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Abstract. RDF provides the means to publish, link, and consume heterogeneous
information on the Web of Data, whereas OWL allows the construction of ontolo-
gies and inference of new information that is implicit in the data. Annotating RDF
data with additional information, such as provenance, trustworthiness, or tempo-
ral validity is becoming more and more important in recent times; however, it is
possible to natively represent only binary (or dyadic) relations between entities in
RDF and OWL. While there are some approaches to represent metadata on RDF,
they lose most of the reasoning power of OWL. In this paper we present an exten-
sion of Welty and Fikes’ 4dFluents ontology—on associating temporal validity to
statements—to any number of dimensions, provide guidelines and design patterns
to implement it on actual data, and compare its reasoning power with alternative
representations.
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1. Introduction

The Resource Description Framework (RDF) represents statements as triples that
typically match phrases with a subject, a verb and a complement. However, it is often the
case that more complex information has to be encoded, such as qualifying a statement
with its origin, its validity within a time frame, its degree of certainty, and so on. In this
case, one may have to represent statements about a statement. We describe this as an
annotated statement. However, with the RDF model it is only possible to represent binary
(or dyadic) relations between subject and object [10]. In order to represent additional
data about statements it is usually needed to use external annotations, extend either the
data model [1] or the semantics of RDF [4, 11], or use design patterns to represent that
information [2, 12].

On the other hand, RDF Schema (RDFS) and the Web Ontology Language (OWL)
add formal semantics to RDF, making it possible to infer new statements from pre-
existing knowledge. However, when data is annotated using the previous approaches, the
inferences in the original dataset are no longer possible, or the new inferred data is miss-
ing part of the annotations. For instance, OWL allows to define a relation between two
resources as transitive. In that case, if a resource A is related to another resource Busing
that property, and B is in turn related with another resource C with the same property,
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then it is inferred that A and C are also related. This inference is not preserved when us-
ing Reification, a classic approach to reference a triple and annotate it with metadata, that
removes the original triple and replaces it with four new triples to identify the statement
and describe the position of each element of the original triple.

Along these lines, Welty and Fikes [16] proposed an ontology for representing tem-
porally changing information using a perdurantist view, where statements are asserted
over temporal slices of entities, retaining most reasoning capabilities. This approach can
be generalized to annotate data not only with temporal information, but with information
from any dimension [15]. However, modeling several context dimensions for a statement
is not straightforward and presents some challenges. In this work, we propose a general-
ization of Welty and Fikes model in the form of a generic ontology that can be extended
to implement any number of concrete metadata dimensions, while preserving reasoning
capacity relative to each dimension.

The rest of the paper is structured as follows: Section 2 presents the 4dFluents on-
tology for annotating statements with temporal data; Section 3 introduces NdFluents,
the generalization of 4dFluents to annotate statements with any number of context di-
mensions; Section 4 describes three design patterns that can be used to model a com-
bination of context dimensions; Section 5 discusses issues and possible solutions when
representing metadata with NdFluents; Section 6 compares the reasoning capabilities of
NdFluents with other current approaches to represent metadata about statements in RDF;
Section 7 portrays related work; finally, we present some conclusions in Section 8.

2. Welty and Fikes’ 4dFluents Ontology

Welty and Fikes [16] address the problem of representing fluents, i.e., relations that
hold within a certain time interval and not in others. They address the issue from the
perspective of diachronic identity (that is, how an entity looks to be different at different
times), showcasing the two ways of tackling it:

• The endurantist (3D) view maintains a differentiation between endurants, entities
that are present at all times during its whole existence, and perdurants, events
affecting an entity during a definite period of time during the entity’s existence.

• The perdurantist (4D) view argues that entities themselves have to be handled
as perdurants, i.e., temporal parts of a four dimensional meta-entity. Instead of
making an assertion about some entities, such as “Paris is the capital of France”,
one should make the assertion about their temporal parts: “A temporal part of
Paris (since 508 up to now) is the capital of a temporal part of France (since 508
up to now)”.

Welty and Fikes adopt the perdurantist approach to create the 4dFluents ontology,
representing entities at a time and using them as resources for their statements. The
4dFluents ontology expressed in OWL2 Functional Syntax is shown in Ontology 1.

In order to use the ontology for describing fluents, one has to introduce axioms at
the terminological level (TBox) as well as assertions in the knowledge base (ABox). For
instance, if one wants to say that “Paris is the capital of France” since 508, the relation
“capital of” has to be a subproperty of fluentProperty and new individuals have to be
introduced for the temporal part of Paris and of France, as shown in Ontology 2.

In this way, temporal information can be represented with standard OWL semantics,
preserving reasoning capabilities.
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Prefix( 4d:=<http://www.example.com/4dFluents#> )

Ontology( <http://www.example.com/4dFluents>

Declaration( Class( 4d:Interval ) )

Declaration( Class( 4d:TemporalPart ) )

DisjointClasses( 4d:Interval 4d:TemporalPart )

Declaration( ObjectProperty( 4d:fluentProperty ) )

ObjectPropertydimension( 4d:fluentProperty 4d:TemporalPart )

ObjectPropertyRange( 4d:fluentProperty 4d:TemporalPart )

Declaration( ObjectProperty( 4d:temporalExtent ) )

FunctionalObjectProperty( 4d:temporalExtent )

ObjectPropertydimension( 4d:temporalExtent 4d:TemporalPart )

ObjectPropertyRange( 4d:temporalExtent 4d:Interval )

Declaration( ObjectProperty( 4d:temporalPartOf ) )

FunctionalObjectProperty( 4d:temporalPartOf )

ObjectPropertydimension( 4d:temporalPartOf 4d:TemporalPart )

ObjectPropertyRange( 4d:temporalPartOf ObjectComplementOf( 4d:Interval ))

)
Ontology 1: 4dFluents ontology (from [16])

Declaration( ObjectProperty( ex:capitalOf ) )

SubObjectPropertyOf( ex:capitalOf 4d:fluentProperty )

ClassAssertion( 4d:TermporalPart ex:Paris@508 )

ClassAssertion( 4d:TermporalPart ex:France@508 )

ClassAssertion( 4d:Interval ex:year508) )

ObjectPropertyAssertion( ex:capitalOf ex:Paris@508 ex:France@508 )

ObjectPropertyAssertion( 4d:temporalExtent ex:Paris@508 ex:year508 )

ObjectPropertyAssertion( 4d:temporalExtent ex:France@508 ex:year508 )

ObjectPropertyAssertion( 4d:temporalPartOf ex:Paris@508 ex:Paris )

ObjectPropertyAssertion( 4d:temporalPartOf ex:France@508 ex:France )

Ontology 2: Expressing a fact about a fluent entity with the 4dFluents ontology

3. The NdFluents Ontology

A temporal part of an entity can be viewed as an individual context dimension of
the entity. A similar approach can then be used to represent different dimensions, such
as provenance or confidence. Continuing with our running example, if Wikipedia states
that “Paris is the capital of France”, we can articulate that fact as “Paris as defined by
Wikipedia is the capital of France as defined by Wikipedia”. Different context dimensions
of an entity could then be combined if applicable, allowing the representation of complex
information, such as: “A temporal part of Paris as defined by Wikipedia is the capital of
a temporal part of France as defined by Wikipedia”.

We use this idea to extend the 4dFluents ontology for an arbitrary number of context
dimensions in the NdFluents ontology. The ontology, shown in Ontology 3, and pub-
lished in http://www.emse.fr/~zimmermann/ndfluents.html, is a generalization
from temporal parts to contextual parts.

Note that FunctionalObjectProperty( nd:contextualExtent ) axiom is not
present in the ontology. This axiom should appear if the ontology was a direct translation
from temporal dimension to a generic context dimension, but it is no longer applicable
when we have more than one dimension simultaneously.

http://www.emse.fr/~zimmermann/ndfluents.html
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Prefix( nd:=<http://purl.org/NET/NdFluents#> )

Ontology( <http://purl.org/NET/NdFluents>

Declaration( Class( nd:Context ) )

Declaration( Class( nd:ContextualPart ) )

DisjointClasses( nd:Context nd:ContextualPart )

Declaration( ObjectProperty( nd:contextualProperty ) )

ObjectPropertydimension( nd:contextualProperty nd:ContextualPart )

ObjectPropertyRange( nd:contextualProperty nd:ContextualPart )

Declaration( ObjectProperty( nd:contextualExtent ) )

ObjectPropertydimension( nd:contextualExtent nd:ContextualPart )

ObjectPropertyRange( nd:contextualExtent nd:Context )

Declaration( ObjectProperty( nd:contextualPartOf ) )

FunctionalObjectProperty( nd:contextualPartOf )

ObjectPropertydimension( nd:contextualPartOf nd:ContextualPart )

ObjectPropertyRange( nd:contextualPartOf ObjectComplementOf( nd:Context ))

)
Ontology 3: The NdFluents ontology

The NdFluents ontology is meant to be implemented for different context dimen-
sions in a modular way. In this sense, the 4dFluents ontology can be seen as a con-
crete implementation of NdFluents, as we show in Ontology 4. In Figure 1a we show
the representation of a statement with temporal annotations using this ontology. The
non-dashed parts are equivalent to the original 4dFluents ontology, while the dashed
parts correspond to the NdFluents extension. Other dimensions, such as provenance,
can be modeled similarly to the temporal dimension by replacing TemporalPart with
ProvenancePart, temporalExtent with provenanceExtent, Interval with Provenance,
and temporalPartOf with provenancePartOf. Additionally, an assertion like “Paris is
the capital of France, according to Wikipedia” can be modeled following the same pat-
tern as in Ontology 2, replacing the property and class names with their counterparts in
the provenance dimension.

Prefix( nd:=<http://purl.org/NET/ndfluents#> )

Prefix( 4d:=<http://purl.org/NET/ndfluents/4dFluents#>)

Ontology( <http://www.example.com/4dFluentsV2>

Import( <http://www.example.com/NdFluents> )

Declaration( Class( 4d:Interval ) )

SubClassOf( 4d:Interval nd:Context )

Declaration( Class( 4d:TemporalPart ) )

SubClassOf( 4d:TemporalPart nd:ContextualPart )

Declaration( ObjectProperty( 4d:temporalExtent ) )

SubObjectPropertyOf( 4d:temporalExtent nd:contextualExtent )

ObjectPropertydimension( 4d:temporalExtent 4d:TemporalPart )

ObjectPropertyRange( 4d:temporalExtent 4d:Interval )

Declaration( ObjectProperty( :temporalPartOf ) )

SubObjectPropertyOf( 4d:temporalExtent nd:contextualPartOf )

ObjectPropertydimension( 4d:temporalPartOf 4d:TemporalPart )

)
Ontology 4: 4dFluents ontology as implementation of NdFluents
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4. Design Patterns

An important scenario where NdFluents becomes relevant is when the necessity of
combining two or more context dimensions arises, such as “According to Wikipedia,
Paris is the capital of France since 508”. In this section we present three design patterns
to combine different dimensions, along with added axioms that can be necessary depend-
ing on the modeling needs. Methodological support for choosing and implementing a
design pattern can be found at Giménez-Garcı́a et al. [3]

4.1. Contexts in Context

One possible model to represent information using different context dimensions is to
relate a ContextualPart to another ContextualPart. This approach can be taken when
the “first level” annotations are relevant facts of the knowledge base, and the intention is
to state additional information about them. To be able to reason about different annotation
levels of any entity, it is desirable for the contextualPartOf property to be transitive,
which can be achieved by adding the axiom of Ontology 5.

While data about different dimensions can be more fine-grained using this model,
it also grows in complexity. For example, in Figure 1b the statement capitalOf is re-
lated to the ProvenancePart Paris@1.1. This information is in no way related to the
TemporalPart Paris@1. While we could have this statement duplicated in the example,
this can become unfeasible when we start adding more contextual parts to the data. We
believe that this pattern can be useful in some specific cases, but it is usually too cum-
bersome.

Prefix( nd:=<http://purl.org/NET/ndfluents#> )

Ontology( <http://purl.org/NET/ndfluents/transitivecontextualpartof>

TransitiveObjectProperty( nd:contextualPartOf )

)
Ontology 5: Transitive axiom for NdFluents ontology

4.2. Use Multiple Contextual Extents on each Contextual Part

A generic approach for representing entities with more than one context dimension
is to have ContextualParts with more than one contextual extent. Using this model,
only one ContextualPart is created for a combination of context dimensions. This
ContextualPart is then related to all related contextual extents, as shown in Figure 1c.
This pattern is easier to model: Relating the ContextualPart with the context dimensions
is straightforward. It also avoids ambiguity when modeling annotations related to more
than one dimension, and reduces the number of resources in the ontology (i.e., while the
previous model needed one ContextualPart for each dimension involved, this approach
only requires one). Note that contextualPartOf is a functional property, which means
that there cannot be a contextualPartOf of more than one entity.

4.3. Combine Different Contexts on one Contextual Extent

Finally, a third possibility is to create compound Contexts, and enforce a limit of
only one Context per ContextualPart. This model adds a layer of complexity to the
previous approach, but it can be useful to require a specific combination of dimensions
on a set of ContextualParts. This can be achieved by adding the axiom in Ontology 6.
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TemporalPart
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Figure 2. Example of Annotated Datatype Property

We show an example of this approach on Figure 1d. Note that the combined classes
and properties are subclasses and subproperties of the corresponding classes and proper-
ties of the two context dimensions they are combining (e.g., Temporal+ProvenancePart
is subclass of TemporalPart and ProvenancePart). As a result, querying and reasoning
can be performed in an identical way as the previous approach.

Prefix( nd:=<http://purl.org/NET/ndfluents#> )

Ontology( <http://purl.org/NET/ndfluents/functionalcontextualExtent>

FunctionalObjectProperty( nd:contextualExtent )

)
Ontology 6: Functional contextual extents axiom for NdFluents ontology

5. Additional Considerations

In this section we discuss issues that may arise when modeling annotations using
fluents, and possible approaches to deal with them if they exist. While the first one is
common to the original 4dFluents ontology, the second is only relevant when dealing
with more than one context dimension.

5.1. Dealing with Datatype Properties

The original 4dFluents ontology does not provide any information for modeling
datatype properties. While there is nothing that prevents using regular datatype proper-
ties with ContextualParts of an entity, it may be desirable to declare explicit axioms for
annotation properties to facilitate reasoning on that information. In that case, the state-
ments of Ontology 7 need to be added to the NdFluents ontology. Figure 2 shows an
example where a annotated property is used to state the population of Paris in a specific
temporal interval. Note that it is also possible to create specific contextualProperty sub-
properties for different context dimensions (i.e., temporalProperty for TemporalPart)
for properties related to concrete context dimensions.

Prefix( nd:=<http://purl.org/NET/ndfluents#> )

Ontology( <http://purl.org/NET/ndfluents/annotatedDatatypeProperty>

Declaration( DataProperty( nd:annotatedDatatypeProperty ) )

DataPropertydimension ( nd:annotatedDataProperty nd:ContextualPart )

)
Ontology 7: Datatype axioms for NdFluents ontology

5.2. Relations between ContextualParts of Different Dimensions

The NdFluents ontology presented thus far allows the modeling of relations among
different ContextualParts of different dimensions (i.e., a TemporalPart of Paris could
be the capital of a ProvenanceSlice of France). While this can be convenient for individ-
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ual cases, it is often needed for an contextualProperty to be related to ContextualParts

of the same dimension. In this case, it is necessary to add the appropriate axioms to the
ontology. In Ontology 8 we show the needed axioms to include this restriction on the
TemporalParts. Conversely, if there are datatype properties related to specific dimen-
sions, axioms from Ontology 9 should be added.

Prefix( nd:=<http://purl.org/NET/ndfluents#> )

Prefix( 4d:=<http://purl.org/NET/ndfluents/4dFluents#>)

Ontology( <http://purl.org/NET/ndfluents/4dFluents/temporalpartrestriction>

Declaration( ObjectProperty( 4d:fluentProperty ) )

SubObjectPropertyOf( 4d:fluentProperty nd:contextualProperty )

ObjectPropertydimension( 4d:fluentProperty 4d:TemporalPart )

ObjectPropertyRange( 4d:fluentProperty 4d:TemporalPart )

)
Ontology 8: Temporal restriction on object properties 4dFluents ontology

Prefix( nd:=<http://purl.org/NET/ndfluents#> )

Prefix( 4d:=<http://purl.org/NET/ndfluents/4dFluents#>)

Ontology( <http://purl.org/NET/ndfluents/4dFluents/temporalpartrestriction>

Declaration( DataProperty( 4d:fluentDataTypeProperty ) )

SubDataPropertyOf( 4d:fluentDataTypeProperty nd:contextualProperty )

DataPropertydimension( 4d:fluentProperty 4d:TemporalPart)

)
Ontology 9: Temporal restriction on datatype properties 4dFluents ontology

In a similar fashion, it is usually desirable that ContextualParts of the same di-
mension relate to the same Context. That is, if a Provenance Part of Paris relates
to a ProvenancePart of France, their provenanceExtent properties should have the
same ProvenancePart object. However, this restriction cannot be expressed in OWL. If
needed, a rule language (such as SWRL [7] or RIF[8]) can be used for this purpose, but
this case goes beyond the scope of this paper.

6. Reasoning with Annotated Data

In this section, we compare the reasoning capabilities of the NdFluents ontology
with other approaches to annotate statements, namely RDF reification, N-ary relations,
and singleton property. The interest is to know what RDFS and OWL entailments are
preserved wrt the original unannotated data. For that, we need to formally define what
annotations and entailment preservation mean. We assume that annotated statements can
be described as a pair (G,A) where G is the graph corresponding to the statements that
are annotated, and A denotes the annotations on G. The structure of A could be arbitrarily
complex (e.g., containing dates, creator, provenance) but for the sake of this section and
to simplify the presentation, we simply assume that the annotation structure is identified
with an IRI. Thus, we approximate the notion of annotated statements with the concept
of named graphs, i.e., pairs (n,G) where n is an IRI and G is an RDF graph. However,
there is no standard way of reasoning with named graphs [19]. Our objective then is to
compare approaches that convert annotated statements into RDF graphs. We name such
approaches RDF representation of annotated statements and formalize it as follows.
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Definition 1 (RDF representation of annotated statements) An RDF representation
of annotated statements is a function f that maps annotated statements (in our simplified
model, named graphs) (n,G) to an RDF graph f (n,G).

For examples of this function, refer to subsection 6.1, where we describe four exist-
ing models to annotate statements and present their corresponding functions.

We want to assess to what extent each representation is preserving entailment with
the notions of entailment preservation (when the entailment preserves also the annota-
tions) and non-contextual entailment preservation (when only the original entailment is
preserved) defined as follows.

Definition 2 (Entailment preservation) Let G1 and G2 be two RDF graphs such that
G1 |= G2 and f be an RDF representation of annotated statements.1 We say that f pre-
serves the entailment between G1 and G2 iff for all annotation IRI n, f (n,G1) |= f (n,G2).

Definition 3 (Non-Contextual Entailment preservation) Let G1 and G2 be two RDF
graphs such that G1 |= G2 and f be an RDF representation of annotated statements.1

We say that f non-contextually preserves the entailment between G1 and G2 iff for all
annotation IRI n, f (n,G1) |= G2.

We generalize these notions to the case of entailment rules of the form P(x)←
Q(x,y), where P and Q are graph patterns and x, y are tuples of variables used in the
patterns.

Definition 4 (Rule preservation) Let R = P(x)← Q(x,y) be a rule and f an RDF rep-
resentation of annotated statements. We say that f preserves the rule R iff for all map-
pings µ from variables in x and y to RDF terms, f (n,Q(µ(x),µ(y))) |= f (n,P(µ(x))).

Definition 5 (Non-Contextual Rule preservation) Let R = P(x)← Q(x,y) be a rule
and f an RDF representation of annotated statements. We say that f non-contextually
preserves the rule R iff for all mappings µ from variables in x and y to RDF terms,
f (n,Q(µ(x),µ(y))) |= P(µ(x)).

For example, if we have an inference rule that allows us to infer that (France,

hasCapital,Paris) from the triple (Paris,capitalOf,France), and we have an rep-
resentation of annotated statements for (Paris,capitalOf,France),(508,now), rule
preservation would allow us to infer (France, hasCapital,Paris),(508,now), while
non-contextual rule preservation would allow to infer France, hasCapital,Paris from
the annotated triple. Note this kind of inferences function annotates triples of the con-
dition but the conclusion is not annotated are not always desirable. This will be further
explained in subsection 6.2.

In the following subsections we first present the RDF representation of annotated
statements (see Definition 1) for the representation approaches, and then proceed to com-
pare the rule preservation for each one of them.

1This definition can apply to any entailment regime so that it is not necessary to specify what the relation |=
exactly is.
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6.1. RDF representation approaches

• Reification2 is the standard W3C model to represent information about an state-
ment, proposed in 2004. A triple is represented as an instance of rdf:Statement,
that relates to the original triple with the properties rdf:subject, rdf:predicate
and rdf:object. Then, a triple (s, p,o) is replaced by the following set:
{(i,rdf:type,rdf:Statement), (i,rdf:subject,s), (i,rdf:predicate, p), (i,rdf:
object,o)}, and annotations are related to i.

• N-Ary relations [12] were proposed in 2006 to represent relations between more
than two individuals, or to describe the relation themselves. In this model, an
individual is created to represent the relation, which can be used as the subject for
new statements. Thus, a triple (s, p,o) is replaced by the following set: {(s, p′1,r),
(r, p′2,o)}, and annotations are related to r.

• The Singleton Property [11] is a recent proposal to represent information
about statements in RDF. A particular instance of the predicate is created
for every triple. This instance is related to the original predicate by the
singletonPropertyOf property. Then, each statement can be unequivocally refer-
enced using its predicate for attaching additional information. Therefore, a triple
(s, p,o) is replaced by the set: {(s, p′,o), (p′,sp:singletonPropertyOf, p)}, and
annotations are related to p′.

• NdFluents, the approach presented in this paper, creates a contextualized indi-
vidual for both subject and object (in case it is a URI or blank node) of the triple.
The triple is the replaced by a new one that uses the contextualized individuals.
These two new resources are related to the original individuals and with a Con-
text, where the annotations are attached. Hence, the original triple (s, p,o) is re-
placed by the following set of triples {(sc, p,oc), (sc,nd:contextualPartOf,s),
(oc,nd:contextualPartOf,o), (sc,nd:contextualExtent,c), (oc,nd:contextual
Extent,c)}, where c is a function of the context. Annotations are related to c.

.

6.2. Comparison of rule preservation

For comparing how entailment is preserved in each of the 4 approaches presented in
Section 6.1, we analyze which rules from the pD* fragment of OWL ter Horst [14] are
preserved. This fragment is a modified subset of RDFS and OWL that can be expressed
as a complete set of rules and is computationally feasible. For each rule, we check if is in
accordance with Rule Preservation and Non-Contextual Rule Preservation (i.e., for the
former, if the inference rule holds when we apply the RDF representation of annotated
statements function to both condition and conclusion; for the latter, if it holds when we
apply the function only to the condition). It is important to note that the representation
approaches are usually used to annotate data on relations between resources. For this
reason, we decide to implement the representations on triples that do not include RDF,
RDFS, or OWL vocabularies.

Table 1 shows the D* (modified RDFS) entailment rules and rule preservations for
each one of the approaches, whereas Table 2 presents the same information for P entail-
ments (modified subset of OWL). Note that we remove those rows where both condition

2https://www.w3.org/TR/2004/REC-rdf-primer-20040210/#reification

https://www.w3.org/TR/2004/REC-rdf-primer-20040210/#reification
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Table 1. Preserved D* entailments (P = Rule Preservation, PNC = Non-Contextual Rule Preservation, ! = Risk
of undesirable inference)

Rule Condition Constraint Conclusion Reif. N-Ary S.P. NdF
lg v p l l ∈ L v p bl P P P P
gl v p bl l ∈ L v p l P P P P
rdf1 v p w p type Property P P
rdf2-D v p l l = (s,a) ∈ L+D bl type a P P P P
rdfs1 v p l l ∈ Lp bl type Literal P P P P
rdfs2 p domain u

v p w v type u P!
rdfs3 p range u

v p w w ∈U ∪B w type u P!
rdfs4a v p w v type Resource P P P P
rdfs4b v p w w ∈U ∪B w type Resource P P P P
rdfs7x p subPropertyOf q

v p w q ∈U ∪B v q w PNC ! P

Table 2. Preserved P-Entailments (P = Rule Preservation, PNC = Non-Contextual Rule Preservation, ! = Risk
of undesirable inference)

Rule Condition Constraint Conclusion Reif. N-Ary S.P. NdF
rdfp1 p type FunctionalProperty

u p v
u p w v ∈U ∪B v sameAs w P!

rdfp2 p type InverseFunctionalProperty

u p w
v p w v sameAs w P!

rdfp3 p type SymmetricProperty

v p w w ∈U ∪B w p v PNC ! P
rdfp4 p type TransitiveProperty

u p v
v p w u p w PNC ! P

rdfp5a v p w v sameAs v P P P P
rdfp5b v p w w ∈U ∪B w sameAs w P P P P
rdfp8ax p inverseOf q

v p w w,q ∈U ∪B w q v PNC ! P
rdfp8bx p inverseOf q

v q w w ∈U ∪B w p v PNC ! P
rdfp11 u p v

u sameAs u′

v sameAs v′ u′ ∈U ∪B u′ p v′ P P PNC !
rdfp14a v hasValue w

v onProperty p
u p w u type v P!

rdfp14bx v hasValue w
v onProperty p
u type v p ∈U ∪B u p w PNC PNC PNC PNC

rdfp15 v someValuesFrom w
v onProperty p
u p x
x type w u type v P!

rdfp16 v allValuesFrom w
v onProperty p
u type v
u p x x ∈U ∪B x type w P!

Table 3. Conclusions for rules with no rule preservation for NdFluents
Rule Conclusion Rule Conclusion Rule Conclusion
rdfs2 vc type u rdfp1 vc sameAs wc rdfp14a uc type v
rdfs3 wc type u rdfp2 vc sameAs wc rdfp15 uc type v
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and conclusion include only triples with RDF, RDFS, or OWL vocabularies. A P indi-
cates that there is rule preservation for the corresponding approach, while a PNC denotes
non-contextual rule preservation. As mentioned in Section 6, it is worth noting that not
all rule preservations are desirable. When the preserved rule entails new knowledge on
the non-annotated graph, and the annotated triples are not universally true, then the infer-
ences can lead to conclusions that do not conform with real-world knowledge. This hap-
pens when the RDF representation of annotated statements function annotates at least
one triple of the condition, and either we have non-contextual rule preservation, or we
have rule preservation but the function does not annotate the triple in the conclusion.
This is actually what happens with the Singleton Property for the rules rdfs2, rdfs3, and
rdfs7x from the D*-entailments ruleset, and rules rdfp1, rdfp2, rdfp3, rdfp4, rdfp8ax,
rdfp8bx, rdfp11, rdfp14a, rdfp15, and rdfp16 (identified in the table with an exclama-
tion mark), due to the RDFS interpretation that considers the singleton property as be-
longing to the extension of the original property [11, Section 3]. While there is no prob-
lem if the annotated fact is universally true (i.e., we just want to provide additional infor-
mation about a fact), it leads to undesirable conclusions when the context of the annota-
tion is related with the identity of the resources (such as provenance or trust contexts),
where we want to express that something is true only according to a source, or with a
degree of confidence. For instance, let us suppose a functional property birthplace that
we want to use in the context of provenance. It can be desirable to model that Barack
Obama was born in the United States according to a source, but in Kenya according to a
different source. In this case the rule rdfp1 would infer that the United States and Kenya
are the same place in the non-annotated graph when using the Singleton Property.

It can be seen that Reification and N-Ary relations show poor preservation of rules,
where most of those rules could be considered tautologies. The Singleton Property pro-
vides a mixture of rule preservation and non-contextual rule preservation for all the rules,
that can be useful when we want to annotate universally true facts, but it is not usable
when we want to have contextual information that is not universally true. NdFluents, by
contrast, has neither non-contextual rule preservation nor rule preservation that can lead
to undesirable inferences for any rule. There is only one rule where NdFluents is sur-
passed by the other approaches. Rule rdfp11 presents Rule Preservation for Reification
and N-Ary relations, but no rule preservation at all for NdFluents.

In addition, for the rules where NdFluents has no rule preservation, we observe that
different conclusions hold, where we entail contextual knowledge. In Table 3 we see the
conclusions for that set of rules with their conclusions. We can observe that the individual
used in the annotation is entailed in the conclusion. For instance, let us suppose a property
capitalOf with a domain of PopulatedPlace; if we state that Babylon was the capital of
the Babylonian empire between 609 BC and 539 BC, instead of inferring that Babylon
is a populated place (as a universal truth), we entail that Babylon between 609 BC and
539 BC was a populated place.

7. Related Work

In the original 4dFluents paper there were some issues not addressed by the authors.
Later works have tried to identify and address those issues. Zamborlini and Guizzardi
[17] present an alternative work to 4dFluents, where they present two different alter-
natives to represent temporally changing information in OWL. Both approaches have a
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similar model to Welty and Fikes’s, where the entities are sliced for different times. The
main difference is that in the first one, Individual Concepts and Rigidity, the original
individuals are considered as classes. Thus, they are not described by any property, and
a new slice has to be created every time that a property changes. On the other hand the
second approach, “Objects and Moments”, is based on Relators and Qua-individuals [9],
where the individuals are represented by an entity, and their slices inherit its properties.
Then, any time a property changes, it is reflected in the original entity. The first approach
is more prone to the proliferation of timeslices, and can only guarantee the immutability
of original properties only by repetition on every timeslice. The second approach solves
those issues at the cost of blurring the details of the changes of individual properties,
and it is not clear how inheritance works in OWL. In a later work [18], Zamborlini and
Guizzardi focus on solving the issues of the prior approaches for representing events
and properties of individuals. They maintain the fluent-like representation for events, but
move to an N-ary representation for properties. However, they still not address the pos-
sibility to have more that one domain relation, nor address how inheritance is performed
in OWL.

There are also other works that compare the different approaches to represent con-
textual information. Gangemi and Presutti [2] present and compare a number of design
patterns to represent N-Ary relations, including Reification and Context Slices [15], to
represent additional information on binary relations. The comparison is done in four
qualitative dimensions (DL reasoning support, polymorphism support, relation footprint,
and intuitiveness) and five quantitative dimensions (number of needed axioms, expres-
sivity, consistency checking time, classification time, and amount on newly generated
constants). However, they only provide a brief outline of the reasoning power of each ap-
proach, while we are interested in more fine-grained comparison of entailment preserva-
tions. Scheuermann et al. [13], on the other side, perform a qualitative research that com-
pares user preferences and ability for using different design patterns. In their study the
fluents pattern is regarded as the most complicated and less used to model, while making
a temporal slice of the predicate (which could be represented using the Singleton Prop-
erty in RDF) seems more intuitive. The N-ary pattern is the model most frequently used.
The model regarded as the most user-friendly is not representable using OWL, because
it requires having a predicate as an argument of another (an approximation in RDF could
be using N-Quads, though). Hernández et al. [5] compare Reification, N-Ary relations,
Singleton Properties and Named Graphs to encode Wikidata in practice. They provide
space requirements and query performance for each approach in 4store3, BlazeGraph4,
GraphDB5, Jena TDB6 and Virtuoso7. They report that Singleton Properties provide the
most concise representation on a triple level, while N-Ary predicates is the only model
with built-in support for SPARQL property paths. In addition, the Singleton Property
usually lacks performance due to the number of predicates, whereas there is no clear
winner among the other approaches. Virtuoso exhibits the best performance, while Jena
and 4store show the worst results. Later, Hernández et al. [6] extend their previous work

3https://github.com/garlik/4store
4https://www.blazegraph.com
5http://graphdb.ontotext.com
6https://jena.apache.org/documentation/tdb
7https://virtuoso.openlinksw.com

https://github.com/garlik/4store
https://www.blazegraph.com
http://graphdb.ontotext.com
https://jena.apache.org/documentation/tdb
https://virtuoso.openlinksw.com
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to compare Virtuoso, BlazeGraph, Neo4J8, PostgreSQL9 with a set of new experiments,
based on the idea of performing sets of lookups for atomic patterns with exhaustive com-
binations of constants and variables, in order to give an idea of the low-level perfor-
mance of each configuration. In this set of experiments standard reification and named
graphs performed best, with N-Ary relations following in third, and singleton properties
not being well-supported.

8. Conclusions

Representing annotations on multiple dimensions is a current challenge in RDF and
OWL. We have proposed the NdFluents ontology, a multi-dimension annotation ontol-
ogy, based on 4dFluents. To the best of our knowledge, this is the first generic extension
of 4dFluents for an arbitrary combinations of context dimensions. This representation
is intended to be extended in a modular way for each desired dimension. In addition,
we have presented three design patterns and additional considerations to keep in mind
when modeling data with NdFluents. We study how many of the original inference rules
are preserved when annotating the data with NdFluents and compare with the main ap-
proaches to annotate data: Reification, N-Ary Relations, and Singleton Property. The re-
sults show that NdFluents preserves more desirable entailments, while omitting undesir-
able entailments, than any alternative. The Singleton property presents non-contextual
rule preservation for many of the rules, and can lead to undesirable entailments when
the annotated facts are not universally true. Reification and N-Ary relations preserve the
fewest number of entailment rules.

Lines of future work are manifold: First, we want to apply this model to real world
datasets. Our goal is to exploit the context of information to make the datasets fit for
question answering, as well as determine the most relevant data sources. This includes
providing additional information based on the context and helping to find the most trust-
worthy data for the answer. Second, we intend to look deeper into the entailment preser-
vations for different approaches using bigger subsets of OWL 2, such as OWL LD and
OWL 2 RL/RDF, and possible reformulations of the approaches that could improve the
results. Third, we plan to perform an experimental evaluation of the different annotation
models using different triple stores wrt different factors, such as size, loading time, query
response time, and query formulation complexity.
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