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ABSTRACT
Applications envisioned for the Internet of Things (IoT) would
generally have to fulfill their design goals by mashing up de-
vices and digital services in a manner that is both flexible, such
that they can adapt to dynamic environments, and responsive,
such that they can react to sensor and user input in a timely
fashion. Most existing approaches for the development of IoT
applications rely on precompiled mashups that are highly re-
sponsive, but inflexible due to their static nature. At the other
end of the spectrum, fully automatic composition of services
results in IoT mashups that are highly flexible, but responsive
only for small numbers of IoT services. This paper presents
a middle ground approach: goal-driven software agents are
equipped with precompiled mashups and cooperate with one
another to compose their mashups at runtime in pursuit of
their goals. Agents are interconnected via relations that enable
them to discover and interact with one another in a flexible
manner. To support our approach, we provide an open-source
platform that facilitates application development. We used this
platform to implement a realistic IoT application that achieves
its design goal by mashing-up multiple heterogeneous devices
at runtime. Evaluation results suggest that applications remain
responsive when scaling to many devices and for relatively
large mashup compositions.
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INTRODUCTION
Applications for the Internet of Things (IoT) would generally
have to fulfill predefined or user-specified goals by composing
services provided by resource-constrained devices with digital
services. The challenge, however, is that IoT environments are
expected to be populated by large numbers of heterogeneous
devices that may become available or unavailable at runtime.
To accommodate this vision, IoT applications would have to be
both flexible, to adapt to dynamic networks of heterogeneous
devices, and responsive, to react to user input and relevant
events in a timely manner even when scaling to many devices.

However, existing approaches to IoT application development
are usually polarized either towards responsiveness or flexi-
bility. Most approaches rely on precompiled service mashups
created manually by developers and end-users, which results
in IoT applications that are highly responsive, but inflexible
due to their static nature. At the other end of the spectrum,
fully automatic composition of services at runtime results in
IoT applications that are highly flexible, but the service com-
position overhead grows exponentially with the number of IoT
services in the environment.

To emphasize both application flexibility and responsiveness,
we developed a middle ground approach that relies on the
decentralized goal-driven composition of precompiled ser-
vice mashups: goal-driven software agents are equipped with
libraries of plans that they use to achieve their goals, and coop-
erate with one another to compose IoT mashups at runtime in
pursuit of their goals. Agents are interconnected in dynamic
network-like structures that enable them to autonomously dis-
cover and interact with one another. Evaluation results show
that, in the worst-case scenario, the mashup composition over-
head grows only linearly with the number of agents, which
would typically be less than or equal to the number of devices
in the environment.

http://dx.doi.org/10.1145/2991561.2991573


Application Scenario: The Wake-up Call
To illustrate and motivate our approach, we introduce a con-
crete application scenario that we use throughout the rest of
this paper. In this scenario, David owns multiple connected
objects, such as a wristband, a mattress cover, light bulbs and
curtains.1 These objects are able to produce, share and con-
sume contextual information about David and his bedroom.
For instance, if David is sleeping, both the wristband and
the mattress cover can produce this information with various
confidence levels and share it with David’s other things. In
his daily life, David uses an online calendar service to keep
track of important events. The calendar service, however, can
also interact with David’s connected objects, for instance, to
wake up David whenever he is still sleeping and there is an
upcoming event scheduled, such as a morning flight. Further-
more, the calendar service is able to decide on various ways to
wake up David: it usually starts with smoother attempts, such
as vibration alarms via David’s wristband, and escalates to
more intrusive attempts, such as opening the curtains to allow
natural light to enter the room or sound alarms via David’s
smartphone. The calendar’s decisions are also contextual:
there is little reason to open the curtains or turn on the lights
in David’s bedroom if it is not known that David is sleeping at
home (e.g., the wristband signals that David is sleeping, but
the mattress cover does not). If a wake-up attempt is success-
ful, David’s wristband and mattress cover can both signal the
event.

In this scenario, David’s things are goal-driven agents that
interact with one another in pursuit of a common goal, that is
to wake up David. The calendar agent leads the interaction:
it makes decisions based on contextual information produced
and shared by the other agents, it delegates the goal of waking
up David and monitors its achievement. The service mashup is
composed with the cooperation of agents available at runtime
and executed in a decentralized manner.

Contribution and Paper Outline
Our main contribution is a novel approach to IoT mashup com-
position that emphasizes both the flexibility and responsive-
ness of resulting applications. Sec. 2 introduces the foundation
on which we built our proposal and further motivates our work.
Sec. 3 describes in detail our approach to IoT mashup com-
position. Sec. 4 presents an implementation of this approach.
Sec. 5 provides a quantitative evaluation of the responsiveness
of resulting IoT applications, and an evaluation of application
flexibility via implementing “The Wake-up Call” scenario.

BACKGROUND AND RELATED WORK
On account of its scalable and flexible architecture, the World
Wide Web is emerging as the application layer for the IoT, or
the so-called Web of Things (WoT) [27, 10]. The underlying
idea is to apply the REST architectural style to design IoT envi-
ronments that integrate seamlessly into the Web. Devices and
digital services converge at the application layer via RESTful
Web APIs that hide component heterogeneity behind uniform
interfaces designed using URIs, Web transfer protocols and

1All connected objects used in our application scenario resemble
products already available to end-users.

standard media types. Standardization efforts led by the In-
ternet Engineering Task Force (IETF) are rapidly turning this
vision into reality [11]. Most notably, the Constrained Appli-
cation Protocol (CoAP) [25] enables the direct integration into
the Web of devices with as little as 100 KiB of ROM and 10
KiB of RAM [13].

The WoT enables developers to mash-up devices with dig-
ital services using familiar Web technologies [9, 15]. To
further ease IoT application development, several mashups
editors have been proposed both in the academia [1, 12, 8]
and the industry2. These tools are domain-independent and
provide developers with visual abstractions of devices and
services that they can wire together. Other mashup tools tar-
get end-users and specific application domains, such as home
automation. With homeBlox [22], for instance, end-users cre-
ate mashups by connecting graphical abstractions of human
activities, household appliances, logical operators etc.

The above tools follow the dataflow programming paradigm.
Another category of tools gaining traction recently are cloud-
based services that enable end-users to create IoT mashups
via event-condition-action rules, such as IFTTT3 or Zapier4:
end-users define rules that are activated by a triggering event
and execute one or more actions. Rules can be chained to
create more complex mashups.

These approaches to IoT application development result in ap-
plications that are highly responsive: IoT mashups are created
manually by developers and end-users and thus there is no
mashup composition overhead at runtime. The tradeoff, how-
ever, is that resulting applications rely on static mashups that
cannot adapt to services becoming available or unavailable
at runtime. Furthermore, manually wiring the IoT is cumber-
some to everyday users and impractical when dealing with
many heterogeneous devices.5

In a different approach, hypermedia-driven interaction is used
to achieve a more flexible execution of IoT mashups [18]: de-
velopers publish hyperlinks between related services to create
graphs that mashup clients can navigate using various pre-
programmed strategies. The hyperlinks are annotated with
meta-information (e.g., forward path name, service cost) to
provide local guidance to clients in their traversal. To enable
global guidance, hyperlinks can also be annotated with the
name of the mashup that the client is currently traversing.
Mashups are still created manually, but flexibility is achieved
via path selection. This approach may be a good candidate
for developing IoT applications that are both flexible and re-
sponsive, but an evaluation of application responsiveness is
not available.

The automatic composition of services, a highly researched
topic [26], has also been explored as a means to compose IoT
mashups at runtime, for instance in [17, 14]: a central reasoner

2http://www.nodered.org/, Accessed: 27.06.2016.
3http://www.ifttt.com/, Accessed: 27.06.2016.
4http://www.zapier.com/, Accessed: 27.06.2016.
5http://www.ericsson.com/uxblog/2012/04/
a-social-web-of-things/, Accessed: 27.06.2016.
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composes functional semantic descriptions of services to cre-
ate execution plans that achieve the mashup’s design goal.
Automated planning, however, is computationally costly [7].
Resulting IoT applications are highly flexible, but the mashup
composition overhead grows exponentially with the number
of stateful IoT services involved in the process [14].

We conclude that most existing approaches to IoT application
development are polarized either towards application respon-
siveness or flexibility, while approaches that emphasize both
characteristics are insufficiently investigated.

A DECENTRALIZED APPROACH TO SERVICE MASHUP
COMPOSITION FOR THE IOT
In this section, we present a decentralized approach to IoT
mashup composition. This approach relies on goal-driven
software agents equipped with libraries of precompiled plans
that they use to achieve their goals. If an agent cannot achieve
its goals by itself, it cooperates with other agents at runtime.
To be able to discover one another, agents are interconnected
via relations that they can crawl.

In the following, we first define these network-like systems,
which we call socio-technical networks (STNs), that enable
discoverability and provide the underpinning of our approach.
We then further detail how agents are able to cooperate in a
loosely coupled manner in order to compose IoT mashups at
runtime.

Socio-technical Networks
A socio-technical network (STN) is a dynamic system of peo-
ple and things interrelated in a meaningful manner via typed
relations (e.g., friendship, ownership, provenance, colocation).
People and things can enter or leave the STN, manipulate their
relations to rewire the network, or interact with one another
via messages.

We use STNs as a means to model IoT environments and then
build applications on top of these abstractions. To facilitate ap-
plication development, STNs can be hosted on Web platforms
concerned with storing relations and routing messages based
on those relations. To support a uniform interface between
STN applications and platforms, we provide a Web ontology6,
called hereafter the STN ontology, that developers can use to
describe STNs in the Resource Description Framework (RDF).
Having a uniform interface enables STNs to be seamlessly
distributed across multiple Web platforms.

In what follows, we first discuss modeling IoT environments
as STNs, and then using the STN ontology to describe IoT
environments in a uniform manner.

Modeling IoT environments
STNs model IoT environments via three primary abstractions:
agents, artifacts and relations among them (see Fig. 2).7

People and things that are actively trying to influence the
state of the environment are modeled as agents. Things that
passively augment the environment with new capabilities are
6https://w3id.org/stn/core
7A formal mathematical definition of STNs is available in [4].

modeled as artifacts. For instance, David’s online calendar is
proactive in waking up David and can delegate goals to other
things, and the lights and curtains can manipulate the state of
David’s bedroom. David, his calendar, lights and curtains can
be modeled as agents. In contrast, David’s mattress cover is
more passive, it can only signal when David is going to bed or
waking up, and can be modeled as an artifact that agents can
observe. Note, however, that abstracting a thing as either an
agent or an artifact is a choice made at the modeling level, and
not an intrinsic property of the thing itself.

The agent and artifact abstractions are motivated by the sepa-
ration of concerns principle and bring several benefits. First,
these abstractions separate exhibited behavior from the actual
entities, which enables developers and end-users to conceive of
people and heterogeneous things in a uniform manner. Second,
agents and artifacts simplify the design of IoT applications by
separating the logic that manipulates the environment from
the logic that augments the environment. Third, agents and
artifacts provide a modular approach to IoT application devel-
opment when designed as loosely coupled components meant
to be deployed and to evolve independently at runtime.

As introduced previously, agents and artifacts are intercon-
nected in STNs via typed relations, which enable discoverabil-
ity and support reasoning. For instance, David owns multiple
things, which is represented in his home STN via ownership
relations. Software agents can crawl the STN in an informed
manner to discover all things owned by David.

Describing IoT environments
Agents, artifacts and relations among them are represented
on STN platforms by means of digital artifacts, that is Web
resources described using the STN ontology. For instance,
we assume David’s home STN is hosted on an STN platform
running on his WoT hub. David and his agents are represented
on the STN platform via user accounts, which are digital
artifacts that they can use as proxies in the STN to establish
relations and exchange messages with one another.

The STN ontology describes a general model for STNs8 that
defines common types of digital artifacts (e.g., user accounts,
digital messages, digital groups) and relations, such as:9

• stn:connectedTo, which denotes a general unidirectional
relation between two agents (or their user accounts);

• stn:ownedBy, which denotes a unidirectional ownership
relation from a thing to its owner (e.g., a person, a group);

• stn:subscribedTo, which denotes a unidirectional rela-
tion between two agents (or their user accounts) that is used
for communication.

Based on these relations (and possible extensions), developers
can program agents to autonomously discover and interact
with one another. For instance, when registering to David’s
STN platform, his agents declare David as their owner via

8Developers can further extend the STN ontology with domain- and
application-specific knowledge.
9We use the stn: prefix throughout the rest of this paper to denote
the namespace: http://w3id.org/stn/core#.

https://w3id.org/stn/core


Figure 1. The FIPA Contract Net Interaction Protocol (sourced
from [6]): an initiator launches a call for proposals for a task to be
achieved, awaits for proposals for a predefined amount of time, and then
informs participants of the result of the interaction.

an stn:ownedBy relation, which makes them discoverable.
Agents can then crawl David’s socio-technical graph to cre-
ate stn:subscribedTo relations to all other agents he owns.
Once relations are established, agents can use the STN plat-
form as a central broker that routes messages based on their
relations.

IoT Mashup Composition
In this section, we first present the IoT mashup composition
mechanism that relies on agents cooperating with one another
at runtime, and then discuss how agents interact in a loosely
coupled manner. Agents discover and interact with one another
via STN platforms, such as the one described for David’s
home.

Goal-driven mashup composition
Agents are goal-driven and achieve their goals by executing
precompiled plans. In doing so, agents use various devices
and digital services, but they may not hold all the resources
they need to achieve their goals. To address this problem,
agents cooperate with one another and compose IoT mashups
at runtime in pursuit of their goals.

The composition mechanism relies on goal decomposition
trees, in which a goal is decomposed into sub-goals and can
only be achieved after all of its sub-goals have been achieved.
A goal decomposition tree is distributed across all the agents
that participate to its achievement and it is composed dynami-
cally using preprogrammed goal decompositions.

For illustrative purposes, in our application scenario, the de-
sign goal of the calendar agent is to wake up David if there
is an upcoming event and David is asleep. This goal can be
further decomposed in three sub-goals:

• to determine if there is an upcoming event;

• to determine if David is asleep;

• if the case, to wake up David.

The calendar agent can use an online calendar service to
achieve the first goal, but it cannot use sensors or actuators to
achieve the other goals. However, the calendar agent can ask
the other agents if David is asleep or who can wake him up
via the STN platform.

In the above example, sub-goals are achieved on-demand, but
they can also be achieved proactively. For instance, instead of
waiting for other agents to ask if David is asleep, the wristband
agent can proactively inform all of its subscribers on the STN
platform whenever David falls asleep or wakes up.

Figure 2. This image illustrates the main system components of our im-
plementation and the core abstractions introduced to model IoT environ-
ments as STNs. Devices discovered at runtime are abstracted as agents
and artifacts interconnected via typed relations that they can crawl and
manipulate. Agents use STN platforms to autonomously discover and in-
teract with one another in pursuit of their goals. The layers shown here
are part of a layered architecture we have defined for a social WoT [4].

Agent interactions
In order to cooperate, agents must be able to interact in an
autonomous and reliable manner. Furthermore, in an open
system in which no prior assumptions can be made about the
design and implementation of agents, interactions have to rely
on standardized knowledge.

Noticeable efforts have been undertaken to standardize com-
munication and interaction in multi-agent systems10 and vari-
ous collections of standards are publicly available to specify,
among others:11

• agent communication languages that define the structure
and semantics of messages exchanged between agents;

• various interaction protocols that define sequences of mes-
sages exchanged between agents.

For instance, the calendar agent can implement the FIPA Con-
tract Net Interaction Protocol [6], depicted in Fig. 1, to del-
egate the goal of waking up David. It would first launch a
call for proposals via the STN platform in order to discover
who is available to achieve this goal. Some of David’s agents
may reply with proposals of various alarms they can trigger
(e.g., vibration alarms, sound alarms). The calendar agent then
decides what proposals to accept or reject (if any) based on
David’s preferences. We discuss our implementation of this
interaction in Sec. 5.2.

SOCIO-TECHNICAL NETWORKS FOR CONSTRAINED
RESTFUL ENVIRONMENTS
We present an implementation of STNs for constrained REST-
ful environments (CoRE) that relies on a CoRE Resource
Directory [23], a multi-agent platform, and our own imple-
mentation of an STN platform.

Fig. 2 depicts an overview of the main system components.
CoAP devices register with the resource directory, and an
Agents & Artifacts (A&A) container synchronizes with the

10Such as the ones undertaken by the Foundation for Intelligent Phys-
ical Agents (FIPA): http://www.fipa.org/, Accessed: 27.06.2016.

11http://www.fipa.org/repository/standardspecs.html, Ac-
cessed: 27.06.2016.

http://www.fipa.org/
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resource directory to create or delete agents and artifacts as
devices become available or unavailable at runtime. Agents
use an STN platform to create and participate in STNs.

Constrained RESTful Environment
We use the Californium (Cf) framework [16] to emulate mul-
tiple CoAP devices and Cf-RD12 to deploy the resource di-
rectory. Devices register with the resource directory via a
standard CoAP interface [23]: each device sends a POST re-
quest to a predefined endpoint with a list of provided resources
in the CoRE Link Format [24].

Devices can register one or more application-specific resource
types for each of their provided resources. In our implemen-
tation, we rely on resource types and shared ontologies to
decouple the A&A container from devices (see Sec. 4.3 for
details).

STN Platform
The STN platform provides13 two main functionalities:

• it acts as a repository that agents can use to store and query
representations of digital artifacts, and

• it dispatches notifications to agents when states of observed
digital artifacts change.

The platform implements an event-driven non-blocking archi-
tecture and is built on top of Vert.x14, a polyglot framework
for the Java Virtual Machine that is both powerful enough
to support high-throughput Web servers15, and lightweight
enough to perform well on small devices, such as Raspberry
Pi16.

The platform exposes a RESTful HTTP interface for reading
and writing representations of digital artifacts. Digital artifacts
are uniformly identified via URIs and their state is represented
in RDF using the STN ontology. The RESTful interface decou-
ples software clients from the STN platform, which facilitates
the deployment of STNs distributed across multiple instances
of the STN platform.

For illustrative purposes, an agent registers to the platform by
sending a POST request to the /users/ endpoint that encloses
in its body a Turtle [20] representation of the user account to
be created as shown in Listing 1. If the operation is successful,
the STN platform responds with a 201 Created status code
and a Location header field with the URI of the created user
account. Registration is therefore completely dynamic, and
the agent can store and use the URI of its user account for
subsequent requests.

Agents can register callback HTTP URIs to receive notifica-
tions from the STN platform, for instance, when other agents

12http://github.com/eclipse/californium.tools, Ac-
cessed: 27.06.2016.

13https://github.com/andreiciortea/stn-platform
14http://www.vertx.io/, Accessed: 27.06.2016.
15According to independent benchmarks for Web frame-
works: https://www.techempower.com/benchmarks/#secOon=
data-r8&hw=i7&test=plaintext, Accessed: 27.06.2016.

16http://vertx.io/blog/vert-x3-web-easy-as-pi/, Ac-
cessed: 27.06.2016.

create relations to them or when they receive messages. Mes-
sages are routed based on relations in the STN. If an agent
creates a message that has one or more explicit receivers,
the STN platform dispatches notifications to the specified re-
ceivers. Otherwise, the message is broadcast to all agents that
have a relation of type stn:subscribedTo to the sender of
the message. Notifications are sent by POSTing the current
states of observed artifacts to callback URIs.

Listing 1. A sample HTTP request/response for creating a user account
on the STN platform. The null relative URI in the request payload is
used to identify the artifact to be created. The response returns the URI
of the created user account via the Location header field.

POST / u s e r s / HTTP / 1 . 1
Host : l o c a l h o s t :8080
Conten t−Type : t e x t / t u r t l e

@pref ix s t n : < h t t p : / / w3id . o rg / s t n / c o r e #> .

<> a s t n : UserAccount ;
s t n : c a l l b a c k U r i < h t t p : / / l o c a l h o s t : 5 8 8 8 0 / c a l e n d a r / > ;
s t n : heldBy < h t t p : / / example . o rg # c a l e n d a r > .

< h t t p : / / example . o rg # c a l e n d a r > a s t n : S o c i a l T h i n g ;
s t n : ownedBy < h t t p : / / l o c a l h o s t : 8 0 8 0 / u s e r s / f a e 5 ( . . . ) 5 a26 > .

HTTP / 1 . 1 201 C r e a t e d
L o c a t i o n : h t t p : / / l o c a l h o s t : 8 0 8 0 / u s e r s / b770 ( . . . ) b21b
Conten t−Length : 0

Agents & Artifacts Container
The Agents & Artifacts (A&A) container17 is a platform for
programming and running agents and artifacts in the STN. Our
implementation uses JaCaMo [2], a multi-agent platform for
the development of Belief-Desire-Intention (BDI) agents [3]
(i.e., agents that can decide and act on their own) and artifact-
based multi-agent environments [21].

Agents are developed using Jason [3], a framework that pro-
vides a customizable BDI agent architecture and a language for
programming agent behavior in terms of beliefs held about the
world, goals desired to be achieved, and plans used to achieve
goals. An important feature of Jason agents that make them
a good fit for our approach is that they are both goal-driven
and reactive: agents commit to goals by executing plans, but
they can still react to new stimuli from the environment while
executing their plans.

The A&A container uses the resource directory to discover
resources of known types in the environment, and then instanti-
ates agents and artifacts based on those types. The instantiation
logic is programmed by the IoT application developer. In our
application scenario, for instance, if the A&A container discov-
ers a resource of type ex:SmartWristband18, it instantiates
an agent that implements preprogramed behavior associated to
a smart wristband. The A&A container ignores any resources
of unspecified or unknown types.

We assume the A&A container and the devices rely on shared
ontologies to interpret resource types, and to exchange and
interpret resource representations in a reliable manner.

17https://github.com/andreiciortea/stn-agents-iot16
18The ex: prefix denotes the namespace http://example.org#.
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The A&A container can interface with the STN platform via
both HTTP and the WebSocket protocol [5]. We use the latter
in our quantitative evaluation of application responsiveness in
order to minimize integration latency.

EVALUATION
In this section, we evaluate the responsiveness and flexibility of
STN-based IoT applications. In Sec. 5.1 we provide a quanti-
tative evaluation of application responsiveness, and in Sec. 5.2
we assess the flexibility of an STN-based implementation of
the application scenario presented in Sec. 1.1.

Application Responsiveness
To evaluate the responsiveness of STN-based IoT applications,
we measured the mashup composition overhead introduced
by agent interactions. The overhead for executing the result-
ing mashups is independent of how mashups are created and
not considered here. We assume that all agent relations in
our experiments have been established in advance and do not
consider the overhead for creating relations, which we con-
sider a one-time cost for the purpose of this evaluation and
independent of the applications using the resulting STN.

Evaluation method
IoT mashups are composed via independent interactions
among agents. In the worst-case scenario, an agent would
have to interact with all other agents in the STN to achieve its
purpose. We thus expect that, in this worst-case scenario, the
mashup composition overhead grows linearly with the number
of agents in the STN. A first objective of our responsiveness
evaluation is to confirm this assumption.

Our second objective is to estimate the number of sequential
interactions that can be performed in a typical STN in less than
1 second. We consider 1 second to be a reasonable mashup
composition latency for IoT applications that would classify
as responsive in most use-case scenarios. We use the work
presented in [14] as a reference to estimate about 250 software
agents in a typical STN.

We evaluated worst-case performance by implementing the
FIPA Contract Net Interaction Protocol (see Fig. 1) in a setting
in which all agents in the STN are subscribed to a central agent
that launches the call for proposals. All agents respond and we
measure the time spent from launching the call to receiving
all proposals. We ran our experiments with 10, 50, 100 and
250 participants to evaluate performance in a typical STN,
and with 500, 750 and 1000 participants to observe system
behavior beyond that threshold.

Experiment setup
We ran our experiments on a laptop computer with Intel(R)
Core(TM) i7-3667U CPU @ 2.0GHz (2 physical cores) in
four different setups:

In the first setup (A&A-2c), we used only the A&A container
running on both cores. The purpose of this setup is to evaluate
the overhead introduced by running BDI agents: agents do
not use STNs, the system is closed and the initiator broad-
casts the call for proposals to all agents via JaCaMo’s built-in
communication infrastructure.

Figure 3. These results measure the time required for a Contract Net-
like interaction with an increasing number of participating agents.

Table 1. Number of contract-net-like interactions with 250 and 1000
participants completed within 1 second.

# participants A&A-2c A&A STN STN-A&A
250 24 23 11 6
1000 13 8 4 2

The second setup (A&A) was identical with the previous one
except we ran it on a single core.

In the third setup (STN), we used only the STN platform with
mock-up agents running directly on the platform. The purpose
of this setup is to evaluate the overhead introduced by the STN
platform for routing messages in the STN.

In the fourth setup (STN-A&A), we used both the STN platform
and the A&A container communicating via the WebSocket
protocol to minimize integration latency.

The third and fourth setups use a single core due to implemen-
tation limitations at the moment of writing this paper.

Results
For each of the three setups, we repeated each interaction 10
times to obtain an average. Results are shown in Fig. 3. The
plotted series are approximately linear, which confirms our
assumption that, in the worst-case scenario, the mashup com-
position overhead grows linearly with the number of agents.

The various slopes of the plotted series indicate the implemen-
tation performance of each of the four setups. The A&A-2c
setup, running on both physical cores, performed best. The
STN setup performed worse than the A&A setup, and the greater
slope seems to indicate an implementation overhead that in-
creases linearly with the number of agents in the interaction.
Intuitively, we assume the cause might be our use of RDF
technologies for producing and consuming message repre-
sentations, but further investigations are needed to identify
implementation bottlenecks. The STN-A&A setup performed
the worst, which is justified by both the added overheads of the
two platforms and the inter-process communication overhead.

The maximum number of sequential contract-net-like inter-
actions that can be completed within the 1 second time limit
for each setup is shown in Table 1. Based on these prelimi-
nary results, and assuming an optimized implementation of the



STN platform with local BDI agents, we estimate that an STN
of 250 agents running on a regular laptop computer should
achieve up to 20 sequential contract-net-like interactions in
less than 1 second. In the same conditions, we estimate that
an STN of 1000 agents should achieve up to 10 sequential
contract-net-like interactions in less than 1 second.19 We ex-
pect that a mashup composition requiring 10 contract-net-like
interactions would achieve fairly complex functionality. As a
comparison, we implemented the realistic application scenario
in Sec. 1.1 with only one contract-net interaction.

We conclude that STN-based applications remain responsive
when scaling to many devices and for relatively large mashup
compositions. Evaluation results, however, also point out
the primary challenge for this approach: even though the
mashup composition mechanism is straightforward and does
not require costly computation, handling and routing many
messages in an STN is costly. Pushing every sensor reading
to an STN, for instance, might be unwise. Rather we expect
that STN communication would be reserved for goal-driven
agent interactions and for sharing knowledge (possibly derived
from sensory information). Mechanisms to reduce or replace
agent communication altogether would be useful (see Sec. 6
for more details).

Further investigation is required to determine the practicality
of deploying and running STNs on small devices (e.g., Rasp-
berry Pi). Our current evaluation results, however, seem to
indicate that the task of hosting large STNs would be better
suited for cloud-based services that can scale to accommodate
a growing number of agents.

Application Flexibility
We consider an IoT application to be flexible if it can adapt to
dynamic environments to achieve its design goal. To assess
the flexibility of STN-based IoT applications, we implemented
the application scenario presented in Sec. 1.1. The developed
application is able to wake up its user by composing an online
calendar service with sensing and actuation services available
at runtime.

Agent and artifact creation
In our implementation, David’s things are modeled as agents.
The A&A container synchronizes with the CoRE Resource
Directory to create and maintain a dynamic set of Jason agents
for all devices discovered at runtime.

Agents interact with their devices and the STN platform via
artifacts. The artifact used to interact with the STN platform
is created by the A&A container, whereas device artifacts are
created by the agents themselves.

STN deployment
Once created, agents are bootstrapped into an STN via prepro-
grammed generic behavior. Their entry point into the STN is
the URI of their owner’s user account on the STN platform.
Agents register to the platform and declare their owner via

19It should be noted, however, that our estimations assume a “hub-
centric approach” in which the agents and the STN platform reside
on the same machine. Interactions across multiple machines would
imply an additional communication overhead.

Table 2. Beliefs produced and consumed by David’s agents.
Agent Produces Consumes
Calendar - asleep(david)
Wristband asleep(david)[certainty=0.6] -
Mattress cover asleep(david)[certainty=0.8] -

Curtains curtains_state(open),
curtains_state(closed)

asleep(david),
outside_light_level(Level)

Lights lights(on), lights(off)
asleep(david),
curtains_state(State),
outside_light_level(Level)

Light sensor outside_light_level(Level) -

the stn:ownedBy property (cf. Listing 1), which makes them
discoverable via crawling. Agents then implement a behavior
to subscribe to all other agents of their owner.

Loosely coupled agent interactions
Agents exchange messages via the STN platform using a com-
mon agent communication language provided by Jason [3]
and a shared vocabulary for describing the state of the physical
world. For instance, the wristband agent informs other agents
that its owner fell asleep by posting to the STN platform the
message:

tell asleep(david)[certainty(0.6)],

which is composed of:

• a performative that defines the intention of the communi-
cation: tell denotes that the wristband agent intends the
receivers to believe (that the wristband agent believes) the
content of the message to be true;

• a propositional content, which is a Jason term that denotes
the object of the communication: David is asleep with a
certainty of 0.6 (we assume all of David’s agents use the
same scale of certainty).

Other performatives used in our implementation include:

• untell, which denotes that the sender intends the receiver
not to believe (that the sender believes) the content of the
message to be true;

• achieve, which is used by the sender to delegate to re-
ceivers the goal in the message content;

All knowledge used to implement agent interactions is either
standard, or in an easily standardizable form. Agents do not
hold any prior knowledge about one another, which enables
their independent deployment at runtime.

Flexibility via belief sharing
Agents use their device artifacts to sense and act upon the IoT
environment, which allows them to derive beliefs about David
and his bedroom. Once deployed and able to interact, agents
share belief changes (i.e., when an agent adds/removes beliefs
to/from its belief base) via the STN platform to augment one
another’s capabilities at runtime. The beliefs produced and/or
consumed by each agent in the STN are shown in Table 2.

For instance, both the wristband and the mattress cover agents
can determine if David is asleep based on sensory information
(the mattress cover agent with higher confidence). The calen-
dar agent relies on their beliefs to determine if David is asleep
or not. If there is an upcoming event and the calendar agent



holds a belief with certainty above 0.5 that David is asleep, it
will attempt to wake him up. If David wakes up, the wristband
and mattress cover agents inform the other agents that they no
longer believe David is asleep by posting the message untell
asleep(david), which enables the calendar agent to verify
that it has achieved its goal.

Flexibility via goal delegation
David’s agents implement the Contract Net Interaction Pro-
tocol (see Fig. 1). The calendar agent launches a call for
proposals to wake up David by posting to the STN platform
the message:

tell cfp(<id>, achieve(not asleep(david))),

where <id> is a unique identifier for the launched interaction.
All agents that can trigger alarms to wake up David reply with
proposals. The curtains agent, for instance, will only reply
if the outside light level is above 100 lux (S.I.), which is the
equivalent of an overcast day20, with the following message:

tell propose(<id>, alarm_type(natural_light)).

The calendar agent waits for 1 second to receive proposals and
then chooses a participant based on David’s preferences, which
are preconfigured. The delegated agent triggers the alarm and
informs the calendar that the action has been performed. The
calendar agent, however, remains committed to achieve its goal
and awaits for 30 seconds to receive a confirmation via the
STN that David woke up (e.g., from the wristband or mattress
cover agents). If no confirmation is received, the calendar
launches another interaction in a new attempt to wake him up.
The calendar agent remains committed to its goal until either
an update is published that David woke up, or the scheduled
event has passed.

Flexibility via plan sharing
Each agent implements plans for handling its specific device
artifact. In an alternative implementation of this scenario,
David’s devices could be represented as a dynamic set of
artifacts made available to the calendar agent at runtime, who
would than have to learn on-the-fly the plans required to use
them. This could be achieved via the askHow performative
provided by Jason, which enables the calendar agent to ask
other calendar agents in his STN for plans to achieve its goals,
for instance by posting the message:

askHow "+!wakeUp(Owner)",

where the content of the message is a triggering event, as
defined in Jason, to achieve the goal of waking up someone
(Owner is an unbound variable).

If none of the agents in the STN know any applicable plans,
the calendar agent could use a reasoner to build the plan it
needs based on semantic descriptions of its artifacts. The
resulting plan could then be shared with the other agents in
the STN in future interactions.

The above illustration explores new means through which
STN-based IoT applications could achieve flexibility at run-
time. It also illustrates how the approach presented in this

20http://www.engineeringtoolbox.com/light-level-rooms-d_
708.html, Accessed: 27.06.2016.

paper could be used in conjunction with fully automatic com-
position of service mashups. We leave it as future work to
further investigate these concepts.

CONCLUSIONS AND PERSPECTIVES
In this paper, we proposed a decentralized approach to IoT
mashup composition that emphasizes both the flexibility and
responsiveness of resulting applications. The novelty of our
approach is a paradigm shift from monolithic IoT applications
to dynamic networks of agents and artifacts, which we call
socio-technical networks (STNs). Agents are goal-driven and
cooperate with one another to compose IoT mashups at run-
time in pursuit of their goals. Furthermore, they use STNs
to autonomously discover and interact with one another in a
loosely coupled manner, which allows them to be deployed
and to evolve independently. Decentralized goal-driven com-
position and loose coupling are the premises for application
flexibility. To increase the responsiveness of STN-based IoT
applications, agents achieve their goals by executing precom-
piled plans. Evaluation results show that, in the worst-case
scenario, the composition overhead grows linearly with the
number of agents in the STN, and suggest that applications
remain responsive as they scale to many devices and for rela-
tively large mashup compositions.

In the future, we intend to explore new means to enhance the
responsiveness of STN-based IoT applications, for instance by
studying various topologies and relation management strate-
gies for optimizing the flow of information through the net-
work. Other optimizations could aim to minimize the need
for contract-net-like interactions or to remove them altogether.
For instance, agents could provide descriptions of the goals
they can achieve such that other agents are able to determine
in advance their dependencies in a given STN.

In our scenario implementation, we used an ad-hoc solution
to represent contextual information about David and his bed-
room. There is, however, a large amount of work on context
representation and reasoning [19]. We plan to further explore
ways in which agents in STNs can be enhanced with context-
awareness.
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