4)

where α is a positive parameter that controls the length
of the Gaussians, and xmaxj and xminj are the bounds in
the jth direction. Note that, in order to keep the method
as simple and cost effective as possible, the variances are
kept constant. This strategy would have a cost in terms
of the total number of analyses. The probability density
is such that

∫∞
−∞ p(x) dx= 1, but since a bounded domain

Ω is considered, a bounded probability p̃(x) is introduced,
i.e.,

p̃(x) =
p(x)

M
, M =

∫

Ω

p(x) dx , (5)

so that
∫
Ω
p̃(x) dx= 1.

The probability density of sampling a new point, φ(x),
is a probability density of not having sampled x before.
For its estimation we adopt the following assumption:
only the highest point xH of p̃(x) has a null probability
of being sampled at the next iteration. So, the probability
φ(x) is calculated as

φ(x) =
H− p̃(x)∫

Ω

(H− p̃(x)) dx
, H = max

x ∈ Ω
p̃(x) . (6)

Figure 1 illustrates p(x), p̃(x) and H− p̃(x), in a undidi-
mensional domain.
The maximization of φ is not performed exactly,

firstly because of its numerical cost, and secondly, as will
be seen in Sect. 4.1, because it would be detrimental to
the search. Instead, Nr points are chosen randomly and
the point that maximizes φ is selected to initiate the next

Fig. 1 Probability density functions

search. Note that, in order to maximize φ, it is necessary
to calculate neither M (5) nor H (6): the maximum of φ
is the minimum of p, so p only is calculated.
Three parameters influence the probability density p

and, consequently, the starting points: the points that are
kept for the probability calculation, p; the number of ran-
dom points used to maximize φ, Nr; and the Gaussian
length parameter, α. The setting of their values is dis-
cussed in the numerical results (Sect. 4.1).
The probabilistic restart procedure can be applied to

any local optimizer. In this case, an improved Nelder–
Mead algorithm is proposed.

2.2
An improved Nelder–Mead search

The original Nelder–Mead algorithm (Nelder and Mead
1965) and the strategy for bounding variables are sum-
marized in Appendix A. The GBNM algorithm differs
from the Nelder–Mead method partly because of a set
of restart options (other differences are related to con-
straints handling (see Sect. 3 and Appendix A)). The pur-
pose of the restarts is twofold.
Firstly, probabilistic restarts based on the density p

(see (1)) aim at repeating local searches until a fixed total
cost, Cmax, has been reached. The probability of having
located a global optimum increases with the number of
probabilistic restarts. This is the “globalized” aspect of
the method. In the current implementation of probabilis-
tic restarts, the size of the new simplex, a (defined in
(A.1)), is a uniform random variable taken between 2 and
10% of the smallest domain dimension.
Secondly, restarts are used to check and improve the

convergence of the algorithm. The two restart schemes
that are convergence related initialize a new simplex from
the current best vertex. The small and large test restarts
use a small and large simplex of sizes as and al, respec-
tively (see (A.2)).

Convergence of the local Nelder–Mead searches is esti-
mated through three criteria, the small , flat , or degener-
ate simplex tests. The simplex is small if

max
k=1,···,n+1

(
n∑

i=1

∣∣∣∣
eki

xmaxi −xmini

∣∣∣∣

)
< εs1 , (7)

where eki is the i-th component of the k-th edge, x
max
i and

xmini are the bounds in the i-th direction, and εs1 is a ter-
mination tolerance. The simplex is flat if

|fH−fL|< εs2 , (8)

where fH and fL are the highest and lowest objective
functions in the simplex, and εs2 is a tolerance value. The
simplex is degenerated if it has collapsed into a subspace
of the search domain. This is the most common symptom
of a failed Nelder–Mead search (Wright 1996) because
the method cannot escape the subspace. More precisely,
a simplex is called degenerated here if it is neither small,
nor touches a variable bound, and one of the two following
conditions is satisfied:

min
k=1,n

||ek||

max
k=1,n

||ek||
< εs3 or

det[e]∏
k ||e

k||
< εs4 , (9)

where ek is the k-th edge, e is the edge matrix, and εs3
and εs4 are small positive constants.
The linking of the three restarts and three conver-

gence tests in the GBNM algorithm is shown in Fig. 2.
A memory of past convergence locations is kept, thus pre-
venting unnecessary computations on already analyzed
points (third test, T3, in the flow chart of Fig. 2). When
the simplex is flat, a probabilistic restart is performed
(T4). A simplex that is degenerated induces a large test
iteration (T8). When the optimality of the convergence
point is unsure, such as a convergence on a variable bound
where the simplex has degenerated (T6), a small test,
which stands for an optimality check, is performed. If the

Fig. 2 Linking of restarts and convergence tests in GBNM

small simplex returns to the same convergence point, it
is considered to be a local optimum. It should be remem-
bered that the Kuhn and Tucker conditions of mathemat-
ical programming are not applicable to the present non-
differentiable framework. The tolerances for small and
degenerated simplexes, εs1 and [εs3, εs4], respectively,
may be difficult to tune, so that a simplex that is be-
coming small may be tagged as degenerated before. Thus,
if a degeneration is detected twice consecutively at the
same point, the point is taken as a possible optimum, and
a probabilistic restart is called. Similarly, if a degenera-
tion is detected after a small test, this point is also saved
as a possible optimum, and a large test is ordered.
Once the GBNM algorithm terminates, the list of pos-

sible local (eventually global) optima comprises the re-
sults of the search. In practice, the calculation of many
local or global optima is a benefit of the method in com-
parison with global optimizers that provide a single solu-
tion (e.g., evolutionary algorithms).

3
An adaptive linear penalty for handling constraints

An adaptive linear penalty function is used to handle gen-
eral inequality constraints. The primal problem,

(P)

{
min

x∈S⊂Rn
f(x) ,

such that gi(x) ≤ 0 , i= 1,m ,
(10)

is rewritten in a penalized form,

(PP)






min
x∈S
L̄(x, λ) , where

L̄(x, λ) = f(x)+
m∑
i=1

λimax(0, gi(x)) .
(11)

This last problem is unconstrained, but appropriate
values of the penalty parameters λi need to be esti-
mated. More usual penalization approaches are based
on quadratic penalties, or ordinary Lagrangian or aug-
mented Lagrangian functions. The current adaptive lin-
ear penalty has the following advantages, proofs of which
are given in Appendix B using generalized Lagrangian
theory (Rockafellar 1976; Minoux 1986; Le Riche and
Guyon 2001). With respect to a quadratic penalty, con-
vergence to the feasible optimum can be achieved for
finite values of the parameters λi. With respect to an
ordinary Lagrangian, generalized duality theory can be
applied to calculate the λi’s for a larger class of func-
tions f and gi. Finally, augmented Lagrangians havemore
penalty parameters to set than L̄. Unlike L̄, if f and the
gi’s are differentiable, augmented Lagrangians are differ-
entiable at places where g(x) = 0. This, however, is not
a decisive drawback of L̄, since a non-differentiable frame-
work is assumed here.
The penalty parameters are updated after each gener-

ation of an in-bounds point by the GBNM algorithm. The

updating scheme is intuitive since it consists of increasing
penalty parameters of violated constraints:

if (L̄(xnew, λk)≤ L̄(xbest, λk)) ,

λk+1i = λki + smax(0, gi(x
new)) , i= 1,m ,

xbest = arg min
x∈{xnew,xbest,simplex vertices}

L̄(x, λk+1) ,

end , (12)

where s is a positive step size. This updating strategy is
interpreted as a fixed-step approximate-gradient search
on the dual function (see Appendix B).
An example of convergence in the dual λ space is

now presented. Rosenbrock’s test function is minimized
in a bounded domain with an additional constraint,




min

x1,x2∈[0,20]
100(x2−x21)

2
+(1−x1)

2
,

such that 4−x21 ≤ 0 .
(13)

100 independent optimizations with random starting
points, λ0 = 0, α= 0.01 (see (4)), and a step size s= 0.001
are performed. On average, the penalty parameter stabi-
lizes at λ̄ = 0.5±1×10−6 after 746±178 analyses. The
globalminimum, x1 = 2, x2 = 4, is always found. It should
be noted that, in this case, λ̄= 0.5 is also the Kuhn and
Tucker multiplier at the optimum. In general cases like
Test 1 below, a larger sensitivity of the converged λ’s to
the restart points x0 may occur.

4
Numerical results

In Sect. 4.1, the choice of GBNM parameters is discussed.
Results on two test functions are given in Sect. 4.2 and
two composite laminate design problems are addressed in
Sect. 4.3. The GBNM method is compared with an evo-
lutionary algorithm (EA), both methods handling con-
straints by the linear adaptive scheme of Sect. 3. The
evolutionary algorithm (Bäck 1996) has a steady-state
structure (Syswerda 1991) with real encoding, contin-
uous crossover, and Gaussian mutation of the variance
σmuti = (xmaxi −xmini)2/16. For fair comparisons, the pa-
rameters of the EA chosen for each test are the ones that
perform best in 100 independent trials among all combi-
nations of population size (20 or 50), mutation probabil-
ity (0.15 or 0.20), and crossover probability (0.4 or 0.5).

4.1
GBNM parameter choice

The Gaussian length parameter, α
In this work, α is set to 0.01, which means that one
standard deviation away from the Gaussian mean covers
about 20% of the domain.

Fig. 3 Starting points in a two dimensional space. The first starting point is at the center of the domain. Nr = 1000 (a), Nr = 10
(b), and Nr = 1 (c)

Points kept for the probability density calculation
In Luersen and Le Riche (2001), three strategies were
compared in terms of the probability of not finding at
least one local minimum on three multimodal functions,
Pnfm: the xi’s used in (1) are the starting points, or the
starting and local convergence points, or all the points
sampled during the search. This last option is memory
and time consuming with degraded performance. The
second strategy performs best, independently of Nr. It
shows that the starting and local convergence points ef-
ficiently summarize the topology of the basins of attrac-
tion. This scheme is chosen to update p.
Number of random points,Nr
If Nr is equal to 1, the reinitialization is random (see
Fig. 3c). If Nr is large, the initial points form a perfect
geometric pattern (Fig. 3a). Setting Nr to a small num-
ber larger than 1, gives a biased random reinitialization
(Fig. 3b). It should be seen as a compromise between the
grid and random strategies. The optimum value ofNr de-
pends on the test function: if the basins of attraction are
regularly distributed, restarts following a regular pattern
(Nr large) are optimal, and vice versa. In Luersen and
Le Riche (2001), the probability of not finding at least
one local minimum, Pnfm, is estimated for Nr ranging
from 1 to 1000. On the average of the three test functions,
Nr = 10 is the value that minimizes this probability. From
now on, Nr is set to 10.
Penalty parameters λi
With the adaptive penalty scheme of Sect. 3, an imper-
fect gradient search is performed in the dual space of the
penalty parameters, while the GBNM algorithm searches
the primal (x) space. For better readibility of the results,
the primal and dual searches are decoupled hereafter: 100
runs are first performed, starting from null values of the
penalty parameters, λi = 0. The converged values, λ̄i, are
then averaged and taken as fixed penalty parameters (i.e.,
setting the step s= 0) for the discussed primal searches.

4.2
Analytical test functions

Two analytical functions are now considered to test the
GBNM algorithm. The first test, from Michalewicz and

Schoenauer (1997), has two variables, two constraints,
and is formulated as






min
x1,x2∈[0.001,20]

−
(sin (2πx1))

3 sin (2πx2)

x31(x1+x2)
,

such that

g1(x1, x2) = x
2
1−x2+1≤ 0 ,

g2(x1, x2) = 1−x1+(x2−4)
2 ≤ 0 . (14)

The global minimum is −0.0958248, at x1 = 1.228, x2 =
4.245. For this problem, using s = 0.001, the following
stabilized penalties are found: λ̄1 = 5.5 and λ̄2 = 98.4, ob-
tained after 12204 to 22418 analyses. The second test,
from Michalewicz and Schoenauer (1997), has 7 variables
and 4 constraints, and is






min
xi∈[−20,20]

(x1−10)
2
+5(x2−12)

2
+x43+3(x4−11)

2
+

10x65+7x
2
6+x

4
7−4x6x7−10x6−8x7 ,

such that

−127+2x21+3x
4
2+x3+4x

2
4+5x5 ≤ 0 ,

−282+7x1+3x2+10x
2
3+x4−x5 ≤ 0 ,

−196+23x1+x
2
2+6x

2
6−8x7 ≤ 0 ,

4x21+x
2
2−3x1x2+2x

2
3+5x6−11x7 ≤ 0 . (15)

The global minimum is 680.6300573, at x∗ = (2.330499,
1.951372, −0.4775414, 4.365726, −0.624487, 1.038131,
1.594227), with the first and last constraints active. For
this problem, the following penalties are found: λ̄1 = 68.5,
λ̄2 = 26.0, λ̄3 = 5.2, and λ̄4 = 3.8, after 52 to 620 analyses,
using s= 0.0001. Table 1 presents results for Tests 1 and
2. The GBNMmethod was compared with the best evolu-
tionary algorithm with population size = 50 (Test 1) and
20 (Test 2), mutation probability = 0.2, crossover proba-
bility = 0.4, and the same fixed penalty parameters λ̄i as
the GBNM method. Three different numbers of function
calls were recorded: 500, 1000, and 2000. 100 runs were
performed for each case, the first starting point for the
GBNM method being randomly selected.

Table 1 Comparison of GBNM and EA on Tests 1 and 2 (average ± standard deviation, 100 runs)

500 analyses 1000 analyses 2000 analyses

Minimum Probability of Minimum Probability of Minimum Probability of
feasible finding feasible finding feasible finding

function value a feasible function value a feasible function value a feasible
minimum minimum minimum

GBNM −0.093768 100/100 −0.095825 100/100 −0.095825 100/100
Test ±0.011755 ±0.00000 ±0.00000

function 1 EA −0.059676 92/100 −0.064979 100/100 −0.087380 100/100
±0.029717 ±0.032577 ±0.019187

GBNM 694.00 69/100 685.18 86/100 683.49 99/100
Test ±15.36 ±3.47 ±2.40

function 2 EA 904.14 65/100 755.35 86/100 718.74 86/100
±102.65 ±43.45 ±27.97

Table 2 Examples of possible local optima found by GBNM for Test 1: 2000 analyses, 1 run

(x1, x2) function value g1 g2

(1.22797,4.24537)(*) −0.095825 −1.73746 −0.167762
(1.73414,4.74608) −0.0291438 −0.738839 −0.177499
(1.32441,3.43043) −0.0272629 −0.67637 −8.6956×10−10

(1.67400,3.80228) −0.0258123 −1.6623×10−9 −0.634906
(0.0386021,4.22424) −55.7608 −3.22275 1.01168(**)

(*) global optimum
(**) constraint not satisfied

As can be seen in Table 1, the GBNM method finds,
on average, better objective function values, with a higher
probability of finding a feasible minimum, than does the
EA. The advantage of the GBNM method is substantial
at a low number of analyses, and slowly decreases as the
numerical cost grows. Note that the number of function
evaluations shown in Table 1 does not take into account
the procedure to obtain the stabilized parameters λ̄i. In
fact, for Test 1, the majority of the resources were spent
finding the penalty parameters λ̄i, which confirms obser-
vations made by Michalewicz and Schoenauer (1997) and
Le Riche and Guyon (2001): finding the right penalty is
difficult in Test 1. Test 1 is also a problem that has local
optima. Many of them, reported in Table 2, have been
characterized by GBNM as possible local optima (see the
flow chart in Fig. 2) in a single run of 2000 analyses.

Fig. 4 Simply supported rectangular plate subjected to in plane loads

4.3
Composite laminated plates design

Composite laminates are made of stacked layers, in which
each layer has oriented fibers melted in an isotropic ma-
trix (see sketch in Fig. 4). The design problems addressed
here aim at finding the optimal orientation of the fibers
within each layer i, θi, where θi is a continuous variable
bounded by 0 and 90◦. The plates are analyzed using the
classical lamination theory (see Berthelot 1999).
Longitudinal stiffness maximization, constrained by
shear stiffness and Poisson’s ratio
A 16-ply balanced and symmetric plate, made of glass-
epoxy, is to be designed by maximizing the longitu-
dinal stiffness Ex such that the shear stiffness Gxy is
at least 12 GPa and Poisson’s ratio νxy is not larger

Table 3 Comparison of GBNM and EA: constrained Ex maximization, 100 runs

100 analyses 200 analyses 500 analyses

Highest feasible Ex Probability Highest feasible Ex Probability Highest feasible Ex Probability
(GPa) of finding (GPa) of finding (GPa) of finding

a feasible a feasible a feasible
avg.± std.dev. optimum avg.± std.dev. optimum avg.± std.dev. optimum

GBNM 14.4906±0.0862 47/100 14.5302±0.0059 97/100 14.5311±0.0000 99/100
EA 13.9060±0.3287 44/100 14.2502±0.2090 56/100 14.4550±0.0965 70/100

than 0.5. The elastic proprieties for the glass-epoxy
layers are E1 = 45GPa, E2 = 10GPa, G12 = 4.5 GPa,
and ν12 = 0.31. The plate is balanced and symmetric,
so there are 4 fiber orientations to be found. For this
problem, the averaged converged penalty parameters are
λ̄1 = 6.24 and λ̄2 = 1.18, obtained after 44 to 435 ana-
lyses, with s = 1.0. The best performing evolutionary
algorithm on this problem has a population size of 20,
a mutation probability of 0.2, and a crossover probability
of 0.4.
Table 3 compares the algorithms after 100, 200, and

500 analyses based on 100 independent runs. The best
designs found are any permutation of the stacking se-
quence [±36.6/± 43.1/± 50.1/± 54.9]s. They have
Ex = 14.54GPa and the two constraints are active.
Other quasi-feasible stacking sequences create local

convergence of the simplexes and are tagged possible local
optima by GBNM (see Fig. 2). Some of them, which have
a difference of less than 0.2% in the Ex best value, are
listed in Table 4.
Buckling load maximization, constrained by Hoffman
failure criterion and thermal expansion
Let us consider a rectangular simply supported carbon-
epoxy plate, subjected to an in-plane load Nx =

Table 4 Examples of near-optimal designs found by GBNM for the Ex maximization problem: 2000 analyses, 1 run

stacking sequence Ex (GPa) Gxy (GPa) νxy

[±41.7/±57.7/±46.2/±39.5]s 14.53 12.00 0.50
[±43.0/±45.2/±39.1/±57.8]s 14.53 12.00 0.50
[±48.5/±34.9/±47.4/±53.9]s 14.53 12.00 0.50
[±49.7/±45.4/±35.4/±54.2]s 14.53 12.00 0.50
[±51.9/±52.1/±45.5/±35.1]s 14.53 12.00 0.50
[±57.7/±38.8/±45.0/±43.6]s 14.52 12.00 0.50

Table 5 Buckling load maximization: 100 runs

200 analyses 500 analyses 1000 analyses

Highest feasible Probability Highest feasible Probability Highest feasible Probability
buckling safety factor of finding buckling safety factor of finding buckling safety factor of finding

fbuckl a feasible fbuckl a feasible fbuckl a feasible
avg.± std.dev. optimum avg.± std.dev. optimum avg.± std.dev. optimum

GBNM 1.4260±0.0513 78/100 1.4883±0.0145 99/100 1.4959±0.0125 100/100
EA 1.4557±0.0134 69/100 1.4806±0.0073 83/100 1.4919±0.0035 94/100

−2000N/mm and Ny = 2000N/mm, as shown in Fig. 4.
The plate is balanced and symmetric and has 48 layers,
each of which are 0.125-mm thick. The elastic material
properties of the layers are E1 = 115GPa, E2 = 5GPa,
G12 = 5GPa, and ν12 = 0.35. The coefficients of ther-
mal expansion are α1 = −0.5×10−6 /◦C and α2 =
20×10−6 /◦C. The ultimate strengths in the longitudinal
(Xt andXc), transversal (Yt and Yc), and shear (S) direc-
tions areXt = 964MPa andXc = 895MPa, Yt = 50MPa
and Yc = 100MPa, and S = 94MPa. The laminate is de-
signed to maximize its buckling safety factor, fbuckl, while
not failing as predicted by the Hoffman criterion and
while having magnitudes of the thermal expansion coeffi-
cients, |αx| and |αy|, below 1×10−6 /◦C. An elastic linear
buckling model is used (Berthelot 1999). Since the plate
is balanced and symmetric, there are 12 continuous de-
sign variables, the ply orientations, which are bounded
between 0 and 90◦. The problem is of medium size.
The averaged converged penalty parameters are λ̄1 =

0.0062, λ̄2 = 0.0598, and λ̄3 = 0.4048, and convergence
in the dual space occurs after 116 to 978 analyses
with s = 0.001. The best evolutionary algorithm tested
has a population size of 50, a mutation probability of
0.15, and a crossover probability of 0.5. Table 5 sum-

marizes the comparison of the methods at 200, 500,
and 1000 analyses based on 100 independents runs. The
best solution found is [±27.5/± 27.5/± 28.0/± 28.7/
± 29.7/± 30.7/± 32.2/± 35.8/± 43.9/± 70.7/± 89.9/±
89.9]s, where fbuckl = 1.5002, αx = 3.04×10−7 /◦C, αy =
1.00×10−6 /◦C, and the Hoffman failure load factor is
equal to 1.286.
The results presented in Tables 3 and 5 corroborate

the tests performed on analytical functions: the GBNM
method is faster and more robust at finding feasible
minima than the evolutionary algorithm on the func-
tions studied. The advantage, which is important below
500 analyses, shrinks progressively as more analyses are
performed.

5
Concluding remarks

A local/global optimization method based on proba-
bilistic restarts has been presented. Local searches are
performed by an improved Nelder–Mead algorithm with
which design variables can be bounded, inequality con-
straints taken into account, and some search failure cases
prevented. The method, called the Globalized Bounded
Nelder–Mead search, does not need sensitivities and con-
structively uses computer resources up to a given limit.
It yields a list of candidate local optima, which contain
global solutions with an increasing probability with in-
creasing computer time.
The GBNM method is simple in principle and the

aforementioned features make it particularly useful in an
engineering design context.

Acknowledgements The first author would like to express his

thanks to the Federal Center for Technological Education of

Paraná (CEFET-PR), Brazil, and to the Brazilian funding

agency CNPq for financial support during this research.

References

Bäck, T. 1996: Evolutionary Algorithms in Theory and Prac-
tice. Oxford: Oxford University Press

Barhen, J.; Protopopescu, V.; Reister, D. 1997: TRUST:
a deterministic algorithm for global constrained optimization.
Science 276, 1094–1097

Berthelot, J.-M. 1999: Composite Materials: Mechanical Be-
havior and Structural Analysis, Mechanical Engineering Se-
ries. Berlin: Springer

Duda, O.R.; Hart, P.E.; Stork, D.G. 2001: Pattern Classifica-
tion, 2nd edn. New York: John Wiley & Sons

Durand, N.; Alliot, J.-M. 1999: A combined Nelder–Mead
simplex and genetic algorithm. Available at:
http://www.recherche.enac.fr/opti/papers/

Goldberg, D.E.; Voessner, S. 1999: Optimizing global-local
search hybrids. In: GECCO 99 – Genetic and Evolutionary
Computation Conference (held in Orlando), pp. 220–228

Haftka, R.T.; Gürdal, Z. 1993: Elements of Structural Opti-
mization, 3rd edn. Boston: Kluwer Academic Publishers

Hickernell, F.J.; Yuan, Y.-X. 1997: A simple multistart algo-
rithm for global optimization. OR Trans. 1(2), 1–11

Hu, X.; Shonkwiller, R.; Spruill, M.C. 1994: Random Restarts
in Global Optimization. Technical Report, School of Mathe-
matics, Georgia Institute of Technology, Atlanta

Le Riche, R.; Guyon, F. 2001: Dual evolutionary optimiza-
tion. In: Collet, P.; Lutton, E.; Schoenauer, M.; Fonlupt, C.;
Hao, J.-K. (eds.) Artificial Evolution, Lecture Notes in Com-
puter Science, No. 2310, selected papers of the 5th Interna-
tional Conference on Artificial Evolution (held in Le Creusot),
pp. 281–294

Luersen, M.A.; Le Riche, R. 2001: Globalisation de l’Algo-
rithme de Nelder–Mead : Application aux Composites. Techni-
cal Report, LMR, INSA de Rouen, France; in French

Michalewicz, Z.; Schoenauer, M. 1997: Evolutionary algo-
rithms for constrained parameter optimization. Evolut. Com-
put. 4(1), 1–32

Minoux, M. 1986: Mathematical Programming: Theory and
Algorithms. New York: John Wiley & Sons

Moscato, P. 1989: On Evolution, Search, Optimization, Ge-
netic Algorithms and Martial Arts: Towards Memetic Algo-
rithms. Caltech Concurrent Computation Program, C3P Re-
port 826

Nelder, J.A.; Mead, R. 1965: A simplex for function minimiza-
tion. Comput. J. 7, 308–313

Okamoto, M.; Nonaka, T.; Ochiai, S.; Tominaga, D. 1998:
Nonlinear numerical optimization with use of a hybrid genetic
algorithm incorporating the modified Powell method. Appl.
Math. Comput. 91, 63–72

Rockafellar, R.T. 1976: Lagrange multipliers in optimization.
In: Cottle R.W.; Lemke C.E. (eds.) Nonlinear Programming,
Proc. SIAM-AMS , 9, 145–168

Shang, Y.; Wan, Y.; Fromherz, M.P.J.; Crawford, L. 2001: To-
ward adaptive cooperation between global and local solvers
for continuous constraint problems. In: CP’01 Workshop on
Cooperative Solvers in Constraints Programming (held in
Pahos)

Syswerda, G. 1991: A study of reproduction in generational
and steady state genetic algorithms. In: Rawlins, G.J.E.
(ed.) Foundations of Genetic Algorithms. San Mateo: Morgan
Kaufmann

Törn, A.A. 1978: A search-glustering approach to global opti-
mization. In: Towards Global Optimization 2 , pp. 49–62

Törn, A.A.; Zilinskas A. 1989: Global Optimization. Berlin:
Springer-Verlag

Wright, M.H. 1996: Direct search methods: once scorned, now
respectable. In: Dundee Biennial Conference in Numerical
Analysis (held in Harlow), pp. 191–208

Appendix A:
A Nelder–Mead algorithm with bounded variables

The Nelder–Mead method (Nelder and Mead 1965) is the
most popular direct searchmethod for minimizing uncon-
strained real functions. It is based on the comparison of
function values at the n+1 vertices xi of a simplex. A sim-
plex of size a is initialized at x0 based on the rule (see
Haftka and Gürdal 1993)

xi = x0+pei+
n∑

k=1
k �=i

qek , i = 1, n , (A.1)

where ei are the unit base vectors and

p=
a

n
√
2

(√
n+1+n−1

)
,

Fig. 5 Nelder–Mead algorithm with bounded variables

q =
a

n
√
2

(√
n+1−1

)
. (A.2)

The simplex vertices are changed through reflection, ex-
pansion, and contraction operations in order to find an
improving point (see Fig. 5). The algorithm terminates
when the vertices function values become similar, which is
measured with the inequality,

√√√√
n+1∑

i=1

(fi− f̄)2/n < ε , f̄ =
1

n+1

n+1∑

i=1

fi , (A.3)

where ε is a small positive scalar. The cumulative effect
of the operations on the simplex is, roughly speaking, to
stretch the shape along the descent directions, and to zoom
around local optima. Two comments on the properties
of the algorithm are added. Firstly, the Nelder–Mead al-

gorithm may fail to converge to a local optimum, which
happens in particular when the simplex collapses into
a subspace. Secondly, the method may escape a region
that would be a basin of attraction for a pointwise descent
search if the simplex were large enough. Ultimately, as the
size of the simplex decreases, the algorithmbecomes local.
The original Nelder–Mead algorithm was conceived

for unbounded domain problems. With bounded vari-
ables, the points can leave the domain after either the
reflection or the expansion operation. It is straightfor-
ward to account for variable bounds by projection:
{
if (xi < x

min
i), xi = x

min
i ,

if (xi > x
max
i), xi = x

max
i .

(A.4)

The flowchart of the Nelder–Mead method shown in
Fig. 5 differs from the original method only in the ini-
tialization (see (A.1)) and in the bounded variables. An
important side effect of accounting for the bounded vari-
ables through projection is that it tends to make the
simplex collapse into the subspace of the saturated vari-
ables. A specific convergence test, based on a small sim-
plex reinitialization at the point of convergence, is then
required (see “small test” in Sect. 2.2).

Appendix B:
Adaptive linear penalty as generalized Lagrangian

The adaptive linear penalty scheme of (11) and (12) can
be analyzed using generalized Lagrangian theory (see
Rockafellar 1976; Minoux 1986). In the following, oper-
ators < , ≤ , >, and ≥ used with vectors apply to all
components independently.

Proposition 1 (L̄ generalized Lagrangian).
Let L̄ be defined as
{
L̄(x, λ) = f(x)+λ.g+(x) if λ≥ 0 ,

−∞ if ∃ k , 1≤ k ≤m / λk < 0 ,
(B.1)

where g+(x) =max(0, g(x)). L̄ is a generalized Lagrangian.

This ensues directly from the definition of generalized
Lagrangians : L̄ is a closed concave function of λ, and,
introducing the essential objective function f̄ , for which
{
f̄(x) = f(x) if x feasible ,

+∞ otherwise ,
(B.2)

one readily shows that f̄(x) = max
λ∈Rm

L̄(x, λ), which com-

pletes the definition.
Denoting by x∗ a solution of the primal problem (P),

a given problem, defined by f and g, has a saddle point
with respect to L̄ if

f(x∗) = min
x
f̄(x) = min

x
max
λ
L̄(x, λ) =

max
λ
min
x
L̄(x, λ) = max

λ
ϕ̄(λ) , (B.3)

where

ϕ̄(λ) = min
x
L̄(x, λ) (B.4)

is the dual function associated with L̄. As (B.3) shows,
if a problem has a saddle point with respect to the gen-
eralized Lagrangian L̄, there is a well-founded way to
build a penalty function that leads to x∗: the primal con-
strained formulation (P) can be replaced equally by the
dual problem

(D̄) max
λ∈Rm

ϕ̄(λ) . (B.5)

If a problem has a saddle point and λ̄ is a solution of
(D̄), x∗ is obtained by minimizing the penalty function
L̄(x, λ̄). In terms of λ, (D̄) is easy to solve because ϕ̄(λ)
is a concave function (see proof in Minoux (1986)). More-
over, there is a convenient expression for its sub-gradient.

Proposition 2 (Sub-gradient of the dual function).
A sub-gradient of the (generalized) dual function ϕ̄ at
λ is g+(x̄(λ)), where x̄(λ) is such that L̄(x̄(λ), λ) =
min
x
L̄(x, λ).

The proof is the direct application of Theorem 4′ in Chap-
ter 6 of Minoux (1986). Proposition 2 shows that calcu-
lating a sub-gradient of ϕ̄ is a by-product of calculating
ϕ itself, since both involve minimizing L̄(, λ). Such min-
imization remains the most costly operation when solv-
ing (D̄). Therefore, in this work, the dual function and
its sub-gradient are not calculated by the complete reso-
lution of (B.4) but are approximated by the heuristic
of (12). The condition L̄(xnew, λk) ≤ L̄(xbest, λk) and the
update of xbest guarantee that the approximation of x̄(λ)
improves at each iteration. In light of the definition of ϕ̄’s
sub-gradient, the updating formula of λ in (12) is inter-
preted as a fixed step gradient algorithm that solves (D̄),
where g(x̄(λ)) is approximated by g(xbest).
All the above considerations assume that the prob-

lem has a saddle point. Perturbation analysis (Rockafellar
1976) helps to characterize the existence of saddle points.
For a short while, let L̄ denote any generalized La-
grangian. The ordinary Lagrangian, L(x, λ) = f(x)+
λg(x), is an instance of L̄. Perturbation analysis uses the
perturbational representation, F̄ , and the optimal value
function, φ̄. Let Y be a real linear space and y be a vector
in Y . The perturbational representation is defined as

F̄ (x, y) = max
λ∈Rm

(L̄(x, λ)−λy) (B.6)

and the optimal value function is

φ̄(y) = min
x
F̄ (x, y) . (B.7)

The following theorem, fromMinoux (1986), states that if
there is a supporting hyperplane of φ̄ at y = 0, then solv-
ing (D̄) also solves (P).

Theorem 1. A necessary and sufficient condition for λ̄
to be a saddle point multiplier is that

∀y ∈ Y , φ̄(y) ≥ φ̄(0)− λ̄y . (B.8)

Using (B.7), the optimal value function of the ordi-
nary Lagrangian is

φ(y) = min
x / g(x)≤y

f(x) . (B.9)

From now on, L̄ denotes the only generalized Lagrangian
discussed here, the linear adaptive penalty function of
(B.1). It can be shown that the associated optimal value
function is

φ̄(y) =

{
+∞ if ∃ k , 1≤ k ≤m / yk < 0 ,

φ(y) if y ≥ 0 .
(B.10)

Figure 6 shows the optimal value functions φ and φ̄ on two
example problems. On the left, the problem does not have
a saddle point in terms of the ordinary Lagrangian, but
has saddle points in terms of the linear adaptive penalty
function. On the right, L and L̄ both have saddle points.
Because φ̄ is equal to φ in the subspace of Y such that
y ≥ 0 and is infinite elsewhere, it has supporting hyper-
planes at y = 0 more frequently than does φ.

Proposition 3 (Saddle points of L̄).
The class of problems for which L̄ has a saddle point con-
tains the class of problems for which ordinary Lagrangians
have a saddle point.

Two other features of the penalty function L̄ are visible in
Figure 6 and are presented without proof.

Proposition 4 (Set of λ̄’s).
The set of saddle point multipliers of L̄, {λ̄}, is bounded
below. Furthermore, if λ∗ is a saddle point multiplier of the

Fig. 6 Two examples of optimal value functions φ and φ̄
for a single constraint. λ∗ and λ̄ are saddle point multipli-
ers for L and L̄, respectively. On the left, unlike φ̄, φ has
no supporting hyperplane at y = 0 (i.e., no saddle point).
A problem with a saddle point for the ordinary Lagrangian
is sketched on the right: φ and φ̄ both have supporting
hyperplanes

ordinary Lagrangian L, it is the lower bound of {λ̄}, i.e.,
λ̄ ≥ λ∗.

In particular, it should be stressed that the lower bound
of {λ̄} is often finite.

Proposition 5 (Finite penalty parameters).
x∗ can be solution of min

x
L̄(x, λ̄) for finite values of λ̄.

Quadratic and higher order exterior penalty functions
achieve differentiability at g(x) = 0 (providing f and
g are differentiable) but need, in all cases, infinitely
large penalty parameters in order to approach the feas-
ible domain. On the contrary, L̄ is not differentiable
but convergence to the optimum x∗ can occur for finite
penalties.

