
Towards a Social and Ubiquitous Web:
A Model for Socio-technical Networks

Andrei Ciortea
Laboratoire Hubert Curien

UMR CNRS 5516, Institut Henri Fayol,
Mines Saint-Etienne, Saint-Étienne, France

University “Politehnica” of Bucharest,
Romania

Email: andrei.ciortea@emse.fr

Antoine Zimmermann
and Olivier Boissier

Laboratoire Hubert Curien
UMR CNRS 5516, Institut Henri Fayol,

Mines Saint-Etienne, Saint-Étienne, France
Email: antoine.zimmermann@emse.fr,

olivier.boissier@emse.fr

Adina Magda Florea
University “Politehnica” of Bucharest,

Romania
Email: adina.florea@cs.pub.ro

Abstract—The Web is to experience considerable growth by
extending to physical devices, i.e. the so-called Web of Things
(WoT). To make this growth sustainable, users need mechanisms
for managing and interacting with large networks of devices
and services. Existing search engines and mashup editors for
the WoT partially address this problem by enabling developers
and tech savvy users to search for “things” and connect them
to one another. However, manually “wiring” large networks of
things does not scale. Furthermore, static mashups cannot adapt
to dynamic environments. Our approach is to apply the social
network metaphor to the WoT to create a semantic socio-technical
overlay that may be reliably processed and used by both people
and things. Things can crawl this overlay to discover one another,
but also manipulate it such that they may wire themselves. In this
paper, we introduce a model for socio-technical networks (STNs).
We apply this model to wrap up Twitter and Facebook as STNs,
and to develop ThingsNet, our own prototype STN platform.
Finally, we present a software client that uses the STN model to
function across all three platforms, as well as any other platforms
that may be translated to this model.

I. INTRODUCTION

Metcalfe’s law suggests that the value of a network-like
system is proportional to the square of the number of nodes in
the system. The World Wide Web seems to be no exception.
Bob Metcalfe also suggests that his law is mostly applicable to
small systems, and once a network reaches a certain size, the
affinity (i.e., value per connection) might suffer to the point
where it overwhelms the quadratic growth of its value.1 In
other words, growth must be sustainable.

The Web is taking a new leap: it extends to the physical
world by integrating places, devices and physical things as
first-class entities, i.e. the so-called Web of Things (WoT) [1].
It seems reasonable to predict a significant growth – not only
in size, but also in functionality: writing the state of a Web
resource will not only result in updating a database, it may
literally open a door in the physical world. A leap that brings
huge value if the Web manages to balance its affinity by
making this growth sustainable. In doing so, it is necessary
to minimize all implied costs: the costs of integrating things
into the Web, the costs of developing WoT applications, the
costs of accessing and using the WoT.

1Guest Blogger Bob Metcalfe: Metcalfe’s Law Recurses Down the Long
Tail of Social Networks. Nov 2006. http://bit.ly/1AZCsQJ

Developing Web-enabled things has already been proven to
be cost-efficient [2]. Search engines for the WoT [3], [4], an
emerging application domain, aim at enabling human users
and software clients to look-up services on the WoT, thus
reducing the costs of usage while supporting automatic service
integration in composite applications. Reducing development
and usage costs is also addressed by platforms that allow
developers and tech savvy users to “wire” the Internet of
Things (IoT) / WoT by creating mashups of devices and
services2 [5], [6]. Manually wiring large networks of things,
however, does not scale. Furthermore, once created, these
mashups are static and cannot adapt to dynamic environments.

Therefore, we need a uniform mechanism that goes a
step beyond service look-up and static mashups, one that
enables users to manage and interact with large networks of
heterogeneous things and the functionality they provide. Our
proposal is to apply the social network metaphor to the WoT to
create a semantic socio-technical overlay that may be reliably
processed and used by both people and things. Things can
crawl this overlay to discover one another, but also manipulate
it such that they may handle their own connections to people
or other things, for instance according to rules embedded in
their application logic or defined by an external authority. This
approach falls within an emerging application domain, also
referred to as the Social Web of Things (SWoT) [7], [8], [9] or
the Social Internet of Things [10]. The key contribution that we
introduce in this paper is a model for socio-technical networks
(STNs), which are the building blocks of a SWoT.

To motivate our vision for the SWoT, we introduce the
principles on which we build our approach in Sec. II. Sec. III
presents the STN formal model and how it can be deployed on
the Web. Sec. IV applies this model to create STN wrappers
for existing social platforms, such as Twitter and Facebook, but
also in the development of a new generation of thing-friendly
social platforms. Related work is discussed in Sec. V.

II. TOWARDS A WEB OF PEOPLE AND SOCIAL THINGS

Applying the social network metaphor to the WoT leads to
the following sub-objectives:

2Node-RED: http://www.nodered.org, Accessed: 15.05.2015.

1) to develop social things that may autonomously partici-
pate in online interactions with people and other hetero-
geneous things on the Web;

2) to facilitate the development of software clients that
may dynamically access and use heterogeneous social
platforms3;

3) to enable people and social things to access and manipu-
late Web resources in a secure fashion, without violating
the privacy of other users.

In order to achieve these sub-objectives, we build our
proposal on the following principles:

1) Things as first-class entities of a socio-technical overlay:
The API of an STN platform should generally support all
operations required to participate in the STN. In other
words, STNs should generally accommodate things as
full-fledged citizens. For instance, on Twitter users may
be anyone or anything4, and most actions are available
via its API. This principle supports sub-objective 1.

2) Interoperability: STN platforms should provide
machine-readable interfaces such that social things are
able to access and participate in the socio-technical
overlay without being manually configured against
each of its underlying platforms. In addition, the
socio-technical overlay should integrate existing social
platforms. This principle supports sub-objectives 1 & 2.

3) Autonomy & Regulation. Social things should be able
to (semi-)autonomously manage their relationships with
other entities. In addition, proactive sharing of informa-
tion should be encouraged for exploiting the full potential
of the SWoT. Regulation implies that social things should
be able to interpret and reason about externally defined
policies and norms. In an STN platform, all regulations
should be explicit and available in machine-readable for-
mat. Norm enforcing, smart disclosure and social control
mechanisms are also necessary. This principle supports
sub-objectives 1 & 3.

We consider autonomy and regulation to be two facets of
the same coin. Without regulation, autonomy is potentially
dangerous. Without autonomy, regulation is not needed. It is
worth to note that most social networks regulate the actions
of users and developers both explicitly (e.g., terms of services
and rate limiting) and implicitly (e.g., social norms of usage).

Following these principles, we propose a layered architec-
ture for the SWoT, which is built on top of the WoT and
structured along four layers (from bottom to up): agency,
social, normative and application [9].

Agency Layer. In our proposal, a thing may be any kind
of entity: physical (e.g., a device or a book), digital (e.g., an
e-mail) or abstract (e.g., a research group). Obviously, not all
things in the universe of discourse need to be social. People
and social things are both abstracted by agents and are first-
class entities in the SWoT. Agents exhibit characteristics such
as autonomy, goal-driven behavior and social ability. Our aim
is to profit from the vast amount of models and technologies
available for programming software agents and systems of

3A social platform is any platform that enables communication and inter-
action with other autonomous entities.

4https://dev.twitter.com/overview/api/users/, Accessed: 15.05.2015.

autonomous agents [11], [12]. Non-social things are modeled
as artifacts, that is to say, as resources usable by agents to act
on or perceive the physical or digital world.5 For instance, a
door whose state (e.g., locked or unlocked) is read or written
via a Web API may be modeled as an artifact. If the door
may also interact with people or vacuum cleaning robots6 to
unlock itself for authorized agents, then it may be modeled
as an agent. Securely and uniquely identifying agents is also
addressed at this layer, for instance by means of single sign-on
systems, such as OpenID Connect [14] or WebID [15]. This
layer is motivated by principles 1 & 3.

Social Layer. At the social layer, agents become connected
in STNs. The different relations (e.g., friendship, ownership,
provenance, colocation) among agents, and between agents and
artifacts, are represented in social graphs as structured data,
such that both people and social things may reliably process
and reason upon them. For instance, all appliances in a house,
together with its inhabitants, may form an STN. Similarly,
a world-wide network of environmental sensors may form a
widely distributed STN. People and social things should be
able to access and participate in linked, open and interoperable
STNs, which may be distributed across multiple platforms.
This layer is motivated by principles 1 & 2.

Normative Layer. This layer is concerned with models and
mechanisms for expressing, monitoring and regulating policies
or norms. Any applicable policies and norms should be made
available to social things in a machine-readable format. While
regulation may be achieved at the agency layer by hardcoding
rules into agents, being able to interpret externally-defined
norms is desirable, if not necessary. For instance, software
agents should be able to retrieve a platform’s rate limiting
policies and terms of services in a machine readable format.
Similarly, an intelligent vehicle should be able to dynamically
obtain and interpret the driving regulations that apply to its
current country or region. User-defined privacy policies related
to the exchange and sharing of information should also be
available to social things. Any mechanisms for social control
(e.g., trust and reputation) are also located at this layer. This
layer is motivated by principle 3.

In this paper, due to space considerations, we focus our
discussion on the social layer. The key concern that we address
is to define, model and develop open and interoperable STNs
as building blocks of a socio-technical overlay for the WoT.

III. SOCIO-TECHNICAL NETWORKS

An STN has to represent networks of people and things,
taking into account their position in the physical world, the
data they produce, norms that may affect their evolution, and
operations that enable them to participate in the STN. In this
section, we first introduce a general model for networks of
agents (see Sec. III-A). This general model is then made
more specific to describe digital STNs (see Sec. III-B). Then,
having introduced the mathematical structures underlying our
envisioned socio-technical overlay, Sec. III-C discusses how
digital STNs may be deployed on the Web.

5Approach inspired by the Agents & Artifacts meta-model [13] from the
field of multi-agent systems.

6Such as the iRobot Roomba: http://www.irobot.com/for-the-home/vacuum-
cleaning/roomba.aspx, Accessed: 15.05.2015.

A. A general model for STNs

We use E to denote the infinite set of entities that may
be part of an STN, and AG ⊂ E to denote the infinite set of
agents. We denote the infinite set of STNs by S and formally
define an STN s ∈ S as the following construct:

s = (Gt,Ops,Norms,O), (1)

where:

• Gt is a graph that represents the state of s at any given
point in time t, and we call it the socio-technical graph
(STG);

• Ops is a set of operations through which agents in AG
may retrieve information from or modify the state of Gt;

• Norms is the set of norms that regulate the use of
operations in Ops;

• O is an ontology in a given knowledge representation
language L (e.g., an OWL ontology) that encapsulates
domain-specific knowledge for s.

The signature of O defines two sets of non-logical symbols:
ETypes, which are the types of entities in s, and RTypes, which
are the types of relations among entities in s. For all s ∈ S, we
define symbols Agent ∈ ETypes and {type, connectedTo} ⊂
RTypes, where type associates types from ETypes to entities in
s and connectedTo represents a directed social relation between
two agents.7

Gt is then a directed edge-labeled multigraph given by:

Gt = (N,E), (2)

where: N ⊂ E is the finite set of nodes in Gt, that is to say the
entities in s at moment t, and E ⊆ N×RTypes× (N ∪ETypes)
is the finite set of directed labeled edges in Gt.

For illustration, consider a social network formed by two
friends, John and Jane. We choose to define a DL ontology
O that describes two concepts (i.e., entity types), Agent and
Person, and three roles (i.e., relation types), type, connectedTo
and friendOf , where: Person v Agent, friendOf is symmetric
and friendOf v connectedTo. We define two individuals, John
and Jane, where John and Jane are persons, and John is a
friend of Jane. Following our definitions, we have:
ETypes = {Agent, Person}
RTypes = {type, connectedTo, friendOf}
Gt,il = ({John, Jane},

{(John, type, Person), (Jane, type, Person), (John, friendOf , Jane)})

We write O ∪ Gt �L (a, rel, b), where a, b ∈ N and rel ∈
RTypes, to say that we use knowledge encapsulated in O and
Gt to infer that (a, rel, b) holds in s.8 For instance, in the above
illustration, it may be inferred that:
O ∪ Gt �L (John, type, Agent)
O ∪ Gt �L (Jane, type, Agent)
O ∪ Gt �L (Jane, friendOf , John)
O ∪ Gt �L (John, connectedTo, Jane)
O ∪ Gt �L (Jane, connectedTo, John)

7As a convention, symbols for entity types start with a capital letter.
Therefore, Agent is an entity type, while type and connectedTo are relation
types.

8In category theoretic terms, this notation is formally correct if there is a
span in the category of institutions [17] between the institution for L and the
one for Gt such that the pushout exists.

We denote the restriction of N to all nodes of a given
type T ∈ ETypes by N[T] = {n ∈ N | O ∪ Gt �L (n, type,T)}.
Similarly, we denote the restriction of all edges of a given type
rel ∈ RTypes by Rrel = {(a, b) ∈ N× (N∪ETypes) | O∪Gt �L
(a, rel, b)}. In our previous example, N[Agent] = {John, Jane}
and RconnectedTo = {(John, Jane), (Jane, John)}.

We use G to denote the infinite set of STGs. Given s ∈ S,
an agent operation op ∈ Ops is formally defined as a function
of the form:

op : G × AG × 2Input → G × 2Output, (3)

where we use Input and Output as technical notations for the
sets of all possible input and output parameters of an agent
operation. An operation is always performed by an agent and,
in most cases, it defines a transition from one state of the STN
to another.

STGs and agent operations provide the mathematical foun-
dation for modeling the social layer (cf. Sec. II). The social
layer is governed by the normative layer via norms. Norms
may encourage operations (e.g., all social things owned by the
same user should connect to one another), regiment operations
(e.g., a social thing should not register to new STN platforms
without explicit consent from its owner), or they may filter
the output of operations (e.g., things owned by a user should
be advertised only to close friends). Research in multi-agent
systems proposes several models that may be used for precisely
defining, formalizing and regulating norms [18], [19]. We do
not address the normative layer in this paper, however this does
not influence our contribution or the clarity of the rest of the
paper.

B. Digital STNs

We further specialize our model to define the class of digi-
tal STNs, that is STNs reified as explicit digital representations
that agents may use and manipulate. In order to support com-
patibility with existing platforms (see Sec. II), and to preserve
the design and implementation autonomy of new platforms, our
model for digital STNs extracts the commonality from existing
social platforms with high user adoption9, widely accepted
standards [20], [21] and ontologies [16], [22], [23] in order
to define a core set of types, agent operations, and digital
artifacts10.

1) Types: In addition to the types defined previously, for
all digital STNs, {Entity,Person, SocialThing,DigitalArtifact,
Platform} ⊂ ETypes and {represents, hostedBy, owns} ⊂
RTypes, where:

• N[Person] ∪ N[SocialThing] ⊂ N[Agent], and N[Person] ∩
N[SocialThing] = ∅;11

• N[Agent],N[DigitalArtifact],N[Platform] are mutually
disjoint subsets of N[Entity].

A digital artifact represents an entity and it is always
hostedBy a platform. We express this formally by defining two

9Such as Facebook, Twitter, Google Plus, and Foursquare.
10Digital artifacts are artifacts that exist only in the digital world, such as

user accounts or digital messages
11That is to say, all persons and social things are agents, and a node cannot

be typed as both a person and a social thing.

relations: Rrepresents : N[DigitalArtifact] 7→ N[Entity],12 and
RhostedBy : N[DigitalArtifact]→ N[Platform]. The third relation
type, owns, is used to represent that a social thing may be
owned by another entity, in most cases an agent or a group of
agents. We define Rowns ⊆ N × N[SocialThing].

We introduce a few notations that we use throughout the
rest of this section. We use DA ⊂ E to denote the infinite
set of digital artifacts. The digital image of an entity e ∈ E
within an STN s ∈ S is defined as dgIms(e) = {d ∈ DA |
(d, e) ∈ Rrepresents}. We define the digital image closure of a
set of entities A ⊆ E within s ∈ S as A∗s =

⋃
a∈A dgIms(a)∪A.

For instance, the digital image closure of a set of agents in
a given STN is the set of agents and the digital artifacts that
represent them within the STN, such as user accounts.

2) Agent operations: The general form of an operation was
given by Equation 3 in Sec. III-A. Operations are described
further by specifying the context in which they may be applied,
their parameters, and any side-effects they might have on an
STG.

Social relations or connections in digital STNs may be
created between agents or digital artifacts that represent them.
For instance, on Twitter connections are created between user
accounts, while in FOAF [16] they are created between agents,
and not the actual FOAF profile documents that describe them.
We define an operation for creating an outgoing connection
from a performing agent ap as follows:

createConnectionTo :
1 . Desc : Agent ap p e r f o r m s t h i s o p e r a t i o n t o c r e a t e

a c o n n e c t i o n from i t s e l f (o r a d i g i t a l a r t i f a c t
t h a t r e p r e s e n t s i t) t o a t a r g e t e d e n t i t y u ,
where u i s an a g e n t o r a d i g i t a l a r t i f a c t
t h a t r e p r e s e n t s an a g e n t .

2 . I n p u t : u ∈ AG∗S .
3 . P r e c o n d s : u ∈ N or ∃ u′ ∈ N s . t . u′ ∈ {ap}∗s .
4 . P o s t c o n d s : u ∈ N and ∃ u′ ∈ {ap}∗s s.t. u′ ∈ N and (u′, u) ∈ RconnectedTo .
5 . Outpu t : descs(u) .

Agent ap is the source of the intended connection, while the
target of the connection, which is a required input parameter,
is either an agent or a digital artifact that represents it.
The precondition requires that either the source or the target
must already be in the STN. The postcondition specifies that
successfully completing this type of operation implies there
exists a connectedTo edge between the source and the target,
and both have been added to the set of nodes. The output of
a createConnectionTo operation returns a description of the
target. Given an STN s ∈ S , function descs : N → 2E returns
the description of a node n ∈ N as a set of edges. The returned
description is specific to each STN and may be affected by
norms, such as privacy policies (see the previous section).

Implementers may choose to further restrict this operation
within their STNs, for instance by requesting that both the
source and the target of the connection should already exist
within the STN, thus making it a closed STN. Operations for
creating incoming connections or deleting existing connections
are defined similarly. Most other operations in a digital STN,
however, would depend on the digital artifacts within the STN.

3) Common digital artifacts: Digital artifacts that may be
commonly used in STNs include user accounts, groups, mes-

12Rrepresents is a partial function, artifacts may also be purely digital entities.

sages or places. For each artifact, the model defines artifact-
specific relations and operations. Due to space considerations,
we only discuss user accounts, however other artifacts are
defined in a similar fashion.

A user account is typically held by an agent, meaning that
the entity acting via the user account is assumed to have been
delegated by and acting for the agent.13 The user account
may have an associated name, description or local identifier
within the STN. In addition, the user account may also hold
information about the represented agent, such as the owner of
a social thing. Formally, we define UserAccount ∈ ETypes,
{id, name, description, heldBy} ∈ RTypes, and say that ∀ n ∈
N, (n,UserAccount) ∈ Rtype ⇒ (n,DigitalArtifact) ∈ Rtype.
Furthermore, we define RheldBy ⊆ N[UserAccount]× N[Agent]
such that ∀ s ∈ S,O �L (u, a) ∈ RheldBy ⇒ (u, a) ∈ Rrepresents,
that is to say an account heldBy an agent represents the agent.

Creating a user account is defined as follows:
createUserAccount :
1 . Desc : Agent ap c r e a t e s a u s e r a c c o u n t on p l a t f o r m p .
2 . I n p u t : p ∈ P .
3 . P r e c o n d s : ∃ d ∈ DA s.t. d 6∈ N[DigitalArtifact] .
4 . P o s t c o n d s : d ∈ N[UserAccount], (d, ap) ∈ RheldBy, (d, p) ∈ RhostedBy .
5 . Outpu t : descs(d) .

A createUserAccount operation requires as input a platform
p ∈ P , where P ⊂ E is the set of all platforms. In most cases,
platforms would require additional parameters to create a user
account (e.g., a name to be displayed). As a precondition, the
platform must be able to provide a digital artifact that is not
already in use. If the operation is completed successfully, a new
UserAccount artifact is created, which is held by ap and hosted
by platform p, and its description is returned. Operations for
updating or deleting user accounts are defined similarly.

Our mathematical model for digital STNs provides an
unambiguous foundation for the envisioned socio-technical
overlay. Going a step further, we next discuss how digital STNs
may be deployed on the Web.

C. Web-compliant STN platforms

Similar to existing social platforms, a digital STN is
centered around an STN platform, i.e. a system that provides
a collection of features for participating in the STN. In a
Web-compliant STN platform, digital artifacts are mapped
to Web resources and operations are implemented as HTTP
requests. Furthermore, in accordance with the interoperability
principle (see Sec. II), platforms should produce semantic rep-
resentations of digital artifacts and provide machine-readable
interfaces. For this purpose, we have created an OWL ontology,
which we call the STN ontology, that implements our digital
STN model. The STN ontology is available online14 and has
been described in detail in [25].

The STN ontology defines three modules: STN-Core, which
provides the core concepts and properties required to describe
STGs, STN-Operations, which may be used to describe agent
operations, and STN-Operations-HTTP, which may be used
to describe implementations of agent operations as HTTP
requests. The ontology has a modular design such that it may

13An agent may hold multiple user accounts, usually on different platforms.
14http://purl.org/stn/core/spec

be easily extended. For instance, the STN-Operations-HTTP
module may be substituted with any other similar vocabularies
for RESTful APIs, such as Hydra [24], or even with modules
for different protocols, such as CoAP15, a Web protocol for
resource-constrained devices. In the following section, we
apply the STN ontology to create semantic descriptions of
existing platforms.

IV. VALIDATION AND DISCUSSION

This section presents the current validations of our STN
model. We first introduce a prototype STN platform (see
Sec. IV-A). We then report on the use of the STN ontology
to create semantic descriptions for Twitter and Facebook (see
Sec. IV-B). Sec. IV-C presents a software client that may
uniformly access all three platforms based on their semantic
descriptions.

A. ThingsNet: an STN platform

ThingsNet16 is an STN platform that follows our digital
STN model (see Sec. III-B). The platform uses two types
of digital artifacts, user accounts and messages. Artifacts are
identified through HTTP URIs, which makes them globally
accessible, and their states are represented in RDF. ThingsNet
uses the STN ontology and supports Turtle representations.
Its API supports agent operations for creating, retrieving and
deleting user accounts, connections and messages. All opera-
tions are described in ThingsNet’s semantic description:17

@base <h t t p : / / www. t h i n g s n e t . com> .
@pref ix s t n : <h t t p : / / p u r l . o rg / s t n / c o r e#> .
@pref ix s t n−ops : <h t t p : / / p u r l . o rg / s t n / o p e r a t i o n s#> .
@pref ix s t n−h t t p : <h t t p : / / p u r l . o rg / s t n / h t t p#> .
@pref ix h t t p : <h t t p : / / www. w3 . org / 2 0 1 1 / h t t p#> .

<#p l a t f o r m>
a s t n : STNPlatform ;
s t n : name ” ThingsNet ” ;
s t n−h t t p : baseURL <h t t p : / / l o c a l h o s t :9000> ;
s t n−h t t p : s u p p o r t s A u t h s t n−h t t p : WebID ;
s t n−ops : consumes s t n−h t t p : T u r t l e ;
s t n−ops : p r o d u c e s s t n−h t t p : T u r t l e ;
s t n−ops : s u p p o r t s <#c r e a t e A c c o u n t> ,

<#ge tAccount> ,
(. . .)
<#d e l e t e M e s s a g e> .

From this description, a software client may identify
ThingsNet as an stn:Platform, it may extract the sup-
ported STN operations and other general information about the
platform (e.g., the base URL of its API). A social thing should
validate that it supports the required authentication standards
(i.e., WebID) and representation format (i.e., Turtle). Each STN
operation is described further, such as the createUserAccount
operation (cf. Sec. III-B3):
<#c r e a t e A c c o u n t>

a s t n−ops : C r e a t e U s e r A c c o u n t ;
s t n−ops : implementedAs [

a s t n−h t t p : AuthSTNRequest ;
h t t p : methodName ”POST” ;
h t t p : r e q u e s t U R I ” / u s e r s ” ;

] ;
s t n−ops : h a s R e q u i r e d I n p u t [a s t n−ops : S o c i a l T h i n g C l a s s] ;
s t n−ops : h a s R e q u i r e d I n p u t [a s t n−ops : Owner] ;

15https://tools.ietf.org/html/rfc7252/, Accessed: 15.05.2015.
16http://github.com/andreiciortea/thingsnet
17Throughout the rest of this paper, we write RDF snippets in Turtle

representation and use the prefix bindings presented here.

s t n−ops : h a s R e q u i r e d I n p u t [a s t n−ops : DisplayedName] ;
s t n−ops : h a s I n p u t [a s t n−ops : D e s c r i p t i o n] ;
s t n−ops : h a s O u t p u t [

a s t n−h t t p : T u r t l e R e p r e s e n t a t i o n ;
s t n−ops : r e p r e s e n t a t i o n O f [a s t n : UserAccount] ;

] .

ThingsNet relies on WebID to uniquely identify the
agents.18 The platform parameter is implicit (cf. Sec. III-B3).
In addition, ThingsNet requires a number of other parameters
for this operation: the social thing’s class, which may be
stn:SocialThing or any of its subclasses, an URI iden-
tifying the thing’s owner, and a name to be displayed within
the STN. Optionally, a description may also be given. The
operation returns a Turtle representation of a UserAccount (cf.
Sec. III-B3). This operation is implemented as an authenticated
HTTP POST request to the /users endpoint. The body of
the request must contain a Turtle representation of the user
account to be created with all required input parameters. For
instance, a social TV may register to ThingsNet using a WebID
provided by its manufacturer, the WebID of its owner, a
preconfigured class and a user-configured name. ThingsNet
responds with a Turtle representation of the created user
account:
HTTP / 1 . 1 201 C r e a t e d
Conten t−Type : t e x t / t u r t l e
Conten t−Length : 784

@pref ix s t n : <h t t p : / / p u r l . o rg / s t n / c o r e#> .
@pref ix xsd : <h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#> .
@pref ix ex : <h t t p : / / www. example . com#> .

<h t t p : / / l o c a l h o s t : 9 0 0 0 / u s e r s / f8d . . . a16>
a s t n : UserAccount ;
s t n : d e s c r i p t i o n

(”A TV wi th a t w i s t ! ” ˆ ˆ xsd : s t r i n g) ;
s t n : heldBy

<h t t p : / / a p i . mymanufac tu re r . com / t v s / 8 7 4 . . . 2 6 0 # t h i n g> ;
s t n : hos tedBy

<h t t p : / / www. t h i n g s n e t . com# p l a t f o r m> ;
s t n : name

” John ’ s S o c i a l TV ” ˆ ˆ xsd : s t r i n g .

<h t t p : / / a p i . mymanufac tu re r . com / t v s / 8 7 4 . . . 2 6 0 # t h i n g>
a ex : Socia lTV ;
s t n : ownedBy ex : John .

It is worth to note that ThingsNet is an open platform: in
addition to dynamic registration, its registered users may add
connections to agents on other platforms. Other operations,
such as retrieving the profile of a registered user, are made
available to agents outside the network, while they may still
be subject to sharing policies.

B. Compatibility with existing social platforms

We have chosen Twitter and Facebook to highlight the
generality of our approach with respect to the integration of
existing social platforms (see Sec. II): while Twitter users may
be anyone or anything19, Facebook restricts its users to people.
The complete semantic descriptions for the two platforms are
available online20,21.

18While the prototype does not in fact implement the WebID authentication
protocol, it simulates it by passing the WebID as an HTTP header in
an “authenticated” request. The prototype returns a 401 Unauthorized
response whenever authentication data is missing.

19https://dev.twitter.com/overview/api/users/, Accessed: 15.05.2015.
20http://purl.org/stn/twitter
21http://purl.org/stn/facebook

1) An STN description for Twitter: The STN description
we have created for Twitter begins as follows:
@base <h t t p : / / www. t w i t t e r . com/> .

<#p l a t f o r m>
a s t n : P l a t f o r m ;
s t n : name ” T w i t t e r ” ;
s t n−h t t p : baseURL <h t t p s : / / a p i . t w i t t e r . com /1 .1 / > ;
s t n−h t t p : s u p p o r t s A u t h s t n−h t t p : OAuth ;
s t n−ops : consumes s t n−h t t p : JSON ;
s t n−ops : p r o d u c e s s t n−h t t p : JSON ;
s t n−ops : s u p p o r t s <#ge tAccount> ,

<#fo l l ow> ,
(. . .)
<#g e t D i r e c t M e s s a g e s> .

Social things identify the Twitter platform by using the
declared URI http://www.twitter.com/#platform.
Twitter uses OAuth for authentication and supports only JSON
representations. The Twitter API supports most of the opera-
tions available to human users, such as: following and unfol-
lowing users; sending, retrieving and deleting direct messages;
posting, retrieving and deleting tweets. All these operations
are included in its STN description. The createConnectionTo
operation (cf. Sec. III-B2) is applied to Twitter as follows:
<#fo l l ow>

a s t n−ops : C r e a t e C o n n e c t i o n T o ;
s t n−ops : implementedAs [

a s t n−h t t p : AuthSTNRequest ;
h t t p : methodName ”POST” ;
h t t p : r e q u e s t U R I ” / f r i e n d s h i p s / c r e a t e . j s o n ” ;

] ;
s t n−ops : h a s R e q u i r e d I n p u t [

a s t n−ops : UserAccountID ;
s t n−ops : paramName ” screen name ” ;
s t n−h t t p : paramIn s t n−h t t p : Body ;

] ;
s t n−ops : h a s O u t p u t <#twi t te rAccountJSONMapping> .

A social thing may follow a Twitter account by com-
posing and sending an authenticated HTTP POST request to
/friendships/create.json. The request must include
a JSON payload with the identifier of the targeted user account.
Acquiring the Twitter screen name of the targeted account
is part of the application logic (e.g., via crawling or it may
be provided by a human user). If the operation is completed
successfully, Twitter responds with a JSON representation of
the targeted account. The STN description includes a mapping
between a UserAccount digital artifact (cf. Sec. III-B3) and
Twitter’s user account data model:
<#twi t te rAccountJSONMapping>

a s t n−h t t p : J S O N R e p r e s e n t a t i o n ;
s t n−ops : r e p r e s e n t a t i o n O f [a s t n : UserAccount] ;
s t n−ops : c o n t a i n s [

a s t n−h t t p : Mapping ;
s t n−h t t p : t h i r d P a r t y K e y ” screen name ” ;
s t n−h t t p : STNterm s t n : i d ;

] ;
s t n−ops : c o n t a i n s [

a s t n−h t t p : Mapping ;
s t n−h t t p : t h i r d P a r t y K e y ”name” ;
s t n−h t t p : STNterm s t n : name ;

] ;
s t n−ops : c o n t a i n s [

a s t n−h t t p : Mapping ;
s t n−h t t p : t h i r d P a r t y K e y ” d e s c r i p t i o n ” ;
s t n−h t t p : STNterm s t n : d e s c r i p t i o n ;

] .

This mapping enables social things to extract from Twitter’s
JSON response the semantic information necessary for build-
ing an RDF representation of an stn:UserAccount. Other

Fig. 1. The STN Browser: posting a status update on Facebook.

Twitter operations and data model mappings are described in
a similar fashion.

2) An STN description for Facebook: Facebook’s STN
description is similar to the one we have created for Twitter
and is available online22. The Facebook API supports a rich
variety of endpoints for reading data from its social graph.
In particular, several endpoints explore the different facets
of a user’s profile, such as TV shows or music bands the
user liked. On the other hand, support for writing data is
somewhat more limited. For instance, a software client may
post status updates or retrieve private messages on behalf of
a human user, however it may not send private message or
create/accept connection requests. Operations covered in the
STN description include retrieving user profiles, connections,
messages, feeds (i.e., the news feed, user feeds, group feeds),
and group operations (e.g., groups of a given user, members
in a given group, posting messages in groups). The limited
expressivity of the STN ontology is apparent in the case of
Facebook’s rich user profiles. However, our objective was to
create a generic model that would provide the backbone of a
semantic socio-technical overlay. The STN ontology may be
extended further with domain-specific vocabularies.

C. A Browser for STNs

We have developed a Web application for browsing the
socio-technical overlay. The STN browser may retrieve, parse
and use STN descriptions to translate agent operations to
HTTP requests and extract semantic information from the
bodies of HTTP responses. It supports Turtle and JSON,
self-descriptive parameters are preconfigured (e.g., its WebID,
owner’s WebID), while other parameters may be obtained from
a human user (e.g., a Twitter account to follow). Results are
displayed in two areas, as depicted in Fig. 1: the area on the
left shows the raw body of the received response, and the
one on the right shows the extracted semantic information.
We structure our discussion on accessing and using the three
platforms based on the principles introduced in Sec. II.

Things as first-class entities: On ThingsNet, social things
are first-class entities. The APIs of Twitter and Facebook
reflect the important conceptual difference in how they define
their users. On Twitter, social things may use most of the
operations available to people and are thus first-class entities.
Still, social things require manually created Twitter accounts.
On Facebook, social things may perform limited actions and
only on behalf of a human user. Thus, they remain outside

22http://purl.org/stn/facebook

of the network itself, however they may use Facebook as an
artifact (e.g., as a source of information, for user input23).

Interoperability: By using the STN descriptions we have
created, the STN browser is decoupled from the APIs of the
three platforms. Its application logic may use the higher level
concepts and operations provided by the STN model. However,
both Twitter and Facebook use OAuth for authentication and
authorization, and provide proprietary single sign-on systems,
which implies that the browser has to be configured to access
them. ThingsNet relies on WebID (see Sec. IV-A for details),
and thus any STN client supporting the WebID authentication
protocol may access it. ThingsNet is also an open platform,
and thus it may be linked to other STNs.

Regulation: Twitter’s documentation for developers de-
scribes the rate limiting policy in detail and its API provides an
endpoint for retrieving the rate limit status of an application as
structured data. Endpoints for retrieving the platform’s privacy
policy and terms of services as unstructured text are also
available. Therefore, on Twitter regulations are explicit, yet
not all of them in a machine-readable format. Facebook does
not publish official limits for API requests and applications
cannot dynamically obtain such information. ThingsNet does
not currently address this issue.

The STN browser validates that our STN model and
approach enable software clients to access and participate
in heterogeneous social platforms in a uniform fashion. This
interoperability gain provides the foundation for creating the
envisioned socio-technical overlay. What is missing is ex-
plicitly linking closed networks, such as Twitter and Face-
book, into the overlay. This may be achieved by means of
WebID profiles [15], which may use the STN ontology to
create bridges by specifying user accounts held by a thing or
human user on different social platforms, thus making them
discoverable. Software agents may then crawl the overlay to
discover people, things and services, extend it with domain-
specific knowledge, or perform more complex tasks according
to their application logic.

V. RELATED WORK

We position our proposal with respect to related work in
the social Web (see Sec. V-A) and in the emerging landscape
of social systems for the IoT/WoT (see Sec. V-B).

A. An Open and Distributed Social Web

The final report of the W3C Social Web Incubator Group
offers a thorough analysis of the state of the Social Web in
2010 and investigates the requirements and enabling tech-
nologies for a ”truly universal, open, and distributed Social
Web architecture” [21]. We build upon this vision. The main
addition in our proposal is that we focus on integrating things
as first-class entities of an open and distributed social overlay.
This brings a series of new challenges to be addressed. An
important step that we take in this paper is modeling socio-
technical networks.

OpenSocial [20] provides a collection of APIs for building
social Web applications, allowing developers standard access

23Facebook may be used as a user interface container for applications by
integrating tabs in Facebook Pages.

to social information. The initiative was launched by Google,
MySpace and other social platforms, and has strong industry
support. Community support is critical in order to define a stan-
dard API for social platforms. We take a different approach.
First, we create a core model for STNs, and not only social
networks. We then translate our STN model to heterogeneous
platforms by means of semantic descriptions. The advantage of
our approach is that it has no impact on an existing API and
it does not necessarily require buy-in from social platforms.
The obvious drawback, however, is that the expressivity of the
STN ontology, as it is, might be limited for some use cases (see
Sec. IV-B2). However, the goal of the STN model and ontology
is to create the backbone of a semantic socio-technical overlay
that may be used for autonomous reasoning, and they may be
easily extended further with domain-specific knowledge.

The STN ontology is aligned with several well-know
vocabularies, such as FOAF (see [25] for details). FOAF is
a widely accepted vocabulary for describing characteristics of
people, social groups and relations among them. There is a
close matching between many concepts in FOAF and the STN
ontology, and thus social networks described in FOAF can be
easily translated to STNs described using the STN ontology.
FOAF, however, was not designed to accommodate things
as first-class entities in social networks. For instance, while
foaf:knows is symmetric and ”relates a foaf:Person
to another foaf:Person that he or she knows” [16], the
stn:connectedTo property describes a more generic type
of unidirectional connection between persons, smart things and
user accounts. The two properties may be used in conjunction,
and a foaf:knows relation may be represented as two
reciprocal stn:connectedTo properties.

B. Social Systems in the IoT / WoT

In recent years, the idea that pervasive computing could
benefit from social networks is gaining momentum. An exten-
sive discussion of this subject is provided in [26].

A number of research projects have used social networks
for sharing Web-enabled things. For instance, SenseShare [27]
proposed to use Facebook as front end for their system, relying
on the platform’s social graph to provide a set of privacy
policies for sharing. The Social Access Controller [28] went a
step further by providing support for several social platforms
and a central point of access control. Paraimpu [7] is another
social tool that allows users to share their things, discover and
bookmark things shared by other users and compose them for
personalized applications. In Paraimpu, social networks may
also be used as sensors/actuators. Paraimpu is thus similar to
a social mashup editor for the IoT/WoT. In these approaches,
things are digital artifacts controlled and composed by people.

In other work, social networks have been proposed as user
interface containers for WoT applications [8]. The user inter-
face of platforms such as Facebook or the ones implementing
OpenSocial may be extended with plug in applications, thus
providing familiar interfaces for the WoT. Unlike SenseShare,
the authors emphasize the need for WoT applications not to
rely on one given social platform, but rather to be open to
multiple such platforms.

Other research goes a step further and proposes an architec-
ture for a Social Internet of Things (SIoT) [10], in which things

become autonomous through embedding rules to manage a
predefined set of categories of relations (e.g. objects from the
same production batch, objects belonging to the same user).
Things are also compliant to any privacy policies imposed
by their owners. One of the central problems approached
in SIoT-related research is network navigability and finding
strategies for search optimization [29]. In our work, we are
more interested to integrate things into the Web’s social overlay
and build open and interoperable STNs. Our model is generic
enough to be extended with any set of predefined categories
of social relations. In our model, rules, policies and norms
may be expressed in a normative layer that is external to
the agents, therefore providing greater flexibility for adding
new categories of relations, as defined in the SIoT, and for
dynamically changing the rules associated to each category.

VI. CONCLUSIONS

Modern Web applications are driven by social constructs.
We believe that extending these constructs to things, and thus
applying the social network metaphor to the WoT, would not
only help users manage the envisioned complexity of the WoT,
but would also add huge value to the development of WoT
applications. In this paper, we have introduced a model for
socio-technical networks, which are the building blocks of a
semantic socio-technical overlay for the WoT. This overlay
may be reliably processed both by people and social things
and used for autonomous reasoning. Social things are first-
class entities in this overlay. They may autonomously manage
their connections, either according to their application logic
or rules defined by an external authority, and perform any
other domain-specific operations supported by the underlying
platforms. We have applied our STN model and ontology
in the development of an open STN platform, but also to
create STN descriptions for Twitter and Facebook, two of the
social platforms with the highest user adoption24. We have
implemented a software client that may access and use all three
platforms based on their semantic descriptions, while being
agnostic to their APIs.

REFERENCES

[1] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture
for the web of things,” in Internet of Things (IOT), 2010. IEEE, 2010,
pp. 1–8.

[2] D. Guinard, “A web of things application architecture: Integrating the
real-world into the web,” Ph.D. dissertation, 2011.

[3] S. Mayer, D. Guinard, and V. Trifa, “Searching in a web-based
infrastructure for smart things,” in Internet of Things (IOT), 2012 3rd
International Conference on the. IEEE, 2012, pp. 119–126.

[4] B. Ostermaier, K. Romer, F. Mattern, M. Fahrmair, and W. Kellerer,
“A real-time search engine for the web of things,” in Internet of Things
(IOT), 2010. IEEE, 2010, pp. 1–8.

[5] M. Blackstock and R. Lea, “Iot mashups with the wotkit,” in Internet of
Things (IOT), 2012 3rd International Conference on the. IEEE, 2012,
pp. 159–166.

[6] R. Kleinfeld, L. Radziwonowicz, and C. Doukas, “glue. things–a
mashup platform for wiring the internet of things with the internet of
services,” in Proceedings of the 4th International Conference on the
Internet of Things, 2014.

[7] A. Pintus, D. Carboni, and A. Piras, “Paraimpu: a platform for a social
web of things,” in Proceedings of the 21st international conference
companion on World Wide Web. ACM, 2012, pp. 401–404.

24As of March 31, 2015, Facebook reports 1.44 billion monthly active users
(http://newsroom.fb.com/company-info/).

[8] M. Blackstock, R. Lea, and A. Friday, “Uniting online social networks
with places and things,” in Proceedings of the Second International
Workshop on Web of Things. ACM, 2011, p. 5.

[9] A. Ciortea, O. Boissier, A. Zimmermann, and A. M. Florea, “Recon-
sidering the social web of things: position paper,” in Proceedings of the
2013 ACM conference on Pervasive and ubiquitous computing adjunct
publication. ACM, 2013, pp. 1535–1544.

[10] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The social internet of
things (siot)–when social networks meet the internet of things: Concept,
architecture and network characterization,” Computer Networks, vol. 56,
no. 16, pp. 3594–3608, 2012.

[11] R. H. Bordini, L. Braubach, M. Dastani, J. J. Gomez-Sanz, J. Leite,
A. Pokahr, and A. Ricci, “A survey of programming languages and
platforms for multi-agent systems,” 2006.

[12] R. H. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni, “Multi-
agent programming: Languages, tools and applications,” 2009.

[13] A. Omicini, A. Ricci, and M. Viroli, “Artifacts in the a&a meta-model
for multi-agent systems,” Autonomous agents and multi-agent systems,
vol. 17, no. 3, pp. 432–456, 2008.

[14] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mor-
timore, “OpenID Connect Core 1.0,” http://www.openid.net/specs/
openid-connect-core-1 0.html, February 2014, accessed: 2014-05-15.

[15] A. Sambra and S. Corlosquet, “WebID 1.0 - Web Identity and
Discovery, W3C Editor’s Draft 30 April 2015,” W3C IG Editor’s
draft, Apr. 30 2015. [Online]. Available: https://dvcs.w3.org/hg/WebID/
raw-file/tip/spec/identity-respec.html

[16] D. Brickley and L. Miller, “FOAF Vocabulary Specification 0.99
(Paddington Edition),” Jan. 14 2014. [Online]. Available: http:
//xmlns.com/foaf/spec

[17] J. A. Goguen and R. M. Burstall, “Institutions: Abstract model theory
for specification and programming,” Journal of the ACM (JACM),
vol. 39, no. 1, pp. 95–146, 1992.

[18] J. F. Hubner, J. S. Sichman, and O. Boissier, “Developing organised
multiagent systems using the moise+ model: programming issues at
the system and agent levels,” International Journal of Agent-Oriented
Software Engineering, vol. 1, no. 3, pp. 370–395, 2007.

[19] M. Dastani, D. Grossi, J.-J. C. Meyer, and N. Tinnemeier, “Normative
multi-agent programs and their logics,” in Knowledge Representation
for Agents and Multi-Agent Systems. Springer, 2009, pp. 16–31.

[20] The OpenSocial Foundation, “OpenSocial Specification 2.5.1,” http:
//opensocial.github.io/spec/2.5.1/OpenSocial-Specification.xml, August
2013, accessed: 2015-05-15.

[21] H. Halpin and M. Tuffield, “A Standards-based, Open and Privacy-
Aware Social Web,” http://www.w3.org/2005/Incubator/socialweb/
XGR-socialweb-20101206/, December 2010.

[22] U. Bojars and J. G. Breslin, “SIOC Core Ontology Specification,” http:
//rdfs.org/sioc/spec/, March 2010, accessed: 2015-05-15.

[23] J. Lieberman, R. Singh, and C. Goad, “W3C Geospatial Vocabu-
lary,” http://www.w3.org/2005/Incubator/geo/XGR-geo/, October 2007,
accessed: 2014-03-24.

[24] M. Lanthaler and C. Gütl, “Hydra: A vocabulary for hypermedia-driven
web apis.” in LDOW. Citeseer, 2013.

[25] A. Ciortea, O. Boissier, A. Zimmermann, and A. M. Florea, “Open and
interoperable socio-technical networks,” in To appear. Post-proceedings
of the 16th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, 2014.

[26] A. M. Ortiz, D. Ali, S. Park, S. N. Han, and N. Crespi, “The cluster
between internet of things and social networks: Review and research
challenges.”

[27] T. Schmid and M. B. Srivastava, “Exploiting social networks for sensor
data sharing with senseshare,” Center for Embedded Network Sensing,
2007.

[28] D. Guinard, M. Fischer, and V. Trifa, “Sharing using social networks in
a composable web of things,” in Pervasive Computing and Communica-
tions Workshops (PERCOM Workshops), 2010 8th IEEE International
Conference on. IEEE, 2010, pp. 702–707.

[29] M. Nitti, L. Atzori, and I. P. Cvijikj, “Network navigability in the social
internet of things,” in Internet of Things (WF-IoT), 2014 IEEE World
Forum on. IEEE, 2014, pp. 405–410.

http://www.openid.net/specs/openid-connect-core-1_0.html
http://www.openid.net/specs/openid-connect-core-1_0.html
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html
http://xmlns.com/foaf/spec
http://xmlns.com/foaf/spec
http://opensocial.github.io/spec/2.5.1/OpenSocial-Specification.xml
http://opensocial.github.io/spec/2.5.1/OpenSocial-Specification.xml
http://www.w3.org/2005/Incubator/socialweb/XGR-socialweb-20101206/
http://www.w3.org/2005/Incubator/socialweb/XGR-socialweb-20101206/
http://rdfs.org/sioc/spec/
http://rdfs.org/sioc/spec/
http://www.w3.org/2005/Incubator/geo/XGR-geo/

	Introduction
	Towards a Web of People and Social Things
	Socio-technical Networks
	A general model for STNs
	Digital STNs
	Types
	Agent operations
	Common digital artifacts

	Web-compliant STN platforms

	Validation and Discussion
	ThingsNet: an STN platform
	Compatibility with existing social platforms
	An STN description for Twitter
	An STN description for Facebook

	A Browser for STNs

	Related Work
	An Open and Distributed Social Web
	Social Systems in the IoT / WoT

	Conclusions
	References

