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Abstract. Semantic interoperability facilitates Health Care and Life
Sciences (HCLS) systems in connecting stakeholders (e.g., patient, physi-
cian, pharmacy) at various levels as well as ensure seamless use of health-
care resources (e.g., data, schema, applications). Their scope ranges from
local (within, e.g., hospitals or hospital networks) to regional, national
and cross-border. The use of semantics in delivering interoperable so-
lution for HCLS systems is weakened by fact that an Ontology Based
Information System (OBIS) has restrictions in modeling, aggregating,
and interpreting global knowledge (e.g., terminologies for disease, drug,
clinical event) in conjunction with local information (e.g., policy, pro-
files). This chapter presents an example-scenario that shows such limita-
tions and recognizes that enabling two key features, namely the type and
scope of knowledge, within a knowledge base could enhance the overall
effectiveness of an OBIS. We provide the idea of separating knowledge
bases in types (e.g., general or constraint knowledge) with scope (e.g.,
global or local) of applicability. Then, we propose two concrete solutions
on this general notion. Finally, we describe open research issues that
may be of interest to knowledge system developers and broader research
community.

1 Introduction

Nowadays, Health Care and Life Sciences (HCLS) systems are facing challenges
to bring healthcare stakeholders together, such that healthcare resources (e.g.,
data, schema, and applications) are seamlessly accessed across all related do-
mains. Knowledge and HCLS specialists have advocated the use of semantics
to (1) create interlinked networks of HCLS resources and (2) overall manage-
ment and integration of HCLS resources. Ontology Based Information Systems
(OBISs) have recently received attention for their flexibility and automation in
maintaining, updating, exchanging schemas and underlying data. This strength
is due to the fact that schema and data are loosely-coupled (as compared to
cohesively-weak schema and data in traditional databases) and both represented
and integrated in a logical fashion. However, OBIS in its current form has limi-
tations in dealing with the requirements imposed by heterogeneous information



systems. One major limitation is its inability to distinguish between various
types of knowledge used or exchanged between information systems. Addition-
ally, knowledge expressed within any typical information system are generally
tied to a context (e.g., place, event, time) and their appropriate interpretation
is scoped or limited to that context.

Semantics and the reasoning mechanism behind ontological knowledge bases
are centralized in the way data and schemas are accumulated and processed.
Therefore, when an OBIS experience the use-cases where data, schema, and ap-
plications are heterogenous and distributed then that impedes the expected re-
sults. This limitation has roots in formalism and corresponding reasoning mech-
anism underlying ontology-based knowledge bases. Ontology as the symbolic
layer is closest to concepts in the real world. An ontology may be defined as the
specification of a representational vocabulary for a shared domain of discourse
which may include definitions of classes, relations, functions and other objects
(Gruber, 1993). Ontologies are good in describing general invariant concepts and
mappings or relation among those concepts. When ontologies are applied for in-
formation systems, then they describe information which is attached to multiple
parameters, for example, information that is local and specific to some domain,
time-dependent, constraints applicable to certain domain of discourse.

This chapter discusses how to formally represent information in use in elec-
tronic patient records (EPR) and related knowledge bases, where the data are
distributed, heterogeneous and multi-contextual. We especially explore how ex-
isting formalisms are able to deal with the difficult issues provoked by hetero-
geneity in a globalized information system. To do this, we present in a plausible
use case scenario where two hospitals in different countries are involved, as well
as labs and clinics. This serves to identify essential issues arising in such envi-
ronment. We then show that Semantic Web technologies can help solving these
issues and consolidate interoperability. Yet, these technologies fail at several lev-
els in this multi-scoped situation. Therefore, we investigate formal approaches
that have been proposed on top of Semantic Web technologies to deal with these
crucial aspects of world-wide knowledge base systems. As a result of this inves-
tigation, we classify the approaches according to five essential features that are
meaningful to dealing with our example scenario. We conclude that no approach
fully solve the issues but some can be combined to improve the overall formal-
ism. Especially, we notice that those issues eventually amount to delimiting the
scope and type of a knowledge base or its subparts. Subsequently, we detail how
to define an extension of existing work to treat more appropriately the identified
features. Finally, we discuss the remaining foundational problems that are still
not addressed by the presented approaches but are critical to the interoperability
of these systems. This way we hope to offer a roadmap and directions for future
research in semantic-enabled HCLS system at Web-scale.

We start the chapter with background information about semantics in HCLS
systems (Section 2). We then describe our use-case scenario (Section 3). We show
how to apply various formalisms to this scenario in four sections overviewing the
state of the art: first, we present two general theories of reasoning with context



(Section 4); second, we detail some instanciation of one of the model of con-
text (Section 5); third, we present more concrete formalisms for the description
of context on the Semantic Web (Section 6); fourth, we provide other formal
approaches built on top of semantic technologies that deals with the identified
problems of our scenario (Section 7). After this extensive state of the art, we
provide a summary and analysis of the studied approaches (Section 8). Then,
we present our proposal for combining existing approaches to better deal with
scopes and types of knowledge (Section 9). Finally, we discuss the remaining open
research issues that we deem crucial to enable interoperability (Section 10).

2 Semantics for HCLS

An overwhelming amount of HCLS knowledge is represented in natural language,
information models, clinical repositories (databases), ontologies for terminolo-
gies, vocabularies, etc. Additionally, the involvement of various stakeholders,
such as hospitals, healthcare standards, pharmacy, patients, multiplies the inte-
gration complexity of this domain. Intelligent processing, logical aggregation of
information, synthesis and analysis, and the development of knowledge systems
that can serve purposeful ends are needed. HCLS has been one of the primary
field of application for knowledge representation and reasoning systems. In the
past researchers have tried to formalize and integrate the knowledge bases in
HCLS systems and many of the successful systems in earlier times were cen-
tralized and limited to sub domain or particular application of a HCLS domain
(Szolovits, 1982; Kashyap & Sheth, 1996). Current HCLS systems are much more
open and available to global society where stakeholders mobility and seamless
use of the overall system is of prime concern.

As discuss above, ontology based information systems (OBISs) offer greater
flexibility and automation for the management and integration of very complex
intertwined HCLS data and schemas. HCLS specialists increasingly argue in fa-
vor of Semantic Web technologies for representing medical and clinical knowledge
(Rector, Qamar, & Marley, 2006) in a well formalized way. However, current Se-
mantic Web technologies alone are still too limited to provide a unified framework
for all the varieties of applications and sub-domains of life sciences. Also, they
show their limits when integrating and exchanging data between different sys-
tems. The W3C HCLS Interest Group1 and various research projects have taken
initiatives for the ontological representation of healthcare information models
and their integration with HCLS terminologies and vocabularies (Bicer, Laleci,
Dogac, & Kabak, 2005; Rector et al., 2006; Sahay, Akhtar, & Fox, 2008; Fox,
Sahay, & Hauswirth, 2008).

This integration is crucial to effectively achieve a unified-view of electronic
health records (EHR). However, this approach is still facing core integration is-
sues such as ontological heterogeneity, ambiguous separation between global and
local healthcare knowledge (Jahnke, Bychkov, Dahlem, & Kawasme, 2005). For

1 http://www.w3.org/2001/sw/hcls/



example, high level ontologies that are shared by all systems cannot describe all
possible sub-domains (Berners-Lee & Kagal, 2008) that may be needed by local
clinics. Therefore, they must extend common knowledge with domain ontologies,
as well as define internal policies, rules and vocabularies that are specific to their
context.

In conclusion, HCLS is a complex domain and any data integration system
which connects healthcare institutes must facilitate heterogeneous systems at
two levels (1) information model specific data, and (2) domain and/or institute
specific terminologies or vocabularies. These two levels must interoperate to
aggregate and exchange medical records from disparate healthcare systems. In
this section we describe these two levels and explain how regional and/or local
clinical practices influence the modeling of clinical data.

2.1 HCLS Information Models

An information model allows modeling of domain and/or institute specific mes-
sage requirements. Health Level Seven (HL72) standard (version 3) develops
information model specific data standards for storing and exchanging informa-
tion in the healthcare industry. HL7 is the most widely used healthcare standard
and shares many semantic equivalences with other influential standards such as
openEHR3 and CEN136064.

The HL7 (version 3) information modeling process recognizes three interre-
lated types of information models: Reference Information Model (RIM), Domain
Message Information Model (DMIM), and Refined Message Information Model
(RMIM). The RIM is a unified model which covers all domains in healthcare and
defines data structures, data types and vocabularies, as well as the relationships
between them. DMIM is a refined subset of the RIM and is used to create mes-
sages for a particular domain (e.g., Lab, Hospital Admin). RMIM is a subset of
a DMIM and is used to express the information content for a message or set of
messages (e.g., Lab-Test Order Message). All three interrelated models use the
same notation and have the same basic structure but differ from each other in
their information content, scope, and intended use.

In the example scenario presented in Section 3, Galway University Hospital
(GUH) uses the ontological representation of RIM and creates local ontology
using DMIM and RMIM models.

2.2 HCLS Terminologies and Vocabularies

HCLS terminologies and vocabularies (e.g., SNOMED (Spackman, 2008), LOINC 5)
describe medical concepts. When these concepts are placed in a clinical record
they become associated with an observation (e.g., lab test), time (e.g., effective

2 http://www.hl7.org/
3 http://www.openehr.org/
4 http://www.cen.eu/
5 http://loinc.org/



time), policy and profile (e.g., drug policy, patient profile), and relationships
with other records. These associations influence the interpretation of the con-
cepts (Rector & Brandt, 2008). For example, (1) a clinical observation concept
(e.g., blood sugar test) has an effective time during which it is valid, and (2) a
diabetic concept placed in a “family history” segment of a patient record does
not imply that the individual patient is a diabetic patient.

Standard compliant patient records are constructed from the combination of
messages derived from an information model and several terminologies or vo-
cabularies referring to message attributes. On the other hand, many healthcare
institutes do not use the standard specific information model, rather their mes-
sages are constructed using general models. The presence of different healthcare
standards, large scale applicability, and limitations of syntactic integration solu-
tions, motivated the healthcare specialists to apply Semantic Web technologies
to resolve heterogeneity in a formal and consistent way.

HCLS information models, terminologies and vocabularies can be expressed
as a set of RDF, RDFS and OWL propositions. RDF is best for expressing
medical or patient data and OWL allows more expressive propositions to be
expressed, like those that represent general knowledge rather than specific pa-
tient data elements. The relationships between heterogeneous healthcare data
and knowledge can be formally expressed in OWL constructs. The reasoner un-
derlying an expressive Web language like OWL can be used to entail consistent
sets of inferred knowledge about the healthcare Web resources.

HL7 RIM:HL7RiM
----
HL7RiM:Observation ¦ HL7RiM:hasParticipation ¦ HL7RiM:Patient

LOINC:LN
----
LN:BloodPressure ¦ LN:hasPosition ¦ LN:Sitting

HL7RiM:hasResult

Healthcare and Life Sciences

Fig. 1. Ontologies for Information Model and Terminologies

Figure 1 shows the predicates (i.e., RDF triples) describing relationship be-
tween information model (HL7 RIM) specific data and general LOINC vocab-
ularies. The upper (HL7 RIM) RDF triple describes the lab observation (e.g.,
blood test) for a participating patient, and lower triple (LOINC ) is used to de-
scribe the blood pressure (BP) and physical position (e.g., sitting, standing) of
the patient while measuring the BP.



3 Use-Case Scenario: Lab-Test Order

The scenario describes clinical events in course of primary medical care provided
to a patient suffering from acute chronic diabetes. Clinical events are recorded
as a part of patient medical history where two healthcare providers, namely, hos-
pitals, use different healthcare standards to model the electronic patient records
(EPRs). The scenario highlights the interoperability issues between HCLS sys-
tems due to (1) heterogeneity of data, information models, terminologies and
vocabularies, and (2) inability to model and execute local, i.e., context-specific,
policy and profiles on a more general framework like the Semantic Web.

3.1 Background

In Galway, Ireland community clinic, Dr. Paul Smith is a primary care physi-
cian. Galway University Hospital (GUH) has a pathological laboratory, which
is directed by Dr. John Colleen who is responsible for approving and releasing
all test results. The information system of the GUH laboratory is standard, i.e.,
HL7 Version 3, compliant and able to receive orders and return result reports
electronically. Dr. Gustav Roth is an internal medicine physician in the City hos-
pital, Göttingen, Germany (GOET). City hospital laboratory is directed by Dr.
David Hahn and the only pathological laboratory available in Göttingen. GOET
laboratory information systems use general vocabularies and terminologies for
information modeling such as GALEN 6, FOAF 7, and able to send and receive
lab test orders electronically.

3.2 Patient Case History 1

Dr. Paul Smith has a patient, Sean Murphy, who is examined on the 16th of July
2007 because of a poor wound healing, weight loss, and increase in urine pro-
duction. Dr. Paul draws a blood sample, labels it with a bar code, and sends it
to Galway University Hospital laboratory, GUH. Sean Murphy has been identi-
fied based on his Irish PPS number: 678970W. The blood sample is identified as
7854698. Dr. Paul fills out the electronic order form in his office system for a Gly-
cosylated hemoglobin (HbA1c) test and sends it to Galway University Hospital
Laboratory (GUH). Table 1 shows the summary of the lab order data.

GUH received the electronic order and returned a message accepting the
order with intent to fulfill it on a routine basis. GUH Lab performs the requested
HbA1c test on the 18th of July 2007, after receiving the sample. The result of
the HbA1c test is 9%. The LOINC code for the hæmoglobin count is 4548-4. Dr.
John reviewed the results of the HbA1c test and noticed that the blood sugar is
abnormally high (normal reference range 4%-5.9%).

Dr. John authorized the results of the HbA1c lab tests with an indication
that Sean’s blood sugar level is abnormal high. The order was complete so a
6 http://www.co-ode.org/galen/
7 http://www.foaf-project.org/



notification is sent to Dr. Paul Smith. It is important to mention that, even
though GUH Lab system is HL7 version 3 compliant and can electronically
exchange information, it requires manual effort and paper work to integrate the
patient observations.

Sean has been diagnosed as an acute chronic diabetic (Type 2) and that re-
quires him to frequently test his blood sugar level. GUH has special drug-policy
for diabetics (Type 2) where patients are treated with either Insulin or Avandia
(an insulin equivalent drug), but not both. Sean receives the Insulin therapy and
any future abnormal blood sugar level will require immediate and appropriate
insulin treatment for him. His nature of job demands frequent travels within
Ireland and his travel constraints bring complexities whenever he is in an emer-
gency situation. Every emergency situation requires him to visit a nearby clinic
or hospital, and each clinical visit requires repetitive lab tests that may have
been performed earlier. Sean original medical records are with GUH lab infor-
mation system and immediate availability of Sean’s medical records is crucial in
emergency situation.

3.3 Patient Case History 2

On Christmas holidays, Sean went to Göttingen, Germany for a week to meet
his friends. On his way back to home he had a major car accident and doc-
tors need to operate him as soon as possible. Sean is identified based on his
international driving licence number 345678IE. He had a year of medical his-
tory as an acute chronic diabetic patient and his current medical records are in
Galway University Hospital (GUH) Lab and other Irish hospitals where Sean
visited frequently. Coincidentally, Galway University Hospital (GUH) Lab and
City hospital, Göttingen, collaborate as a part of common EU healthcare frame-
work and they can share information. In emergency situations like this, where
time is critical, the automated integration of patient data can really improve
the overall quality of primary healthcare services. In this scenario, GUH and
GOET lab systems are able to send and receive patient’s records electronically
but require manual intervention, paper work, and phone calls to make sensible
understanding of medical records and Sean was running out of time. City hospi-
tal, Göttingen has decided to perform all kinds of test locally without depending
on his medical history. Sean was able to speak and provided an informal descrip-
tion of his medical history. Dr. Gustav Roth has ordered a similar test dated
back on 16/07/2007 to examine his current blood sugar level before going into
any surgical treatment. GOET drug policy on type 2 diabetics does not suggest
any restrictions for Avandia and Insulin treatments, and thus Dr. Roth decides
to prescribe Avandia in complement of Sean’s insulin treatment. Table 1 show
the summary of the lab order data.

In this scenario, GUH and GOET lab systems are Semantic-Web-enabled and
able to send and receive patient’s records electronically. But, due to differences in
their domain-specific models (local models), terminology schemes, local policy,
etc. information between Galway and Göttingen hospitals cannot be integrated
in automated way. Figure 2 shows a snippet of the ontologies used in GUH (left)



Items Lab Value (GUH) Lab Value (GOET)

Lab order requisition number 6560-89 7779-78

Specimen identifier 7854698 89756

The ordering physician Dr. Paul Smith Dr. Gustav Roth

Physician health identifier 68374532 6837-4532

Patient Sean Murphy Sean Murphy

Patient health identifier 678970W:IrishPPSId 345678IE:Drivinglicence

Patient birth date 15/07/1974 15-07-1974

Date of Lab test Order 16/07/2007 22-12-2008

Lab Test ordered Glycosylated hemoglobin hæmoglobin A1c

LOINC/SNOMED Lab Test Code 4548-4 (LC) 43396009 (SD)

Priority of Lab Test Routine Urgent

Table 1. Sean’s lab test orders dated 16/07/2007 (GUH) and 22/12/2008
(GOET)

and GOET (right). Figure 3 shows the table 1 equivalent data described seman-
tically, i.e., RDF triples. GUH is using ontologies that are strongly influenced by
HCLS current standards (e.g., RIMOWL) while GOET is using more Semantic
Web oriented ontologies (e.g., GALEN, FOAF ) which better ensures interop-
erability with other Linked Data (e.g., other administrative systems may take
advantage of FOAF data). They model medical, clinical and patient knowledge
using OWL, reusing well established ontologies such as SNOMED and Galen.
They extend them to represent local domain knowledge, internal policies, etc.
The data, e.g., the patient records, are represented in RDF. This presents a real-
istic situation since GUH has already been involved in a project where Semantic
Web technologies were used (Sahay, Fox, & Hauswirth, 2009).

3.4 Context and Constraint for OBIS

As a mechanism for representing information, RDF (Hayes, 2004), RDFS (Brick-
ley & Guha, 2004) and OWL (Group, 2009) are very general and primitive
(Klyne, 2001). As discussed above, ontologies are monotonic and make an Open
World Assumption (OWA). Therefore, they are good at describing general high-
level invariant concepts and their mappings. In ontology-based information sys-
tems (OBIS) the knowledge engineers often encounters a situation when describ-
ing detailed relationships between physical-world objects and their mappings be-
comes impossible or tedious task. In traditional ontology modeling and integra-
tion approaches, it is assumed that everything is global and the local perspective
of the domain is largely ignored. This shows the limitation of ontology-based in-
formation systems (OBIS) where it is necessary to distinguish between the scope
and type of knowledge for both the information models and ontologies. For
example, in Figure 1 it is noticeable that the information-model-specific triple
describes a blood pressure (BP) observation within a particular hospital for a
specific patient unlike the LOINC triple that provide a very general description
of a blood pressure (BP). When both types of knowledge, general and constraint,



DataProperty: guh:orderDate
domain: rim:Act

DataProperty: guh:time
domain: rim:Act

DataProperty: guh:first name
domain: rim:EntityIdentification

ObjectProperty: rim:playedRoleIn
domain: rim:Person
range: rim:Role

ObjectProperty: guh:hasId
domain: rim:Entity
range: rim:EntityIdentification

DisjointClasses:
guh:hasMedication some rxnorm:Avandia
guh:hasMedication some rxnorm:Insulin

Class: rim:RolePatient
SubClassOf: rim:Role

Class: guh:IrishPPSId
SubClassOf: rim:EntityIdentification

Class: guh:LabTestOrder
SubClassOf: rim:Act

Class: guh:HemoglobinTest
SubClassOf: rim:Act

Individual: loinc: 4548−4
Anntotation: rdfs:label

”Hemoglobin A1c/Hemoglobin.total”
TypeOf: loinc:Code

DataProperty: dc:date
range: rdfs:Literal

DataProperty: foaf:firstName
domain: foaf:Person
range: rdfs:Literal

DataProperty: goet:identification
domain: foaf:Agent
range: xsd:string

ObjectProperty: goet:hasAuthor
domain: galen:Observation
range: foaf:Agent

ObjectProperty: goet:hasTreatment

Class: rxnorm:Avandia
SubClassOf: galen:Drug

Class: rxnorm:Insulin
SubClassOf: galen:Drug

Class: galen:Patient
SubClassOf: galen:Human

Class: goet:OrderLabObservation
SubClassOf: galen:OrderAct

Class: snomed: 43396009
Annotation: rdfs:label

”Hemoglobin A1c measurement”

Fig. 2. Extract of GUH (left) and GOET (Right) ontologies. Correspondences
are informally represented by dotted lines. The rectangle shows the local policy
axiom.

receive a similar treatment for their interpretation, aggregation, information re-
trieval, then conflicts and inconsistency arises. From the information modeling
perspective the major issues in OBIS are:

1. The ability to distinguish local and global information;
2. The ability to deal with informing from different contexts;
3. The ability to model time-dependent information;
4. The ability to model constraints (e.g., policy, profiles) and validation.

GUH and GOET model the same domain of knowledge in a common format
(RDF and OWL). These systems define medical knowledge according to two
different contexts in a heterogeneous way. There are two levels of contextual
heterogeneity:

– intra-contextual heterogeneity, which occurs within a context. As seen in
the example, several vocabularies are used for describing different types of
information (e.g., RxNorm 8 for drugs, Loinc for types of tests). Multiple
terminologies must be integrated in a modular way. Local systems also have

8 http://www.nlm.nih.gov/research/umls/rxnorm/



:sean a rim:Person ;
rim:playedRoleIn [a rim:RolePatient] ;
guh:hasID :678970W .

:678970W a guh:IrishPPSId ;
rdfs:label ”Sean Murphy’s Irish PPS number” ;
guh:first name ”Sean” ;
guh:last name ”Murphy” ;
guh:hasMedication [a rxnorm:Insulin] .

:paul a rim:Person ;
rim:playedRoleIn [a rim:RolePhysician] ;
guh:hasID :68374532 .

:68374532 a guh:PID ;
rdfs:label ”Paul Smith’s professional Id” ;

:6560−89 a guh:LabTestOrder ;
guh:orderedBy :paul ;
guh:hasPatient :sean ;
guh:orderDate ”2007−07−16” ;
guh:time ”13:07:07” ;
guh:orders :Test743890 .

:Test743890 a guh:HemoglobinTest ;
rim:effectiveTime ”M0717173034” ;
guh:specimen :7854698 ;
guh:hasCode loinc: 4548−4 .

:345678IE a galen:Patient ;
goet:identification ”Irish Driving licence” ;
foaf:family name ”Murphy” ;
foaf:firstName ”Sean” ;
goet:hasTreatment [a rxnorm:Avandia] .

:6837−4532 a galen:Doctor ;
goet:identification ”Professional Id” ;
foaf:family name ”Roth” ;
foaf:firstName ”Gustav” .

:7779−78 a goet:OrderLabObservation ;
goet:hasAuthor :6837−4532 ;
goet:hasPatient :345678IE ;
galen:orders :Test777767 .

:Test777767 a galen:BloodSugarTest ;
dc:date ”2008−12−22T00:30:00” ;
goet:hasMeasurement [a snomed: 408254005] ;
goet:hasSpecimen :89756 .

:s89756 a galen:Specimen .

Fig. 3. Extract of Lab-Test orders at GUH (left) and GOET (right).

to deal with knowledge of differing natures, e.g., axioms about a domain of
discourse (e.g., an hemoglobine test is a kind of act) and internal policy (a
patient cannot be treated with both Insulin and Avandia).

– inter-contextual heterogeneity occurs between contexts. If the terminologies
are different, the systems cannot interoperate unless some relations are as-
serted between the domain ontologies or a translation mechanism exists. Cor-
respondences between local ontologies are informally presented in Figure 2
using dotted lines. Besides, corresponding concepts of distinct ontologies can
be modeled in very different ways. For instance, GUH here uses an object
property for patient’s identification, while GOET is using a datatype. Thus,
systems should be able to tolerate such heterogeneity. Finally, we can see
that identifying context is crucial, notably to see which policy belongs to
which context.

Outline of the state of the art. The following sections detail the existing formal
approaches that were devised to deal with the problem of heterogeneity in multi-
contextual knowledge systems. In Section 4, we described foundational work
on modeling context, especially focusing on McCarthy’s and Guha’s approach
on the one hand, and Giunchiglia et al.on the other hand. The later approach
have been more successful in its adoption and led to several instantiation of the
approach, that we discuss in Section 5. While these formalisms essentially focus
on reasoning accross contexts or modularity, they offer a limited infrastructure
for “reifying” the notion of context, describing it and constraining it. These
aspects are better covered by development of Guha et al.’s work that we present
in Section 6. Finally, we show that other essential concerns of interoperable



HCLS systems, such as modeling constraints, policies, rules, are also tackled by
proposed extensions of semantic formalisms that are quite independent of the
handling of heterogeneity and context.

4 State of the Art - 1: Context Formalisms

4.1 Logic for Context

In artificial intelligence, the notion of context generally concerns the representa-
tion and use of information. The notion is used to account for phenomena such as
the context of validity of information (Kleer, 1986) and the efficiency of reasoning
in narrower contexts (Guha, 1991). An influential but sketchy attempt to for-
malize context dependency was made by John McCarthy (McCarthy, 1987). The
idea was to mark the dependency of propositions on context and track this de-
pendency through changes of context and stages of reasoning. The basic step was
to move from a (simple) proposition to the (meta) proposition that the propo-
sition in question is true in a context. The syntax for such meta-propositions
was ist(c,p) for proposition p and context c. Contexts thus entered the theory
as objects, enabling the theory to express changes of context and the effects of
such changes on propositions. Changes of context typically involve making or
dropping assumptions, so the syntax also allows compound, functional terms for
contexts such as assuming(p, c) (the context obtained from c by assuming p).
With such terms, the theory can cover logically interesting consequences of con-
text change, expressed as ist(c, p) ⇒ ist(d, q) and similar formulas, called
lifting axioms. McCarthy’s ideas were later developed by others, and found their
way into a working AI system (Cyc, in the form of micro-theories applied for
medical domain (Lenat, 1995)). McCarthy’s work made contexts as first class
objects in the domain that can be quantified, be the range of functions, and so
on. All this allows one to write very expressive formulae that lift axioms from one
context to another. While this is very convenient, it also makes it quite difficult
to provide an adequate model theory and extremely difficult to compute with
(Akman & Surav, 1996).

4.2 Contextual Reasoning - Local Model Semantics

In the early nineties, a different line of thought (compared to McCarthy’s and
Guha’s works on context) was proposed—Local Model Semantics (LMS)—by
Fausto Giunchiglia (Giunchiglia, 1993; Ghidini & Giunchiglia, 2001), who ar-
gued that people do not use all of the knowledge in an attempt to solve a
problem instead they construct a “local theory” where each independent the-
ory (or context) is related to some particular domain knowledge. Giunchiglia’s
formalization of context is motivated by the problem of locality where the rea-
soning process uses only a subset of the world knowledge. Therefore, in LMS,
context is a theory of the world that encodes an agent’s perspective of it and
that subset is used during a given reasoning process. While reasoning, the user



can switch from one context to another in case the original context is not ade-
quate to solve the problem. Giunchiglia’s approach is more towards formalizing
contextual reasoning than McCarthy’s work of formalizing context as a first class
object.

Serafini et al. then proposed refinements of LMS to concretely realize a
distributed reasoning framework, in Section 5.2 we discuss those refinements,
namely Distributed Description Logics (DDL) (Borgida & Serafini, 2003) and a
contextualized form of OWL, called C-OWL (Bouquet, Giunchiglia, van Harme-
len, Serafini, & Stuckenschmidt, 2003). For instance, DDL is an underlying for-
malism behind the Contextualized Web Ontology Language (C-OWL) that al-
lows separate ontological models for a domain and correspondences between
entities of different models are formalized via domain relations which are in turn
used to interpret the bridge rules. Reasoning will then be carried out locally with
respect to a single context and is shared only via explicitly specified connections,
following the principle of locality and compatibility. Similar authors (Bouquet,
Giunchiglia, van Harmelen, Serafini, & Stuckenschmidt, 2004) have attempted
to align and map medical ontologies (e.g., GALEN, UMLS 9, TAMBIS 10) using
three proposed features of contextual ontologies, i.e., directionality of informa-
tion, local domain, and context based ontology mappings.

5 State of the Art - 2: Context and Constraint for OBIS

5.1 Standard Approach-OWL

The representation and reasoning of contextual knowledge is outside the scope
of OWL semantics (Motik, Patel-Schneider, & Cuenca-Grau, 2009; Schneider,
2009). When reasoning is performed across different ontologies, then these on-
tologies share a single and global interpretation domain. The mappings between
two ontologies become part of the overall model which is interpreted globally.
In OWL, the ability to combine ontologies is restricted to the import of the
complete ontology and to the use of the imported elements by direct reference.
Thus, a set of local ontologies is globalized in a unique shared model, via the im-
port mechanism. OWL also supports mappings constructs that implicitly exist in
terms of the mutual use of statements across ontologies (e.g., subClass, sameAs,
equivalentClass, equivalentProperty, differentFrom, and AllDifferent axioms).

Although we have already raised some doubts in the informal discussion
above on the suitability of current Semantic Web technologies with respect to
heterogeneity and context, we can explore what OWL can offer to overcome
these problems. This language partially addresses modularity and expressing
correspondences between various ontologies.

OWL Solution. In the example scenario, several well identified terminologies
are reused. OWL provides an import feature thanks to the property owl:imports

9 http://www.nlm.nih.gov/research/umls/
10 http://www.cs.manchester.ac.uk/ stevensr/tambis/



which helps to modularly integrate several domain ontologies. By stating that
the GUH ontology imports RIM and LOINC, the axioms of these ontologies are
automatically made part of the GUH ontology.

In the example scenario, concepts and properties of the two hospitals are
modeled differently, but correspondences can be identified and expressed in
OWL. In Listing 1.1, we present the axioms that should be added to make
the two systems interoperate11. Notice that these mappings relating terms in
two different contexts cannot be distinguished from mappings between terms of
imported ontologies within one context.

Class: ( foaf:Person ) SubClassOf: ( rim:Entity )
Class: ( galen:OrderAct ) SubClassOf: ( rim:Act )
Class: ( rim:playedRoleIn some rim:RolePatient ) EquivalentTo: ( galen:Patient )
Class: ( guh:LabTestOrder ) EquivalentTo: ( goet:OrderLabObservation )
Class: ( guh:HemoglobinTest and (rim:measures some loinc: 4548−4) )

EquivalentTo: ( galen:BloodSugarTest and (goet:hasCode some {snomed:
43396009}) )

EquivalentProperties: ( guh:first name ) ( foaf:firstName )
EquivalentProperties: ( guh:hasMedication ) ( goet:hasTreatment )

Instance: ( guh:sean ) sameAs: ( goet:345678IE )

Listing 1.1. Extract of OWL supported mapping definitions

This approach is the only possible way of dealing with heterogeneity which
fully complies with established Semantic Web standards. It has been argued that
it improves interoperability of HCLS systems (Rector et al., 2006), when com-
pared to previous standards in this field, such as HL7. However, these standards
are clearly not enough to solve the important issues presented in Section 3.

OWL Limitations. First, while a form of modularity is offered by OWL, its
import statement can only handle the reuse of full ontologies without being
able to specify subparts of them. This is particularly problematic with large
ontologies like SNOMED, which have to be fully integrated, even when only a
small subdomain is needed.

Second, not all relevant mappings can be expressed in OWL. For example, (1)
the ObjectProperty guh:hasId and the DatatypeProperty goet:identification
are designed for a similar purpose (identify the person) but OWL semantics does
not allow to map between ObjectProperty and DatatypeProperty ; (2) OWL does
not support operations on attributes, e.g., the concatenation of two Datatype-
Properties (e.g., guh:orderDate, guh:time ) into a single DatatypeProperty (e.g.,
dc:date). Other examples include unit or currency conversion.

Third, OWL does not include any feature for distinguishing between universal
facts (e.g., a patient is a person) and local policy or profile (e.g., people should

11 As in Figure 2, we are using the OWL Manchester syntax (Horridge & Patel-
Schneider, 2009).



not be treated with both Insulin and Avandia). Additionally, OWL does not
permit identifying the context of an axiom or term. The implication of these
two limitations is that policies have to be represented as DL axioms, and these
axioms are affecting all contexts identically. In our scenario, according to GUH,
Sean is treated with Insulin. When he goes to GOET, the record indicates that
he has been given Avandia. Thanks to the aforementioned mappings, the terms
hasMedication and hasTreatment can be interpreted interchangeably, so that
GOET can understand GUH record automatically. But it leads to a contradiction
with the GUH policy because Sean has now both treatments. Yet, it should not
be the case because GOET does not have this policy, and therefore should not
detect an inconsistency. Note that undesired interactions can be reduced by using
subsumption instead of equivalence in mappings, but the problem remains.

Fourth, OWL is not tolerant of diverging modeling of a knowledge domain.
Different points of view can equally well describe a domain of interest, while
being partially incompatible. Interpreting all axioms and assertions as equally
true, in all contexts, may easily lead to inconsistency or nonsensical entailments.

5.2 Distributed Description Logics (DDL)

Distributed Description Logics (DDL) (Borgida & Serafini, 2003) is a formalism
which was developped to formalize contextual reasoning with Description Logic
ontologies. Indices i ∈ I are used to determine from which context an ontology or
an axiom comes from. Given, for instance, an axiom C v D from an ontology Oi,
DDL uses the prefixed notation i :C v D to highlight the context of the axiom.
Moreover, cross-context formulas can be defined to relate different terminologies.
These particular formulas are called bridge rules and written either i :C v−→ j :D
or i :C w−→ j :D where i and j are two different contexts, and C and D are terms
from the contextual ontologiesOi andOj respectively. A bridge rule i :C v−→ j :D

(resp. i :C w−→ j :D) should be understood as follows: from the point of view of
Oj (i.e., in the context j), C is a subclass (resp. superclass) of D.

In terms of model-theoretic semantics, this is formalized by assigning a dis-
tinct Description Logic interpretation Ii to each contextual ontology Oi, instead
of having one single global interpretation. Thus, there is as many domains of
interpretation as there are contexts. Additionally, cross-context relations are
made explicite by so-called domain relations, that is set-theoretic binary rela-
tions between each pairs of contexts (formally, rij ⊆ ∆Ii×∆Ij ). Two contextual

interpretations Ii and Ij satisfy a bridge rule i :C v−→ j :D (resp. i :C w−→ j :D)
iff rij(CIi) ⊆ DIj (resp. rij(CIi) ⊇ DIj ).12

The advantage of this approach is the identification of context, a better
robustness with respect to heterogeneity, improved modularity. However, it still
misses some of the requirements that were identified in the example-scenario.

12 For a set S, rij(S) = {x ∈ ∆Ij | ∃y ∈ S, 〈x, y〉 ∈ rij}.



Solution in DDL. In the scenario, ontologies would be related thanks to C-
OWL (Bouquet et al., 2003) bridge rules, which instantiates DDL for the Descrip-
tion Logic of OWL. A P2P reasoning system called Drago (Serafini & Tamilin,
2005) implements a fragment of C-OWL and could be used in each hospital.
Each peer manages its own context by reasoning with its internal ontology and
“incoming” bridge rules. Messages are sent to neighbour peers according to a
distributed algorithm involving bridge rules in order to take advantage of knowl-
edge from other contexts.

In our healthcare use case, GUH and GOET may implement a Drago rea-
soner. GOET expresses the correspondences by way of bridge rules, as shown
with a few examples in Listing 1.2.

guh:( rxnorm:Insulin )
≡−→ goet:( rxnorm:Insulin )

guh:( rxnorm:Avandia )
≡−→ goet:( rxnorm:Avandia )

guh:( rim:playedRoleIn some rim:RolePatient )
≡−→ goet:( galen:Patient )

guh:( guh:hasMedication )
≡−→ goet:( goet:hasTreatment )

guh:( guh:sean )
=7−→ goet:( goet:345678IE )

Listing 1.2. Extract of DDL bridge rules

Because of the semantics of bridge rules, no inconsistency can be derived
in this case. So DDL reduces the problem of diverging policies. In fact, DDL
dicreases interactions between different ontologies, which in turn decrease the
chance of inconsistency.

Limitations. Bridge rules are not able to represent mappings between ob-
ject and datatype properties, nor can they express operations on datatypes.
Besides, C-OWL uses the same import mechanism as OWL. Additionally, the
non-standard semantics of DDL may be counter intuitive, sometimes. Neither
disjointness nor cardinality constraints are “transferred” from an ontology to the
other via bridge rules. That is, if Insulin and Avandia are disjoint in GUH, and
there are the bridge rules above, it cannot be inferred that Insulin and Avandia
are disjoint in GOET. However, a variant of DDL has been defined to treat this
specific problem (Homola, 2007). Finally, the problem of policy is not completely
solved. By adding the bridge rules of Listing 1.3, the GOET system can infer
that a patient must not be treated with both Avandia and Insulin, which is what
we tried to avoid.

guh:( guh:hasMedication some rxnorm:Insulin )
≡−→ goet:( goet:hasTreatment some

rxnorm:Insulin )

guh:( not guh:hasMedication some rxnorm:Avandia )
≡−→ goet:( not goet:

hasTreatment some rxnorm:Avandia)

Listing 1.3. Other possible bridge rules

While this example may seem a bit artificial, it shows that some restriction
would have to be made on bridge rules to avoid undesired inferences. These
restrictions are not, by themselves, supported by the formalism.



5.3 Other contextual reasoning formalisms

Contextual reasoning formalisms are characterized by a non-standard seman-
tics where several ontologies are assigned distinct interpretations. Apart from
DDL, this family of formalisms includes E-connections, Package-based Descrip-
tion Logics and Integrated Distributed Description Logics.

Package-based Description Logics. In package-based Description Logics (P-
DL (Bao, Caragea, & Honavar, 2006)), each ontological axiom is associated with
an identifier of the ontology, similarly to DDL. Moreover, as in other contextual
formalisms, a distinct interpretation is assigned to each ontology in a network of
ontologies. However, cross-ontology knowledge can only take the form of seman-
tic imports of ontological terms. The reason behind this is that this formalism
was essentially designed to compensate the drawbacks of the OWL import mech-
anism and improve modularity of Web ontologies.

As an example, the GOET ontology only uses a few terms from the GALEN
ontology. Since the GALEN ontology is extremely big and highly expressive,
its complete import would result in a very complex, hard to manage ontology.
However, while this helps building local ontologies in a modular way, it does not
very much help expressing cross-context knowledge such as the correspondences
that needed to bridge GUH and GOET. As an ontology alignment formalism,
semantic imports have a very limited expressiveness. To express a complex cor-
respondence such as, for instance, the one of Listing 1.4, one would have to first
import the terms guh:HemoglobinTest, rim:measures and loinc: 4548-4, then
add a local axiom in standard DL using the same approach as in Section 5.1.

Class: ( guh:HemoglobinTest and (rim:measures some loinc: 4548−4) )
EquivalentTo: ( galen:BloodSugarTest and (goet:hasCode some {snomed:

43396009}) )

Listing 1.4. An example of correspondence that cannot be represented with
semantic imports.

Integrated Distributed Description Logics. Integrated Distributed De-
scription Logics (IDDL (Zimmermann, 2007)) is a formalism that address sim-
ilar issues as DDL but take a different paradigm than other contextual frame-
works. Usually, cross-ontology assertions (e.g., bridge rules in DDL, links in
E-connections, semantic imports in P-DL) define knowledge from the point of
view of one ontology. That is to say that the correspondences are expressing the
relations “as witnessed” by a local ontology. On the contrary, IDDL asserts cor-
respondences from a “third party”’s point of view which encompasses both the
ontologies in relation. One consequence of this approach is that correspondences
can be manipulated and reasoned with independently of the ontologies, allowing
operations like inversing or composing ontology alignments, as first class objects.

In terms of model theory, this is represented by using an additional domain
of interpretation to the whole network of ontologies, as if it was a single ontology.



The local domains of interpretation, assigned to all ontologies, are then related
to the global domain by way of the so-called equalizing functions (εi). These
functions map the elements of local domains to elements of the global domain.
Formally, a correspondence i :C v←→ j :D from a concept C of ontology Oi to
concept D of ontology Oj is satisfied whenever εi(CIi) ⊆ εj(DIj ).

Furthermore, a reasoning procedure for this formalism has been defined (Zim-
mermann & Duc, 2008), where a central system detaining the correspondences
can determine global consistency of a network of ontologies, by communicat-
ing with local reasoners of arbitrary complexity. This formalism is useful for
federated reasoning systems, while the interactions between local ontologies are
rather weak. By separating local reasoning and global reasoning, it better pre-
vents interactions between contexts, thus being quite robust to heterogeneity.

In our example, let us assume that the correspondences of Listing 1.5 are
defined to make the two systems interoperate.

guh:( rxnorm:Insulin )
≡←→ goet:( rxnorm:Insulin )

guh:( rxnorm:Avandia )
≡←→ goet:( rxnorm:Avandia )

guh:( rxnorm:Avandia )
⊥←→ goet:( rxnorm:Insuline )

guh:( rim:playedRoleIn some rim:RolePatient )
≡←→ goet:( galen:Patient )

guh:( guh:hasMedication )
≡←→ goet:( goet:hasTreatment )

guh:( guh:sean )
=←→ goet:( goet:345678IE )

guh:( guh:hasMedication some rxnorm:Insulin )
≡−→ goet:( goet:hasTreatment some

rxnorm:Insulin )

guh:( not guh:hasMedication some rxnorm:Avandia )
≡−→ goet:( not goet:

hasTreatment some rxnorm:Avandia)

Listing 1.5. Extract of IDDL correspondences

policy of the form C v ¬D would only influence another ontology if a disjoint-
ness is asserted at the alignment level, e.g., One can see the similarity of these
correspondences and bridge rules. Yet the resulting inferences differ. No inconsis-
tency will arise from these correspondences. However, thanks to the third corre-
spondence, the system would detect an inconsistency of a medicine is asserted to
be Avandia and Insuline at the time. While this formalism decreases undesired
interaction of knowledge, especially with respect to policies, its drawback is the
possible missing inferences at the local level. Moreover, correspondences are not
more expressive than in DDL.

E-connections. E-connections is another formalism for reasoning with hetero-
geneous ontologies (Kutz, Lutz, Wolter, & Zakharyaschev, 2004). Again, different
ontologies are interpreted distinctly but formally related using particular asser-
tions. Instead of expressing correspondences of ontological terms, an ontology
can connect to another by using special terms (called links) which can be com-
bined in conjunction with terms from another ontology. The semantics of links is
very similar to the semantics of roles in Description Logics, except that instead
of relating elements from the same domain of interpretation, they relate two



different domains. In principle, E-connections serve to relate ontologies about
very different domains of interest. For instance, an ontology of laboratories in
GUH could be connected to an ontology of medical staff used in GOET. To do
this, one can define the link 〈hasDirector〉 and use it in GUH ontology as in
Listing 1.6.

guh:Laboratory v ∃〈 hasDirector 〉goet:StaffMember

Listing 1.6. An axiom of an ontology using a link in the E-connections
formalism.

Thus, E-connections are particularly useful for ontology design by modularly
reusing and connecting existing blocks. However, one of the main focus of this
chapter is on relating existing ontology systems on overlapping domains. So,
although E-connections is a relevant formalism for the management of hetero-
geneity, its applicability to the type of scenario we are interested in is weak.

6 State of the Art: 3 - Context in Semantic Web
technologies

6.1 Models of provenance

RDF model-theory (Hayes, 2004) provides reification as a mechanism for making
statements about statements. There are significant differences between reifica-
tion and contexts both in what they are intended for and in their structure.
Reification is intended to enable statements about potential statements (which
may or may not be true). They can be useful for making statements about
provenance (Watkins & Nicole, 2006; Stoermer, Bouquet, Palmisano, & Redavid,
2007). Named graphs are also used for making statement about provenance (Car-
roll, Bizer, Hayes, & Stickler, 2007). In named graphs triples become quadruples
where the fourth element is ID(URI), i.e., origin of the graph. In addition to the
reification mechanism, named graphs, and quadruples in RDF, the system/lan-
guage CWM/N313 supports a construct called contexts. This notion of context
is not substantially different from reification. Since these approaches to include
additional information about the graph have no coupling with the truth of the
triple that has been reified, they cannot be used to relate the truth of a triple
in one graph to its truth in another graph. Consequently, it is hard to see how
reification, named graphs, quadruples can be used to mediate data aggregation
as far as “truth of a triple” is concerned.

6.2 Contextual RDF(S)

The author of (Guha, McCool, & Fikes, 2004) proposed an extension of RDF(S)—
Context Mechanism—to incorporate contextual knowledge within RDF model
theory. A simpler version of OWL is assumed to be interoperable with the
13 http://www.w3.org/2000/10/swap/doc/



proposed context mechanism. The most basic change in RDFS model-theory
introduced—by the addition of contexts—is that the denotation of a resource is
not just a function of the term and the interpretation (or structure), but also of
the context in which that term occurs. Most importantly, the proposed context
mechanism allows RDF statements to be true only in their context. The goal
of this RDFS extension is to aggregate triples that are true in the graphs be-
ing aggregated, and because of the close coupling between truth and contexts,
they cannot be a posteriori introduced at the RDF Vocabulary level (Lutz &
Sattler, 2000; Donini, Nardi, & Rosati, 2002; Wagner, 2003; Analyti, Antoniou,
Damásio, & Wagner, 2004). They appear in the internals of the model theory,
in the definition of an interpretation and satisfaction.

In a standard RDF(S) entailment a vocabulary is interpreted as a tuple
V = {U ,PL, T L} that consists of a set U of URI references, a set PL of plain
literals, and a set T L of typed literals where U , PL, T L are mutually disjoint. An
interpretation I of vocabulary (V) is a tuple I = {IR, IP,LV, IS, IL, IEXT },
where IR is a non-empty and finite set, called the domain or universe of I,
IP is a finite set of properties, LV ⊆ IR is a finite set of literal values with
PL ⊆ LV, IS is a mapping IS : U 7−→ IR ∪ IP, IL is a mapping IL :
T L 7−→ IR and IEXT is an extension function IEXT : IP 7−→ 2(IR×IR). In
the proposed context mechanism, minor changes in the definitions of standard
RDF(S) interpretation (Hayes, 2004) are as follows:

1. vocabulary V = {U , CU ,PL, T L} contains set CU of contextual URIs;
2. a set C ⊆ IR, is introduced to denote context (C);
3. a mapping IS from power set 2(U×CU) in V into IR ∪ IP, the power set

2(U×CU) corresponds to resource-context (i.e., 〈U , CU〉) pairs.

The context mechanism updates the standard RDF(S) satisfaction by allow-
ing set of context-dependent graphs instead of a single graph, for example, if E is
a ground triple14 〈s, p, o〉 in the context c then I(E, c) = true if c, s, p and o are
in V , IS(p, c) is in IP and 〈IS(s, c), IS(o, c)〉 is in IEXT (IS(p, c)). Otherwise
I(E, c) = false. Considering the updates within standard RDF(S) interpreta-
tion and satisfaction, now graphs will be merged with regard to where they occur.
It means that, the definition of entailment is updated so that a ground graph
G1 in a context C1 is entailed by a set of graph-context pairs 〈Gi, Ci〉 if 〈G1, C1〉
is true under every interpretation under which (〈Gi, Ci〉) is true. The proposed
context mechanism may lead to non-monotonic aggregation—depending on the
expressivity of lifting rules15 suggested by the authors of (Guha et al., 2004)—in
the following sense. A graph G1 might imply ϕ but the aggregation of this graph
(including lifting rules) with other graphs might not imply ϕ.

In our example-scenario, if the contents at URLs galway.hospital/guh.rdf
and Gottingen.hospital/goet.rdf are available as RDF then we can have a
context corresponding to these URLs and the contents of an URL is said to
14 subject (s), predicate (p), object (o) without blank node
15 lifting rules are basically normal imports that brings contents of one context to

another



be true in that context. Furthermore, lifting rules can be defined to import
all or part of the contents from data sources. For example, if we assume that
an extended version of RDFS could express the disjoint axiom in GUH drug
policy as below, then the truth of this axiom can be scoped to the context
galway.hospital/guh.rdf.

∃guh:hasMedication.rxnorm:Avandia v ¬guh:hasMedication.rxnorm:Insulin

Similarly, subclass axioms (as below) of goet drug policy can be scoped to
Gottingen.hospital/goet.rdf.

Class: rxnorm:Avandia
SubClassOf: galen:Drug

Class: rxnorm:Insulin
SubClassOf: galen:Drug

In GOET, Sean medical treatment record showed that he has been given
Insulin therapy at GUH and Avandia treatment is forbidden in conjunction with
Insulin therapy. The truth of GUH drug policy is applicable only within GUH
context and when GUH and GOET records will be aggregated then GUH drug
policy could be easily ignored (thus avoiding inconsistency) by using appropriate
lifting rule. Similarly, when Sean is back to Galway, GOET drug policy would
not influence his further treatment in Galway or any other places.

7 State of the Art - 4: Other formal handling of
heterogeneity

7.1 Database-Style Integrity Constraints for OWL

This approach is motivated by data-centric problems in DL/OWL based appli-
cations. The authors of (Motik, Horrocks, & Sattler, 2007) have established the
relationship between the role of Integrity Constraints (IC) in databases, i.e., (1)
data reasoning (e.g., in checking the integrity of a database) and schema reason-
ing (e.g., in computing query subsumption), and (2) DL/OWL knowledge bases
(e.g., schema (TBox ) reasoning and data (ABox ) reasoning). In this approach
an additional TBox is introduced to model constraint axioms, which results in
the knowledge base containing two TBoxes and an ABox. In TBox reasoning,
constraints behave like normal TBox axioms, and for ABox reasoning they are
interpreted as constraints in relational databases. This approach is very relevant
in solving profile and policy issues of our example scenario. For example, to avoid
inconsistency due to hospital specific drug policy, axiom:

∃guh:hasMedication.rxnorm:Avandia v ¬guh:hasMedication.rxnorm:Insulin

can be placed in TBox for constraints and when TBox reasoning is performed
only standard axioms could be taken into account. In case of ABox reasoning,



constraints axioms can act as Integrity Constraints. To some extent, it helps
formalizing policies but since it does not identify the context of these constraints,
their utility for this purpose is limited. Moreover, as a standard OWL, robustness
to heterogeneity is poor.

7.2 Modular Web Rule Bases

Although this approach is not based on current Semantic Web standards, it
is relevant to this survey. The framework proposed in (Analyti, Antoniou, &
Damásio, 2008) makes the distinction between global knowledge, local knowl-
edge and internal knowledge. The framework is based on a rule-based language
rather than Description Logics and provides an approach to express and reason
with modularity on top of Semantic Web. In this framework each predicate in a
rule base is constrained with “uses” and “scope”, which in turn determine the
reasoning process. The framework also treats different forms of negation (weak
or strong) to include Open-World Assumption (OWA) as well as Closed-World
Assumption (CWA) (Analyti, Antoniou, Damásio, & Wagner, 2008). This rule-
based framework provides a model-theoretic compatible semantics and allow
certain predicates to be monotonic and reasoning is possible with inconsistent
knowledge bases. This framework addresses a few issues of our example scenario
because rules can express some DL axioms and can be exchanged with certain
restrictions (private, global or local). For example, the drug policy rule of our
example scenario:

F ← hasMedication(?x,?y), Avandia(?y), hasMedication(?x,?z),Insulin(?z)

can be expressed and treated appropriately. However, the major problem we
observe is how DL-based ontologies (as majority of HCLS ontologies are DL on-
tologies) and rules can work together. The integration of DL with rules is still
an open research problem (Eiter, Ianni, Krennwallner, & Polleres, 2008). More-
over, this framework is not concerned about the heterogeneity of the knowledge
model, and does not provide an expressive way of relating contextual ontologies.

7.3 Query-Based Data Translation

The query-based approach translates data from one knowledge source to an-
other, and is close to the problem of expressing complex correspondences of
the example-scenario presented in this chapter. In this approach mappings be-
tween ontologies are first expressed in expressive alignment language (Euzenat,
Scharffe, & Zimmermann, 2007) and then grounded and executed to a combined
query language and engine, SPARQL++ and PSPARQL, called PSPARQL++
(Euzenat, Polleres, & Scharffe, 2008). Listing 1.7 show how (a) two ontology enti-
ties (guh:orderDate, guh:time) could be concatenated to a single entity (dc:date)
and (b) a conversion is possible between an object property and a datatype prop-
erty by using proposed cast-function that converts xsd:string to RDF resource.
Expressive correspondences between ontology instances can be constructed using
“SPARQL CONSTRUCT” to create additional dataset and query upon them.



(a) CONSTRUCT { ?X dc:date fn:concat(?Date,”T”,?Time). }
WHERE { ?X guh:orderDate ?Date . ?X guh:time ?Time . }

(b) CONSTRUCT { ?X guh:hasId rdf:Resource(fn:encode−for−uri(?Id)) . }
WHERE { ?X goet:identification ?Id . }

Listing 1.7. Mappings expressed as a SPARQL CONSTRUCT query

This approach allows one to express complex correspondences like concate-
nating attributes or even datatype to object properties and one can avoid some
undesired interactions between knowledge of various sources. However, one ma-
jor limitation is that the query result depends on how the correspondences are
written and the knowledge in the domain ontologies are largely unexploited.
Similarly, complex correspondences can be expressed in Rule Interchange Format
(RIF), which offers a rich set of built-in functions (e.g., string manipulations), as
well as a formal semantics16 for interoperating with RDF and OWL knowledge
bases. However, RIF is yet to be approved as W3C’s standard recommendation
and so far is still a work in progress, which is why we do not further focus on
this approach here.

7.4 Reasoning with Inconsistencies

Robustness to heterogeneity is an important aspect in healthcare integration
scenarios. One of the most problematic consequences of heterogeneity is the
occurrence of undesired inconsistencies. Therefore, we believe it useful to inves-
tigate formal approaches for handling inconsistencies. There are two main ways
to deal with inconsistent ontologies. One is to simply accept the inconsistency
and to apply a non-standard reasoning method to obtain meaningful answers in
the presence of inconsistencies. An alternative approach is to resolve the error,
that is, to repair the ontology, whenever an inconsistency is encountered.

Repairing or revising inconsistent ontology is, in principle, a possible solution
for handling inconsistency. However, one major pragmatic issue we observe is
that healthcare institutes may not expose and/or allow repair of their knowledge
bases due to various legal constraints. Also, in a typical Semantic Web setting,
importing ontologies from other sources makes it impossible to repair them,
and if the scale of the combined ontologies is too large as in the case of HCLS
ontologies then repair might appear ineffective. Other work focus on revising
mappings only (Meilicke, Stuckenschmidt, & Tamilin, 2008), but they are meant
to be used at alignment discovery time, which we are not discussing in this
chapter.

Reasoning with inconsistencies is also possible without revision of the ontol-
ogy. One effective way of tolerating inconsistencies consist of using paraconsistent
logics (Béziau, Carnielli, & Gabbay, 2007). Paraconsistent logics use a “weaker”
inference system that entails less formulas than in classical logics. This way, rea-
soning can be done in the presence of inconsistency. A paraconsistent extension
16 http://www.w3.org/TR/rif-rdf-owl/



of OWL was proposed in (Huang, van Harmelen, & ten Teije, 2005). Alterna-
tively, defeasible argumentation (Chesñevar, Maguitman, & Loui, 2000) and its
implementation Defeasible Logic Programs (DeLP (Garćıa & Simari, 2004)) have
been introduced to reason and resolve inconsistencies. In this case, the TBox is
separated into 2 subsets, one being strict, which means that it must always be
used in reasoning, the other being defeatable, which means that an argumenta-
tion process may defeat them and nullify them for a particular reasoning task.

While we want to tolerate inconsistency when reasoning with an ontology
defined in another context, it is not desirable to tolerate local inconsistencies
in a HCLS system. The system should have a strict logical framework when it
only treats local data, that are existing in a unique and well understood context.
Unfortunately, the approaches mentioned here are not able to distinguish local
knowledge and external knowledge. They do not allow specification of the types
of mappings we need, and are not capable of treating policies.

8 Comparison of formal approaches

While the previous sections described the state of the art horizontally by merely
describing approaches one by one, the present section analyzes the features of
formal approaches vertically, that is, each characteristic is compared separately
throughout the extent of formal approaches.

Table 2 shows a brief, synthetic summary of what is detailed here. The
columns can be seen either as a feature of a formal approach or as an issue
related to heterogeneity. Consequently, the content of a cell can be read as “this
formal approach possess this feature” (if a + is present) or not (if a − is present)
or it can be read as “this issue is addressed by this formal approach” (+) or not
(−). In the case of the last two columns, the issue defines a continuum between
“this issue is not addressed at all” and “this issue is fully addressed”, but all
approaches are only partially addressing them. Thereby, we order the extent to
which they address the issue in the following way:

Very limited < Limited < Medium < Good < Very good < Excellent

The first column represents context awareness (C.A. in the table) which is
the ability or possibility to identify the context in which some information or
knowledge is described. The second column shows the possibility of modulariz-
ing ontologies (M. in the table). This is considered fully addressed if subparts of
ontologies can be reused rather than reuse of complete ontologies. The third col-
umn (P.&P.M. in the table) shows whether the formalism can be used to manage
profiles and policies. The fourth column gives an indication of correspondence
expressiveness (C.E. in the table), relatively to the other formalisms. We use
here a loose notion of “expressiveness” and our classification is partly based on
informal arguments rather than an authentic logical proof. Finally, the fifth col-
umn shows the robustness with respect to heterogeneity (R.H. in the table). This
corresponds to the capability to exploit knowledge from independently designed
sources while keeping coherence and relevance of inferences.



Context awareness can be enabled by clearly separating the axioms and facts
asserted in distinct ontologies or from distinct provenance. Such formalisms as
DDL, P-DL, E-connections and IDDL assign an identifier to each of the ontolo-
gies such that an axiom i :C v D can be associated with an ontology Oi. This
also ensures the distinction between local axioms and cross-ontology correspon-
dences, such as bridge rules i : C v→ j : D. However, these formalisms do not
allow one to describe or give a type to contexts. The contextual RDF frame-
work of (Guha et al., 2004) improves on this by treating context identifiers as
any other RDF resource identifiers: they are URIs that can be dealt with as first
class objects. The case of query-based transformations is a bit particular because
the transformation must say from which and to what datasets the translation
occurs, but the transformation could actually be used independently of the con-
text. This explains the +/− sign for this formal approach. Modular rule bases
uses a mechanism similar to the one of DDL etc but the underlying formalism
is not based on Semantic Web languages.

Modularity is almost always associated with context awareness. This is be-
cause in order to reuse modules, one must be able to identify them, that is, have
a mean of identifying the provenance of knowledge. Moreover, formalisms such
as DDL, E-connections, P-DL, IDDL are designed to enable the reuse of external
knowledge through the use of cross-context assertions like imports, bridge rules,
links, correspondences. Therefore, what identifies a context can be thought of as
a module. To a lesser extent, OWL allows some modularisation but is limited the
full import of complete ontologies which results—from a logical point of view—in
the same ontology as a complete merge of all imported knowledge. OWL/IC has
the same behavior as OWL in terms of modularity. Finally, the contextual RDF
approach allows to identify contexts and relate them, it is harder to separate
knowledge into modular blocks since contexts can overlap and, as first class ob-
jects, contexts themselves can be part of a context. These intertwined elements
make modularization in contextual RDF(S) more difficult.

Policies and profiles has not been often addressed as a knowledge represen-
tation issue. Most of the solutions to this problem are using ad hoc implementa-
tions or algorithm that are not explicitly tackled by the underlying formalism.
Of course, it is possible to use existing languages—such as RDF and OWL as in
(Kolovski, Parsia, Katz, & Hendler, 2005)—to represent policies but OWL can-
not formally distinguish between ontological axioms and policy axioms. This is
true for most of the formalisms presented here. Notable exceptions are Defeasi-
ble Logic Programs for which there is a distinction between “strict” knowledge,
which is always true, and “defeatable” knowledge which can be canceled by
way of an automatic argumentation process. Policies are typically defeatable by
stronger policies (e.g., from GUH’s point of view, GOET’s policy axioms would
be defeated by contradicting local policies). As an alternative, OWL/IC offers a
way to separate the usual ontological knowledge from database-style constraints.
Unfortunately, both approaches are unable to distinguish the context in which
appear the axioms or policies. Thereby, they can only separate the totality of
the ontological axioms from the totality of the policy constraints. Finally, Web



Rule bases has a similar aptitude to distinguish different types of knowledge by
assigning different reasoning scheme to different sets of rules. Additionally, it
separates knowledge from different sources in a similar way as contextual for-
malisms do. However, it is not complying to Semantic Web technologies and it
would hadly be possible to integrate it with description logics systems.

Correspondence expressiveness varies a lot depending on the formalism being
used. Most of the correspondences given in the example scenario are directly ex-
pressible in OWL due to its high expressiveness. However, OWL constructs still
have some limitations which appear in practical cases. In formalisms that allow
delimiting contextual knowledge, the expressiveness of correspondences is defined
by the types of relations that can be asserted between contexts. The case of the
query-based approach to transforming data is notable. This approach allows for
defining very fine grained correspondences in the form of a data transforma-
tion. Basing the approach on queries decreases the exploitation of reasoning but
enables all kinds of structural and functional transformations.

Robustness to heterogeneity is the ability to make consistent and useful in-
ferences in spite of the variations of points of view, modeling approaches and
contexts. There are two extreme cases: one is the classical logic approach, the
other is the context separation approach. In classical logic, all statements are
treated equally in a theory and can equally interfere with any other statement.
Therefore, incompatible views are very likely to produce inconstencies or non-
sense. This results in a formalism very vulnerable to heterogeneous knowledge.
On the opposite side, it is possible to simply separate all conclusions drawn
from a context from any other context. This is very robust to heterogeneity
since, granted that each context is self consistent, it cannot produce incompati-
ble inferences. However, this way, no context can take advantage of information
coming from a different context. Context aware formalisms can be ordered in
their ability to tolerate heterogeneity: P-DL < modular rule bases < DDL re-
visited < DDL < IDDL < E-connection < Query-based. The reason why the
query-based approach is so robust is that it does not actually reason with a
source ontology to produce new data according to the target knowledge base.
Moreover, the transformation can be designed in such a way that it conform to
the destination ontology.

Conclusion of the state of the art. Although the presented formalisms are signif-
icantly different from each others, there are common aspects to them and some
of them are not incompatible. First, in all these approaches, we can recognize the
need to delimit parts of the knowledge to assign them either provenance informa-
tion, a type (policy, ontological knowledge) or a distinct reasoning scheme (OWA,
CWA). Thereby, a better solution to the problem of heterogeneity should pos-
sess this ability to identify subparts of the knowledge and apply different status
to them. Second, context-aware formalisms are usually adequate approaches to
modularization thanks to their ability to relate distinct ontologies. Additionally,

17 C.A.: Context-awareness; M.: Modularity; P.& P.M.: Profile and policy management;
C.E.: Correspondence expressiveness; R.H.: Robustness to heterogeneity.



C.A.17 M.17 P.& P.M.17 C.E.17 R.H.17

DL/OWL - +/- - Good Very limited

DDL/C-OWL + + - Very good Good

P-DL + + - Very limited Limited

DDL Revisited + + - Very good Medium

E-connections + + - Medium Excellent

IDDL + + - Good Very good

RDFS-C + +/- - Good Good

DeLP/Paraconsistent - - +/- Good Good

Query-based +/- - - Very good Very good

Modular Rule bases + + +/- Limited Limited

OWL/IC - +/- +/- Good Limited

Table 2. Formal Approaches towards Heterogeneity and Context

the separation of knowledge makes them more tolerant to heterogeneous model-
ing. However, these approaches have very little addressed issues of policies and
profiles. Yet, handling constraint-like information differently from ontological
knowledge is critical to the management of electronic patient records. Improving
the so-called modular ontology languages with policies, or making policy-aware
formalisms more context sensitive is an important aspect to achieve interoper-
ability of HCLS systems. For this reason, we will present two possible directions
for handling policies within context-aware formalisms in Section 9. Since this is
by no mean a complete solution to the vast problem of heterogeneity, we there-
after discuss more briefly the other critical issues that should be covered by a
semantic formalism to represent the knowledge involved in this type of systems.

9 Towards a framework for handling context and
heterogeneity

In this section, we propose a general framework for adding constraint-like axioms
to a context-aware formalism such as DDL, P-DL, IDDL. While a semantics must
be chosen to allow context aware reasoning, they can be extended with other
non-monotonic approaches. There are many possible combinations, too many to
compare them all, so we only show possible paths that we think are best suited
for the scenarios we consider.

9.1 Adding constraints to context-aware formalisms-1: DL-based

We propose to combine the formalisms that are identifying the context of axioms
with a mechanism for handling policies that do not lead to undesired interac-
tions. This approach is partly inspired by (Motik et al., 2007), where axioms are
separated into two T-Boxes, one for ontological axioms, the other for integrity
constraints. Figure 4 depicts the general idea behind our framework. This way,
we define a local T-Box as a pair 〈D,P 〉, where D describes a domain ontology,



and P represents the internal policies. If several local ontologies and policies
exist, the overall knowledge is a distributed system (〈Di, Pi〉). To ensure inter-
operability, ontology alignments (Aij) are added to the system to bridge the gaps
between different terminologies. Note that these alignments could be simple DL
axioms, DDL bridge rules, P-DL semantic imports, or IDDL correspondences.
The resulting system is a pair of tuples 〈(〈Di, Pi〉), (Aij)〉.

To simplify the presentation, consider a simple pair of OBIS as in our example
scenario, that is, the system in consideration isΩ = 〈(〈Dguh, Pguh〉, 〈Dgoet, Pgoet〉), Aguh,goet〉.
The semantics of such a system depends on the type of alignments in place, which
defines the type of context-aware formalism used. Let us write |=d the distributed
entailment relation of the considered formalism. Thereby, 〈(Oi), (Aij)〉 |=d k :
C v D means that the system of ontologies (Oi) and alignment (Aij) distribu-
tively entails the axiom C v D in ontology Ok.

A policy-enabled distributed entailment |=P is defined over distributed on-
tologies Ω as follows. For a given local OWL axiom α = guh : C v D in the
terminology of the ontology of GUH, Ω |=P α if and only if α is distributively
entailed by the system composed of Dguh∪Pguh, {Dgoet} and Aguh,goet (and vice
versa if the axiom belong to the ontology of GOET).

Fig. 4. Enabling Context Specific Policies-DL Based

In other words, only the policy axioms of the ontology which is asking for
an entailment is used. In our scenario, it means that if GUH is reasoning, it
will take its drug policy into account but not the one of GOET, while GOET
would not consider the Avandia-Insulin counter indication of GUH. The very
same approach can be easily adapted to DDL, P-DL or IDDL.

9.2 Adding constraints to context-aware formalisms-2: Rule-based

As discussed above, DL-based solutions are adhering to the Open World As-
sumption (OWA), that is, conclusions which cannot be derived from an ontology
are treated agnostically. The approach presented in Section 9.1 enables separate



context spaces allocated for the special treatment of the context-specific poli-
cies. However the intrinsic nature of a DL-based solution may expose limitations
when one expects certain rational conclusions, which are reasonable to infer even
under incomplete knowledge. To overcome this limitation and to deal with the
conservative stance of the DL-based solution, we propose a rule-based approach
that will allow the appropriate treatment of context-specific policies by treat-
ing them with Closed World Assumption (CWA). Use cases that require data
integration from heterogenous information systems are suitable candidates for
combining both the formalisms, that is, OWA and CWA (Eiter et al., 2008). In
this approach, the knowledge base is split into two parts similar to the DL-based
solution, but a separate treatment is provided for each knowledge type (OWA
for normal axioms and CWA for policy axioms, see Figure 5).

This rule-based approach is inspired by (Guha et al., 2004) and (Horst, 2005b,
2005a) where authors in (Guha et al., 2004) proposed that the denotation of a
resource is not just a function of the term and the interpretation, but also of
the context in which that term occurs, that is, ontology axioms are interpreted
within certain contexts (see Section 6.2). The authors suggested an RDFS exten-
sion by introducing context within RDFS-Model theory. The extension enables
the “Context-Awareness” but the constraints (drug policy) in our example sce-
nario demands expressive semantics (higher expressivity than RDFS), such as
disjointness.

DL−Axiom:
∃guh:hasMedication.rxnorm:Avandia v ¬guh:hasMedication.rxnorm:Insulin)

Rule Equivalent:
F ← hasMedication(?x,?y), Avandia(?y), hasMedication(?x,?z),Insulin(?z)

Listing 1.8. GUH drug policy.

To overcome this issue, Horst (Horst, 2005b, 2005a) proposed a sound and
complete rule-based extension of RDFS (called R-entailment) that involves datatypes
(useful for modeling HCLS information systems) and a subset of the OWL-
vocabulary that includes the property-related vocabulary (e.g., FunctionalProp-
erty), the comparisons (e.g., sameAs, differentFrom, disjointWith) and the value
restrictions (e.g., allValuesFrom). These semantic extensions are in line with the
if-semantics of RDFS.

We suggest to combine both the approaches (Horst, 2005a; Guha et al., 2004),
calling it RDFS-CR, and providing further extension to this combination by (1)
including Type and/or Status of the knowledge base (normal axioms, constraint
axioms), and (2) defining the scope of the knowledge bases (global or local). For
example, domain ontology (D) (normal axioms and global scope) and context-
dependent policies (P) (constraint axioms and local scope). This approach will
allow the reuse of existing DL-based HCLS ontologies as normal axioms and
define context specific constraints.

Figure 5 defines the knowledge base as a pair 〈D,P 〉, where D describes a
domain ontology and P represents the internal policy. Domain ontologies (D)



will be treated normally by standard RDFS-entailment whereas context-specific
policies (P) will have RDFS-CR entailment. Policy axioms within a context will
share domain ontologies. For example, RDFS-CR entailment will be applied on
drug policy (α).

α = ∃guh:hasMedication.rxnorm:Avandia v ¬guh:hasMedication.rxnorm:Insulin

Fig. 5. Enabling Context Specific Policies-Rule Based

One major advantage of this approach is its closeness to the standard se-
mantics. Light-weight extensions of RDFS allows both (1) context-awareness
and (2) the ability to model information constraints (IC). Combining integra-
tion approaches imposes additional constraints on knowledge-base systems (Eiter
et al., 2008), i.e., highly expressive knowledge bases are hard to integrate with
less expressive knowledge bases. For example, translating DL-axioms to rules
(vice-versa) and faithful preservation of semantics while translation is a known
problem. Therefore, we kept the expressiveness of knowledge bases that ensure
reliable translation and execution (Horst, 2005a).

10 Towards fully interoperable HCLS systems

This section presents critical issues of semantic-enabled HCLS systems that have
not been addressed by this paper. Since the breadth of this domain is so wide,
this section can only discuss those problems succinctly, but we hope to provide
directions for future research on the key obstacles to better interoperability.

10.1 Temporal aspects of HCLS systems

Temporal information is everywhere in patient records. For example, Lab ob-
servations (e.g., blood test, bloop pressure (BP)) have a duration of validity,



vaccines must be renewed after some time, medicines have an effect on the body
for a certain time (thus, counter-indications are valid beyond the duration of
the treatment). One aspect of implicit, contextual information is its temporal
component. The ability to identify, represent and reason about time-dependent
information is important for various applications, especially for HCLS systems.
With respect to temporal information one is often faced with the problem of im-
plicit time (Moldovan, Clark, & Harabagiu, 2005). Sites often publish a piece of
data that is true at the time of publication, with the temporal qualification left
implicit. Equally often, this data does not get updated when it no longer holds.
Even worse, such implicitly temporally qualified data is often mixed with data
that is not temporally qualified. In this chapter, we have not directly addressed
the time-dependency issue but we assume that framework that enables the two
key features (Type and Scope) within the knowledge bases can act as a ground
work for enabling and processing such a temporal information in any OBIS.

10.2 Efficiency of reasoning with non-standard logics

Relying on information systems may be great but in many occasions, practi-
tioners must make quick decisions in order to act as soon as possible, especially
in emergency situation such as our case study at Göttingen. Thereby, the effi-
ciency of information systems is crucial in many HCLS environment. We did not
take this into account in our survey. We simply looked at the possibility to log-
ical represent and models various aspects of common HCLS systems, especially
with respect to EPRs. It may be needed to have different approach depending
on the type of system or department. Emergency hospitals would sacrifice ex-
pressiveness for the sake of faster feedback, while a clinic which only operates
when scheduled a long time before would be more favourable to a systems that
takes the most precise, most thorough description of all parameters to avoid any
potential mistake. Beyond efficiency, simply having an algorithm may be diffi-
cult. Undecidability easily occur when throwing in together rules, standard logic
axioms, context, policies, time and so on.

10.3 Healthcare and Social Networks

There is great perceived value in being able to integrate and use EPR and so-
cial network data across clinical and social domains. Healthcare stakeholders
belongs to various social ecosystems (or networks), and the vision of patient-
centric healthcare seems deemed unrealistic without providing a linkage between
a patient and surrounding social networks. The idea is very simple and basic, for
example, a semantically described patient data can also have a semantic descrip-
tion of his/her social existence (e.g., friends, family, and location). In situations
where both of the networks (i.e., healthcare and social) have mutual correspon-
dences, patient primary care (i.e., treatment of patient) and other secondary care
(e.g., home-care, remote monitoring, emergency assistance, etc.) could be easily
deployed on top such a linked patient related networks. In listing 1.9 (snippet of



listing 1.9) we can observe that an HL7 and FOAF artifacts are mapped, such
correspondences are link between two networks.

Class: ( foaf:Person ) SubClassOf: ( rim:Entity )
EquivalentProperties: ( guh:first name ) ( foaf:firstName )

Listing 1.9. HL7 RIM and FOAF Correspondences

Although correspondences between networks can be easily designed but it
triggers various challenges with respect to protection, access, policy, etc. of pa-
tient and social data. We discussed in the example scenario that each healthcare
related stakeholders are open to define their constraints and it is important to
interpret and process these context-dependent constraints in a sensible way. The
two solutions sketched in Section 9 can act as an enabler for such interlinked
and heterogeneous networks.

10.4 Practicality of formal approaches

This chapter have presented theoretical or abstract solutions to semantic interop-
erability, detailing how they are, in theory, able to represent relevant information.
However, it must not be forgotten that these approach have to be implemented
in practical applications. The implementation itself would lead to even further
research issues that are at least equally important and challenging than what we
focused on.

First, the more expressive and powerful the formalism is, the more difficult it
is to use and to model knowledge with. This can be overcome by building intuitive
interfaces that help the user in these tasks. The problem occurs on both the side
of the knowledge engineer building ontologies and for the practitioner who needs
to understand what the system is telling. Ontology engineering is in itself a whole
research field which gained momentum with the development of the Semantic
Web. Yet, extending the ontology formalisms would also require updating the
engineering methods that are mostly developed specifically for OWL (and, ). For
practitioners, explaining inference results is required.

Second, it can be hypothesised that not all systems will ever use a unique
data model. It is thus important to rely on data conversion. For instance, the
transformation of syntactic to semantic data format (and vice-versa) is the first
basic step in exploring implicit semantics within syntactic data. Initiatives like
RDB2RDF18, GRDDL19, are improving this transformation and help taking
advantage of legacy-database within the framework of the Semantic Web.

Third, the actual distribution of systems leads to many practical consider-
ation such as latency, connectivity, routing and parallelising the algorithms in
an efficient way. While hospital computers are all interconnected, they cannot
provide any amount of information, or answer any amount of queries from the
outside. Yet, to ensure distributed reasoning, the computing power must be

18 http://www.w3.org/2001/sw/rdb2rdf/
19 http://www.w3.org/TR/grddl-primer/



shared over the network. These problems relate to other topics such as the Grid
and Cloud computing.

11 Conclusion

In this chapter, we presented how HCLS systems can benefit from semantic
technologies to improve interoperability. We focused on formal aspects of knowl-
edge representation formalisms, assessing their ability to effectively model the
information commonly needed in electronic patient records (EPR). While the
discussion was essentially on theoretical aspects, we showed what are the con-
crete consequences of applying these formalisms to a real-world scenario. The
strength and limitation identified for each formalism became the motivation for
proposing a framework that identifies the type and scope of a knowledge base.
We argued that an approach to the problem of heterogeneity—or in general in-
teroperability of HCLS systems—relies on the combination of several integration
models. However, complexities of different magnitude may arise from this com-
bination. By this approach, we theoretically address an important problem of
our example scenario. Nonetheless, the diversity of the field is so vast that we
did not cover some relevant issues that we only sketched to provide a roadmap
for further research. We believe that these open research issues also requires
attention of a broader research community.
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Chesñevar, C. I., Maguitman, A. G., & Loui, R. P. (2000). Logical Models of
Argument. ACM Computing Survey, 32 (4), 337–383.

Cristani, M., & Cuel, R. (2005). A Survey on Ontology Creation Methodologies.
International Journal of Semantic Web and Information Systems, 1 (2),
49–69.

Donini, F. M., Nardi, D., & Rosati, R. (2002). Description logics of minimal
knowledge and negation as failure. ACM Transaction on Computational
Logics, 3 (2), 177–225.

Eiter, T., Ianni, G., Krennwallner, T., & Polleres, A. (2008). Rules and Ontolo-
gies for the Semantic Web. In Baroglio, C., Bonatti, P. A., Maluszynski,
J., Marchiori, M., Polleres, A., & Schaffert, S. (Eds.), Reasoning Web, 4th
International Summer School 2008, Venice, Italy, September 7-11, 2008,
Tutorial Lectures, Vol. 5224 of Lecture Notes in Computer Science, pp.
1–53. Springer-Verlag.

Euzenat, J., Polleres, A., & Scharffe, F. (2008). SPARQL Extensions for Pro-
cessing Alignments. IEEE Intelligent Systems, 23 (6), 82–84.

Euzenat, J., Scharffe, F., & Zimmermann, A. (2007). Expressive alignment lan-
guage and implementation. Deliverable D2.2.10, Knowledge Web NoE.

Fox, R., Sahay, R., & Hauswirth, M. (2008). PPEPR for Enterprise Healthcare
Integration. In Weerasinghe, D. (Ed.), Electronic Healthcare, First In-
ternational Conference, eHealth 2008, London, UK, September 8-9, 2008.
Revised Selected Papers, Vol. 1 of Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering,
pp. 130–137. Springer-Verlag.
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