

Summary of MDO experience

Raphael T. Haftka (haftka@ufl.edu) Department of Mechanical and Aerospace Engineering University of Florida

The challenges of MDO

• Computational

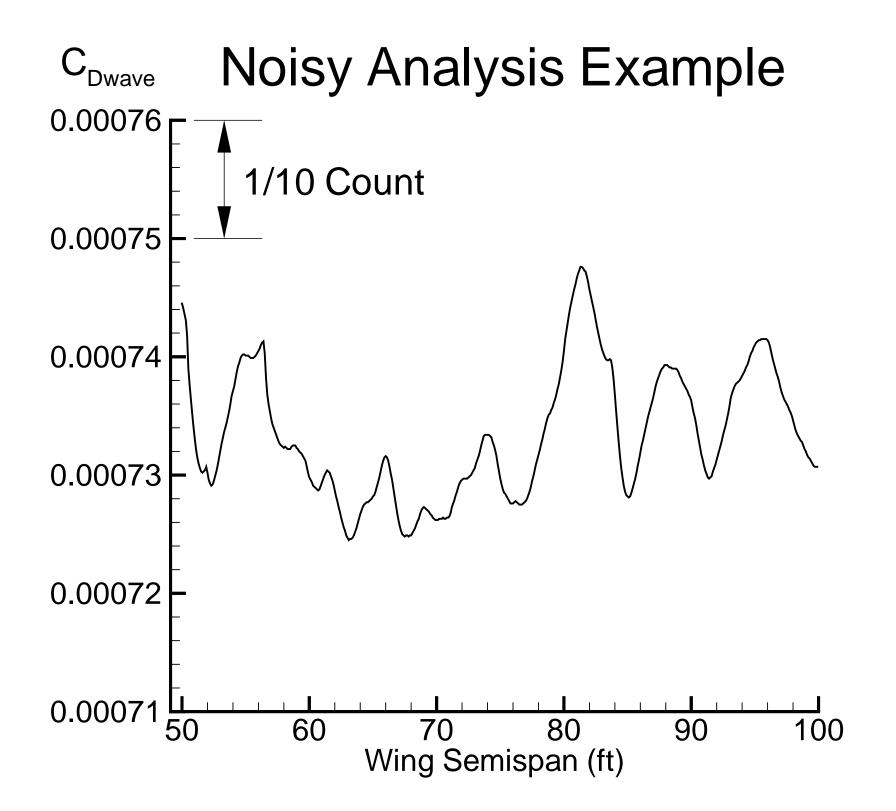
- Analysis models are expensive
- Optimization is difficult for a single discipline
- MDO increases the cost significantly
- Human
 - Collaboration across department and disciplinary boundary is difficult
 - Collaboration between designers and disciplinary specialists is also a challenge

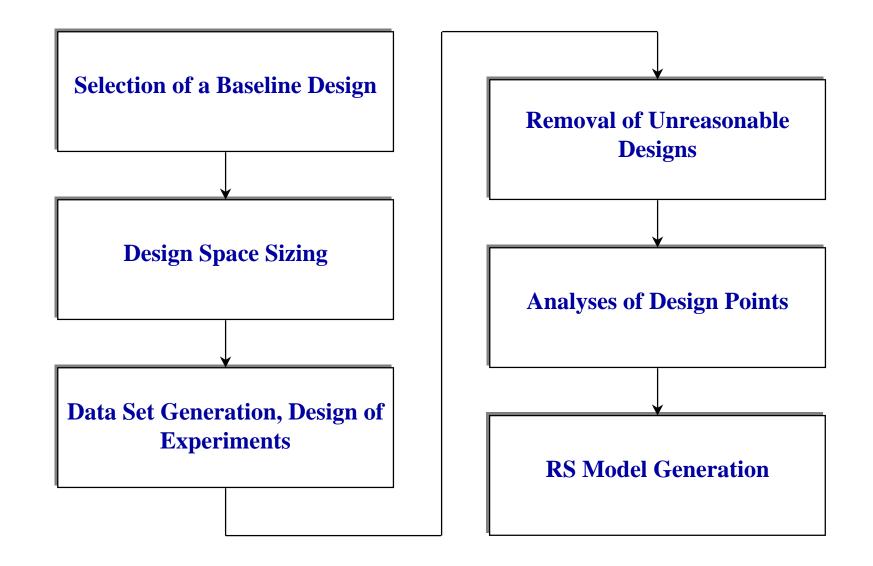
MDO teams

- Creating an MDO team is a challenge
- Therefore I have continued collaboration with Virginia Tech team
 - Bernard Grossman CFD
 - William Mason aircraft design
 - Layne Watson numerical analysis and computer science
- Also
 - Joseph Schetz CFD and propulsion
 - Rakesh Kapania structures and aeroelasticity

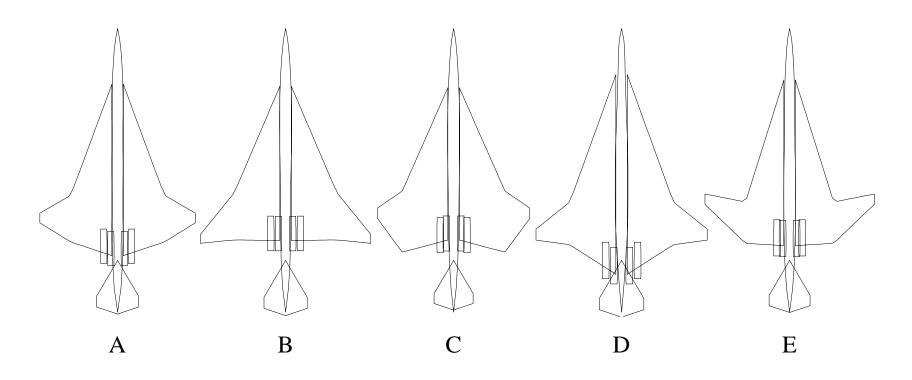
Algorithmic challenges

- Decomposition versus approximation
 - Approximation is the traditional approach, control remains with project manager
- Multi-fidelity approximations
 - Parkinson's law dictates that a single "acceptable analysis" takes about one day of computation
 - Must use simpler models for MDO
- Overall versus local design
 - Decomposition easier here



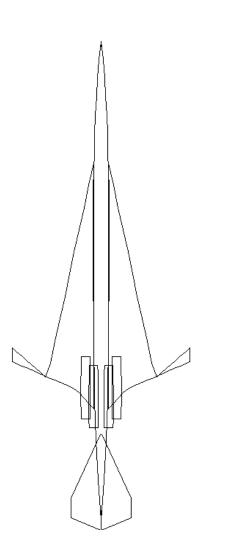

Approximation vs. Decomposition

- Decomposition algorithms, such as Collaborative
 Optimization allow disciplinary optimization, but
 present theoretical and numerical difficulties
- Response surface approximations imitate the traditional approach, such as weight equations in programs like FLOPS
- Each discipline responsible for its response surface
- Giunta, AA, Balabanov, V, Haim, D, Grossman, B, Mason, WH, Watson, LT, and Haftka, RT, ``Aircraft Multidisciplinary Design Optimisation Using Design of Experiments Theory and Response Surface Modelling," Aeronautical Journal, Vol. 101, No. 1008, 1997, 347-356.



Response Surface Model Generation Process

Starting Points



•Starting Points Within ±15% Bounds

•Starting Point Set was Manually Selected to Represent the Variety of Designs Available in the Design *Box*

Removal of Unreasonable Designs

•Designs Removed from Design Sets Using Geometric Criteria, i.e.:

•Wing/Tail Overlap

•Negative Chords

Orthogonal Array Set

3 designs removed, 2206 points remain

SCD-Based Set

512 designs removed, 1593 points remain

•Supplementary 1024 point SCD created for box with $\pm 7.5\%$ variables bounds

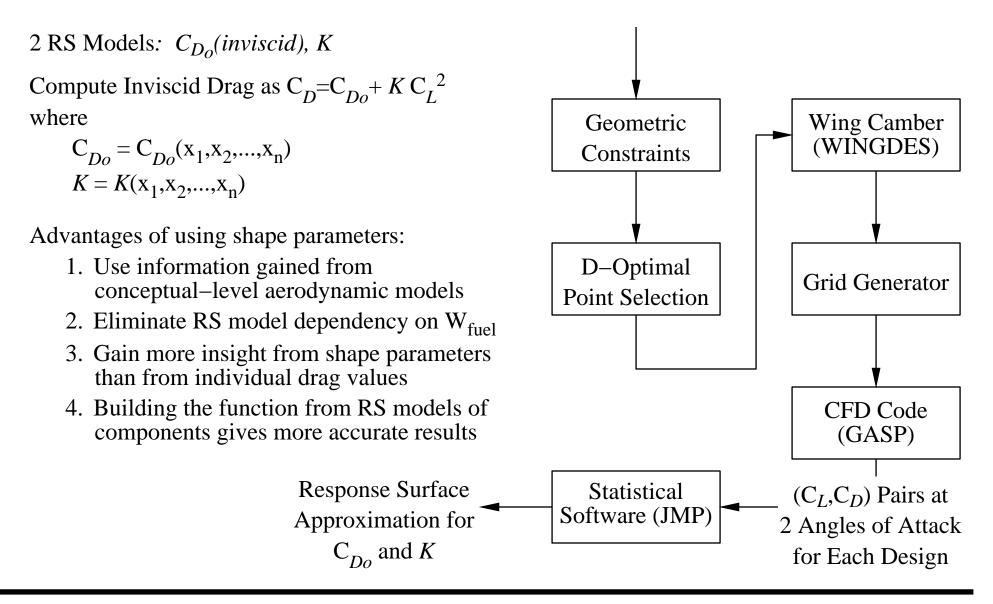
no designs removed, 2617 points remain

Multifidelity Approximations

- Correction response surface
- Trust region approximation frameworks (John Dennis, Natalia Alexandrov)
- Identification of less important terms
- Identification of intervening variables and functions

Combining low fidelity and high fidelity models

- Derivative-based local approximation: Haftka, R.T., "Combining Global and Local Approximations," AIAA Journal, Vol. 29, No. 9, pp. 1523-1525, 1991.
- Unger, E.R., Hutchison, M.G., Rais-Rohani, M., Haftka, R.T., and Grossman, B., "Variable-Complexity Multidisciplinary Design of a Transport Wing," International Journal of System Automation: Research and Applications (SARA), 2(2), pp. 87--113, 1992.
- Correction response surface of ratio or differences of two models
- Kaufman, M., Balabanov, V., Burgee, S.L., Giunta, A.A., Grossman, B., Mason, W.H., Watson, L.T., and Haftka, R.T., ``Variable-Complexity Response Surface Approximations for Wing Structural Weight in HSCT Design," 34th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper No. 96-0089, Reno, Nevada, January 15-18, 1996.


Learning from low fidelity models

- Identifying intervening functions and variables
- Identifying important and less important terms
- Knill, D.L., Giunta, A.A., Baker, C.A., Grossman, B., Mason, W.H., Haftka, R.T., and Watson, L.T., ``Response Surface Methods Combining Linear and Euler Aerodynamics for Supersonic Transport Design," Journal of Aircraft, 36(1), pp. 75-86, 1999.

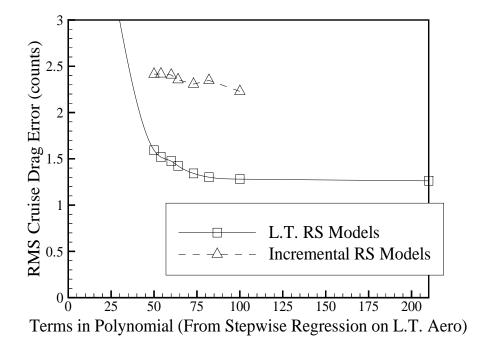
Response Surface Approximation to Euler Drag

Virginia Tech Aerospace Engineering

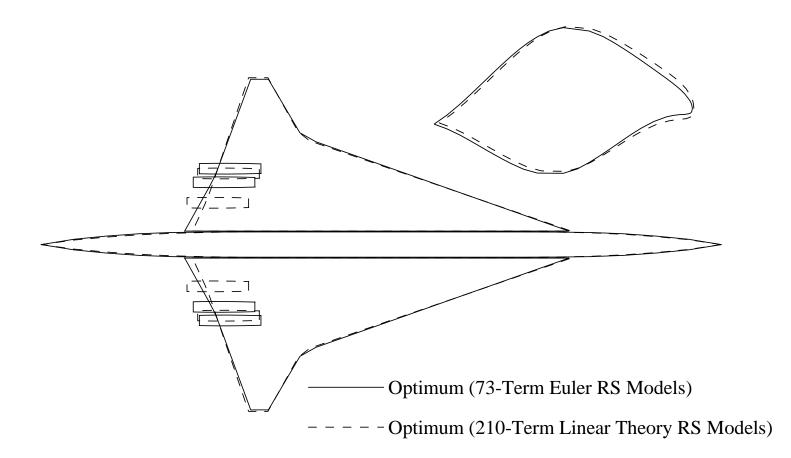
Incremental RS Models

- Create RS models for the difference between the linear theory and Euler solutions
- 2 RS Models: ΔC_{Do} , ΔK

Compute inviscid drag as $C_D = C_{Do} + K C_L^2$ where $C_{Do} = \overline{C}_{Do}(x_1, x_2, ..., x_n) + \Delta C_{Do}(x_1, x_2, ..., x_n)$


$$K = \overline{K}(x_1, x_2, ..., x_n) + \Delta K(x_1, x_2, ..., x_n)$$

Linear TheoryCorrectionRS ModelTerm


Regression Analysis (Twenty–Variable HSCT Design)

- Able to use 73-term incremental models instead of 210-term Euler models
- Computational savings

210–Term L.T.	50 minutes
210–Term Euler	392 hours
73–Term Euler	137 hours

Optimization Results: Incremental RS Models

Drag coefficient from reduced-term incremental RS model is 0.8 count lower than that from Euler analysis

Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles Virginia Tech Aerospace Engineering

System-level and Component Optimization

- Rigorous decomposition algorithms possible
 - Quasi-separable systems

R. T. Haftka and L. T. Watson, "Multidisciplinary design optimization with quasiseparable subsystems", *Optim.Engrg.* to appear, 2004.

• Response surfaces of component optima useful in system level design

Liu, B., Haftka, R.T., and Akgün M.A., "Two-Level Composite Wing Structural Optimization Using Response Surfaces," Structural Optimization, 20(2), pp. 87-96, 2000.

Recent MDO Studies

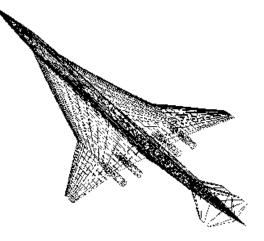
- High speed Civil Transport
 - Flying fuel tank
 - Classical aero-structure interaction
- Truss (strut) braced wing
 - Learning from general aviation airplanes
- Blended wing body
 - Official Boeing project, we are looking at distributed propulstion and noise

High-Speed Civil Transport (HSCT) Test bed

MAD Center

Mach 2.4 aircraft

Modify:


- wing shape
- fuselage shape
- nacelle placement
- horizontal and
- vertical tails
- engine thrust
- wing structural sizing

Requirements:

- 250 passengers
- range 5,500 naut. miles
- trim and control
- T/O & landing
- geometry
- stress, strain, buckling

Objective:

• Minimize Take-Off Gross Weight (TOGW)

Baseline Configuration

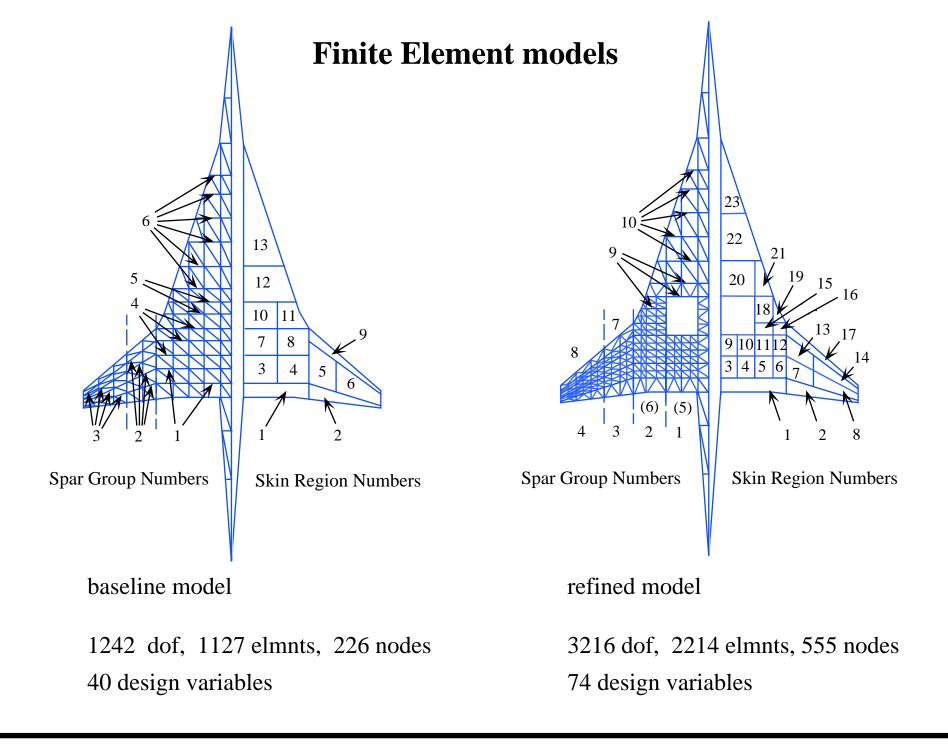
Geometry Parametrization

🐲 MAD Center 📃

 Small number of design variables for research code, 20–100. Adequate resolution of baseline geometry Sufficiently general for design improvements Not intended for conceptual design Not tied directly to analysis codes

HSCT Test bed Design Variables

25 Configuration	40 Wing Structure	4 Performance
8 wing planform 5 wing thickness	26 skin panel thicknesses 12 spar cap areas	1 mission fuel weight 1 initial cruise altitude
8 fuselage	2 rib cap areas	1 cruise-climb rate
2 nacelle location	2 no cap areas	1 maximum thrust
2 horiz. & vert. tail areas		per engine


HSCT Configuration Optimization Problem

Mission requirements: Mach 2.4, 251 passenger, 5,500 n.mi. range

 $\frac{t}{2c}$ Described by 29 design variables τ_{te} • Wing Planform m • Airfoil Shape • Tail Areas • Nacelle Placement • Fuselage Shape • Mission Profile X₁ х₆ (X_2, X_3) 68 geometry, performance, aerodynamic constraints (X_4, X_5) Baseline configuration from previous work ×7 🗲 X a -⊢ X 10

Virginia Tech Aerospace Engineering

X 8

Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles Virginia Tech Aerospace Engineering

Design Constraints

MAD Center

70 aerodynamic constraints implemented.

- Range \geq 5500 *nm*. Drag estimates throughout flight envelope.
- 250 passengers. Fuselage geometry and volume constraints.
- Wing volume adequate to carry fuel. Wing geometry constraints.
- Balanced field length $\leq 10,000 \, ft$.
- Engine Out Condition: Trimmed flight with 2 engines inoperative.
- Cross-Wind Landing Condition: Landing with 20 knot crosswind. Rudder deflection and bank angle constraints.
- Nacelle, Wing, Tail Strike Constraints: Requires bank angle, landing incidence, landing gear location and length and planform geometry.
- Take-Off Rotation Requirement: Rotating to take-off pitch attitude at $0.9V_{min}$. Requires center of gravity and inertia estimates. Also landing gear details.
- Powered Approach Trim Consideration: Trimmed flight at landing attitude. Horizontal tail deflection below 75% maximum.

Simplified Aerodynamic-Structural Coupling

MAD Center

Objective: minimize take-off gross weight (TOGW)

$$TOGW = W_{fuel} + W_{structural} + W_{non-structural} + W_{payload}$$

 W_{fuel} :design variable $W_{non-structural}$:weight equation $W_{structural}$: $\mathcal{F}(\text{configuration variables})$ weight equation (simple)structural optimization (detailed)

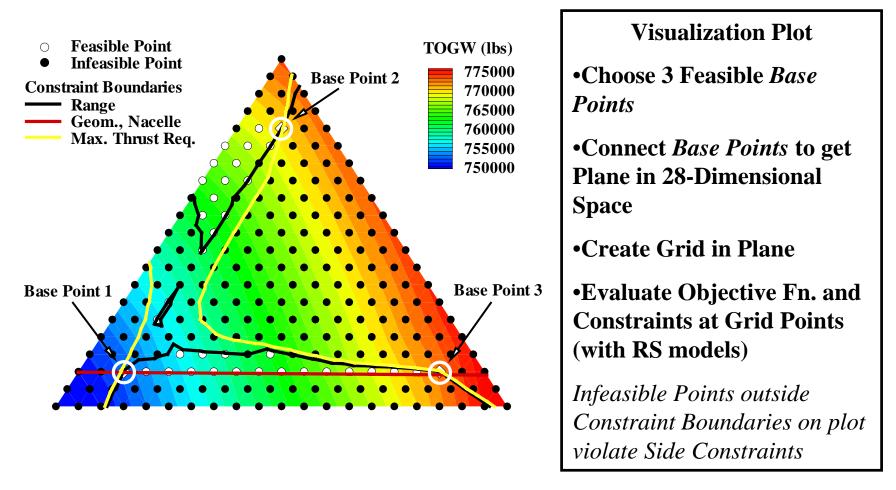
Problem: existing weight equations do not have large supersonic data base

HSCT Analysis and Optimization

MAD Center

Simple Analysis Methods

- Subsonic Aerodynamics: Algebraic $C_{L_{\alpha}}$; DATCOM stability derivatives.
- Supersonic Aerodynamics: Linear theory; approx. wave drag; strip boundary layer.
- Weight Estimation: FLOPS (algebraic).


Detailed Analysis Methods

- Subsonic Aerodynamics: Vortex lattice Method.
- Supersonic Aerodynamics: Harris wave drag; panel code.
- Transonic and Supersonic Loads: Euler and Navier-Stokes code GASP.
- Structural Weight: GENESIS (finite-element structural optimization).

Optimization Methods

• NEWSUMT-A, DOT (Method of Feasible Directions, SQP)

The Design Space

•Even in Simplified Plot, Design Space appears Complicated, Nonconvex

•Range Constraint is Multiply Connected even with Quadratic Drag RS Models

Selected References

🛸 MAD Center 💻

Response surface methodology:

- Giunta, A. A., Balabanov, V., Haim, D., Grossman, B., Mason, W. H., Watson, L. T., and Haftka, R. T., "Multidisciplinary Optimisation of a Supersonic Transport Using Design of Experiments Theory and Response Surface Modelling," *Aeronautical Journal*, **101**, No. 1008, 1997, pp. 347-356.
 Using detailed CFD in design:
- Knill, D. L., Giunta, A. A., Baker, C. A., Grossman, B., Mason, W. H., Haftka, R. T. and Watson, L. T., "Response Surface Models Combining Linear and Euler Aerodynamics for Supersonic Transport Design," *J. Aircraft*, 36, No. 1, Jan.–Feb. 1999, pp. 75–86.

Using detailed structural analysis in design:

 Balabanov, V., Giunta, A. A., Golividov, O., Grossman, B., Mason, W. H., Watson, L. T. and Haftka, R. T., "Reasonable Design Space Approach to Response Surface Approximation", *J. Aircraft*, **36**, No. 1, Jan.–Feb. 1999, pp. 308–315.

Selected References (continued)

🛸 MAD Center 💻

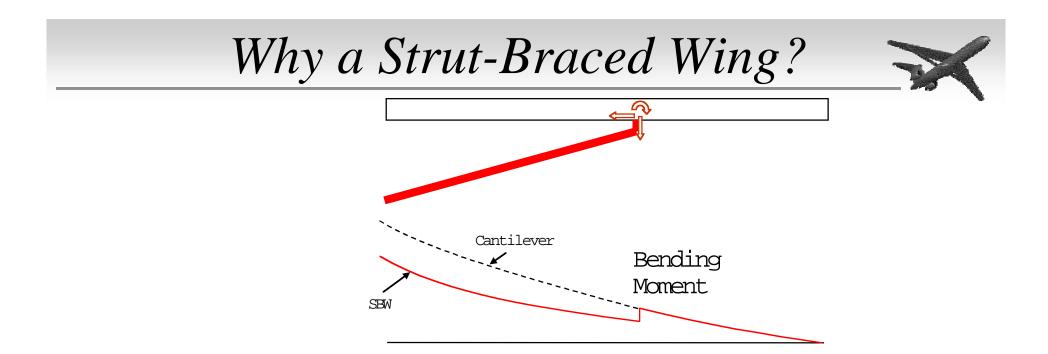
Parallel computing:

- Burgee, S., Giunta, A. A., Balabanov, V., Grossman, B., Mason, W. H., Narducci, R., Haftka, R. T., and Watson, L. T., "A Coarse Grained Variable-Complexity Multidisciplinary Optimization Paradigm," *Intl. J. Supercomputing Applications and High Performance Computing*, **10**, No. 4, 1996, pp. 269-299.
- Krasteva, D. T., Watson, L. T., Baker, C., Grossman, B., Mason, W. H. and Haftka, R. T., "Distributed control parallelism in multidisciplinary aircraft design", *Concurrency, Practice Experience*, Vol. **11**(8), 1999, pp. 435–459.

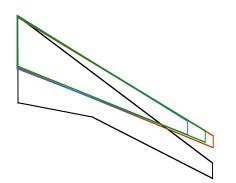
Design space exploration:

Baker, C., Grossman, B., Mason, W. H., Watson, L. T. and Haftka, R. T., "HSCT Configuration Design Space Exploration Using Aerodynamic Response Surface Approximations", Proceedings of the 7th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Paper No. 98–4803–CP, St. Louis, MO, Sept. 1998, pp. 769–777.

More HSCT references


- Cox, S.E., Haftka, R.T., Baker, C.A., Grossman, B., Mason, W.H., and Watson, L.T., "A Compariosn of Global Optimization Methods for the Design of a High-speed Civil Transport," J. of Global Optimization, **21**, pp. 415-433, 2001.
- Baker, C.A., Watson, L. T., Grossman, B., Mason, W. H. and Haftka, R. T., "Parallel global aircraft configuration design space exploration", *Internat. J. Compuer. Research*, **10** (4) 2001, 501-515.
- Kim, H, Papila, M., Mason, W. H., Haftka, R. T., Watson, L. T., and Grossman, B., "Detection and Repair of Poorly Converged Optimization Runs," AIAA J., **39**(12), December 2001, pp. 2242-2249.
- Hosder, S., Watson, L.T., Grossman, B., Mason, W.H., and Kim, H., " Polynomial Response Surface Approximations for Multidisciplinary Design Optimization of a High Speed Civil Transport," Optimization and Engineering, **2**, 431-452, 2001.

A Structural and Aerodynamic Investigation of a Strut-Braced Wing Transport Aircraft Concept


- Strut Allows Span Increase, t/c Reduction and/or Wing Bending Material Weight Reduction
- Small t/c Allows Wing to Unsweep for Same Transonic Wave Drag
- Reduced Sweep Permits More Natural Laminar Flow
 - Fuel Savings
 - Causes Additional Weight Savings

2010 Minimum-TOGW Optima

- Thrust Reduction of 21.5-31.6%
 - Lower Noise Pollution at Urban Airports
- ♦ Large SBW Sweep Reduction
- Less Wing Area

- SBW %TOGW Improvement
 = 9.2-17.4%
- ♦ SBW %Fuel Improvement = 14.3-21.8%
- Similar Wingspans Except for Wingtip-Engine Case
- Wingtip Deflection Constraint

Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles Dept. of Aerospace and Ocean Engineering Virginia Tech

Truss braced wing references

- Gundlach, J.F., Tetrault, P-A., Gern, F.H., Naghshineh-Pour, A.H., Ko, A., Schetz, J.A., Mason, W.H., Kapania, R.K., Grossman, B., and Haftka, R.T., "Conceptual Design Studies of a Strut-Braced Wing Transonic Transport," Journal of Aircraft, Vol. 37, No. 6, Nov-Dec 2000, pp. 976-983.
- Gern, F.H., Ko, A., Sulaeman, E., Gundlach, J.F., Kapania, R.K., and Haftka, R.T., "Multidisciplinary Design Optimization of a Transonic Commercial Transport with Strut-Braced Wing," J. Aircraft, **38(6)**, November-December, 2001, pp. 1006-1014.
- Sulaeman, E., Kapania, R.K., and Haftka, R.T., "Effect of Compressive Force on Strut-Braced Wing Response," AIAA Paper 2001-1611, Proceedings 42nd AIAA/ASME-/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference, Seattle, WA, April, 2001.

MDO of a Blended-Wing-Body Transport Aircraft with Distributed Propulsion

Andy Ko, Leifur T. Leifsson, W.H. Mason, J.A. Schetz, and Bernard Grossman *Virginia Tech* and R.T. Haftka, *University of Florida*

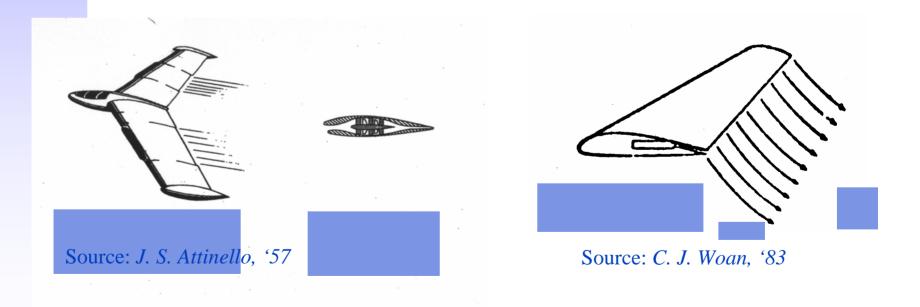
Work sponsored by NASA Langley Research Center

AIAA 3rd Annual ATIO Technical Forum, Denver November 17, 2003

Conventional Propulsion BWB

Source: NASA fact sheet

- Concept originated by McDonnell-Douglas
- A small number of large engines


Elevons used for longitudinal control

Distributed Propulsion Concepts

Vehicle propulsion Kachemann's Jet Wing

Generation of high lift Pure Jet Flap

Publicite

- University of Florida is francophone with a French interdisciplinary center and a center in Paris
- Our department has five faculty members with some French educational background
- We are interested in joint PhD programs
- I am interested in the possibility of working with you on MDO

