
IWLS 2014 - International Workshop on Lot Sizing

Local Organising Committee:

Bernardo Almada-Lobo, Faculty of Engineering, University of Porto, Portugal
almada.lobo@fe.up.pt

Pedro Amorim, Faculty of Engineering, University of Porto, Portugal
amorim.pedro@fe.up.pt
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Welcome

Dear Friends,

Welcome to the IWLS 2014, the 5th edition of the International Workshop on
Lot-Sizing. We are honored to host this meeting in Porto, a city that just won
the European Best Destination award for the year 2014. We have three intense
days ahead of us, but we hope this edition will match the high scientific standards
and the relaxed and pleasant atmosphere that characterized the previous meetings.

This workshop covers recent advances in lot-sizing and in this year’s program we
have dedicated sessions to game theory, inventory/production routing and sustain-
ability extensions to the traditional lot sizing approaches. Besides these topics we
will also discuss advances in algorithms and heuristics, new models and the incor-
poration of uncertainty. It is the first year in which IWLS will be integrated as
one of the activities of our Euro Working-Group on Lot-Sizing (EWG LOT). EWG
LOT aims to advance the development and application of Operations Research
methods, techniques and tools to the field of lot-sizing. During our workshop we
will have a Business Meeting to discuss the action plan of the EWG LOT in detail.

In this 5th edition of the International Workshop on Lot-Sizing we are organizing a
roundtable session - “Future Perspectives on Lot-Sizing”, where forthcoming chal-
lenges and opportunities will be discussed. We believe that this may constitute
a privileged opportunity to think about our future research avenues in this field.
No IWLS would be complete without the social networking opportunities that will
take advantage of the wonderful touristic attractions and local cuisine in the city
of Porto (not to mention Port wine of course!). We have also organized a social
program that includes a welcome drink and dinner, a tram tour followed by a din-
ner downtown and, finally, a visit to Porto Cellars and riverside dinner.

With more than 50 participants from over 10 different countries, we hope that the
program will promote interesting discussions, paving the way for future research in
lot-sizing. We wish you a fruitful and memorable stay in Porto.

Best wishes,
Bernardo Almada-Lobo

Pedro Amorim
Luis Guimarães

Gonçalo Figueira
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Program Schedule

Tuesday, 26 August

19:00 - 22:00

Welcome Drink and Dinner
The Welcome Drink and Dinner will be held in the restaurant
Casa Agŕıcola that is located next to the conference venue at
Rua Bom Sucesso 241, 4150 - 150 Porto.
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Wednesday, 27 August

09:30 - 10:00 Opening Session

10:00 - 11:00

Game Theory
1. Benders Decomposition applied to cooperative lot-sizing,
Andreas Elias and Alf Kimms
2. Competitive uncapacitated lot-sizing game, Margarida
Carvalho, Claudio Telha and Mathieu Van Vyve

11:00 - 11:30 Coffee Break

11:30 - 13:00

Lot Sizing and Extensions
1. Simultaneous lotsizing and scheduling with scarce setup
resources and multiple setups per period, Karina Copil and
Horst Tempelmeier
2. Integration of Lot-Sizing and Scheduling Decisions,
Gómez Urrutia, Edwin David, Riad Aggoune and Stéphane
Dauzère-Pérès
3. An integrated lot sizing and vehicle routing model for fast
deteriorating products, Tom Vogel, Christian Almeder and
Pamela C. Nolz

13:00 - 14:30 Lunch

14:30 - 16:00

Stochastic Lot Sizing
1. On robust vs. flexible dynamic lot sizing subject to ca-
pacity constraints and random yield, Stefan Helber, Florian
Sahling and Katja Schimmelpfeng
2. Extended formulations for static-dynamic uncertainty
strategy under various service level measures, Huseyin Tunc,
Onur A. Kilic, and S. Armagan Tarim
3. A joint chance-constraint programming approach for
a stochastic lot-sizing problem, Céline Gicquel, Jianqiang
Cheng and Abdel Lisser

16:00 - 16:30 Coffee Break

16:30 - 17:30

Future Perspectives
A roundtable on the Futures perspectives on Lot-Sizing,
where the forthcoming challenges and opportunities will
be discussed, Bernardo Almada-Lobo, Horst Tempelmeier,
Stéphane Dauzère-Pérès and Albert Wagelmans

19:00 - 22:00
Tram Tour + Downtown Dinner
Downtown Dinner at restaurant Clérigos that is located at
Rua das Carmelitas 151, 4050-367 Porto.
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Thursday, 28 August

09:30 - 11:00

Inventory / Production Routing
1. A maritime inventory routing problem with stochas-
tic travelling times, Agostinho Agra, Marielle Christiansen,
Alexandrino Delgado and Lars Magnus Hvattum
2. An a priori tour-based three phase heuristic for the
production-routing problem, Ouguz Solyali, Haldun Sural,
Jean-François Cordeau and Raf Jans
3. New cutting planes for inventory routing, Pasquale Avella,
Maurizio Boccia and Laurence Wolsey

11:00 - 11:30 Coffee Break

11:30 - 13:00

Algorithms / Heuristics
1. Worst case analysis of relax-and-fix heuristics for lot-sizing
problems, Nabil Absi and Wilco van den Heuvel
2. Two neighborhood search approaches for the dynamic
capacitated lotsizing problem with scarce setup resources,
Sascha Duerkop, Dirk Briskorn and Horst Tempelmeier
3. Towards a Universal Solver for Lot Sizing Problems, Rui
Rei and João Pedro Pedroso

13:00 - 14:30 Lunch

14:30 - 16:00

Models
1. Capacity estimation based on clearing functions for the
capacitated lot-sizing problem, Frank Herrmann, Frederick
Lange and Christian Almeder
2. The Dynamic Lot-sizing Problem with Convex Economic
Production Costs and Setups, Ramez Kian, Ulku Gurler and
Emre Guberk
3. The capacitated lot sizing problem with setup carryover
and splitting, Hacer Guner Goren

16:00 - 16:30 Coffee Break

16:30 - 17:30
Business Meeting
The action plan of the EWG LOT will be discussed, Chris-
tian Almeder, Raf Jans and Wilco van den Heuvel

19:00 - 22:00

Porto Cellars + Riversides Dinner
The Riverside Dinner is at restaurant Porto Cruz that is
located at Largo Miguel Bombarda 23, 4400 - 222 Vila Nova
de Gaia.
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Friday, 29 August

09:30 - 11:00

Complexity / Approximability
1. New results on the lot sizing problem with multi-mode
replenishment, Ayse Akbalik and Christophe Rapine
2. A computational study of the local cuts from two-period
convex hull closures for big-bucket lot-sizing problems, Ioan-
nis Fragkos and Kerem Akartunali
3. A Theoretical and Computational Study of Two-Period
Relaxations for Lot-Sizing Problems with Big Bucket Capac-
ities, Mahdi Doostmohammadi and Kerem Akartunali

11:00 - 11:30 Coffee Break

11:30 - 13:00

Sustainability
1. Capacitated lot sizing with product substitution in closed-
loop supply chains, Kristina Burmeister and Florian Sahling
2. Bi-Level Lot-Sizing Problems with Reusable By-Products,
Mehdi Rowshannahad, Nabil Absi, Stéphane Dauzère-
Pérès and Bernard Cassini
3. Stochastic capacitated lot sizing in closed-loop sup-
ply chains, Timo Hilger, Florian Sahling and Horst Tem-
pelmeier

13:00 - 13:30 Closing Session
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A maritime inventory routing problem with
stochastic travelling times

Agra, Agostinho1

University of Aveiro
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Norwegian University of Science and Technology
mc@iot.ntnu.no

Delgado, Alexandrino
University of Cape Verde
alexandrino.delgado@docente.unicv.edu.cv

Hvattum, Lars Magnus
Norwegian University of Science and Technology
lars.m.hvattum@iot.ntnu.no

Abstract

We consider a stochastic maritime inventory routing problem where a com-
pany is responsible for both the distribution of oil products between islands and
the inventory management of those products at unloading ports. Ship routing
and scheduling is associated with uncertainty in weather conditions and unpre-
dictable waiting times at ports. In this work, both sailing times and port times
are considered to be stochastic parameters.

A two-stage stochastic programming model with recourse is presented where
the first-stage consists of routing, loading and unloading decisions, and the
second stage consists of scheduling decisions. The model is solved using a
decomposition approach similar to an L-shaped algorithm where optimality
cuts are added dynamically, and this solution process is embedded within the
sample average approximation method. A computational study based on ten
real-world instances is presented.

1Research supported by national funds through the Fundação Nacional para a Ciência e a Tec-
nologia, FCT, and Fundo Europeu de Desenvolvimento Regional FEDER, under project INROUTE
- EXPL/MAT-NAN/1761/2013.
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1 Introduction

We consider a short sea shipping problem occurring at the archipelago of Cape Verde
where fuel oil products are imported and delivered to specific islands and stored
in large supply storage tanks. From these islands, fuel oil products are distributed
among all inhabited islands using a small heterogeneous fleet of ships. Products are
stored in separate consumption storage tanks with limited capacity. Some ports have
both supply tanks for some products and consumption tanks for other products. As
the capacities of the supply tanks are very large compared to the total consumption
over the planning horizon, the inventory aspects for these tanks can be ignored. Not
all islands consume all products. Consumption rates are assumed to be constant over
the time horizon.

Each ship has a specified capacity, fixed speed, and cost structure. The cargo hold
of each ship is separated into several cargo tanks. The products cannot be mixed, so
we assume that the ships have dedicated tanks for the particular products. The ships
are either sailing, waiting outside a port or operating (loading or unloading).

At ports, we consider set-up times for the coupling and decoupling of pipes and
operation times which depend on the amount loaded or unloaded. Minimum and
maximum unloading quantities can be derived. The maximum unloading quantity is
imposed by the inventory capacity at the consumption port and by the ship cargo
tank capacity.

The driving force in the problem is the need for fuel oil products in the consump-
tion storage tanks. If the demand is not satisfied, the backlogged demand will be
penalized by a cost.

The traveling times depend upon the weather conditions and are considered stochas-
tic. The uncertain time parameter at port is mainly related to the time from arrival
to start of operation. Hence, a specified waiting time before start of service is defined
as stochastic, while the operation times are deterministic.

The inter-island distribution plan consists of routes and schedules for the fleet of
ships, and describes the number of visits to each port and the quantity of each product
to be loaded or unloaded at each port visit. This plan must satisfy the capacities of
the ships and consumption inventories while minimizing the sailing and port costs as
well as the expected penalty costs of backlogged demand. There is great flexibility in
the route pattern of a ship, such that a ship may visit several loading ports as well
as unloading ports in succession and the quantities loaded or unloaded are variable
as well as the number of visits at each port.

A deterministic variant of this problem was solved to optimality in [1] for short
time horizons. Heuristics for the same problem with time horizons up to 6 months
were developed in [2]. Here we describe a stochastic programming model with recourse
where the routes and the quantities to load and unload must be fixed a priori, that
is, before actual values of the uncertain parameters are revealed, while the schedule

2
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of the loading and unloading operations can be adjusted according to the observed
sailing and port times.

We propose an optimization approach that combines the use of the sample aver-
age approximation method with a decomposition procedure resembling an L-shaped
method [3, 4].

2 Optimization approach

We consider a two-stage stochastic programming model with recourse. The routes
and the quantities to load and unload are determined in the first stage, while the
schedule of the loading and unloading operations can be adjusted to the scenario
in the second stage. Thus, the inventory level variables are also allowed to change
according to the realization of the stochastic parameters. For a given set of n scenarios
{cj, j = 1, . . . , n} and a first stage solution X, the objective function can be written
as zn(X) = C(X) + 1

n

∑n
j=1H(X, cj), where C(X) represents the sailing and port

operation costs for solution X, and H(X, cj) represents the penalty for the backlogged
demand under scenario cj.

Since the complete model is too large to be solved efficiently, it is decomposed
into a master problem and one subproblem for each scenario, following the idea of
the L-shaped algorithm. To solve the master problem for a set of scenarios Ω, we first
solve to optimality a master problem including only one scenario. Since the model
has the property that a feasible solution to the first stage can be completed with a
feasible solution to the second stage for each scenario, the resulting values for the
first stage decision variables are feasible for the complete problem with all scenarios.
However, we need to check whether the solution is optimal for the complete model.
To do that we check, for each scenario, whether there is backlogged demand when the
deliveries are made as early as possible. If such a scenario with backlogged demand is
found, we add to the master problem additional variables and constraints enforcing
the backlogged demand to be counted in the objective function. Then the revised
master problem is solved again, and the process is repeated until all the optimality
constraints are satisfied. Hence, as in the L-shaped method, the master problem
initially disregards the recourse cost, and an improved estimation of the recourse
cost is gradually added to the master problem by solving optimality subproblems
and adding the corresponding cuts. We show that optimality cuts can be derived
efficiently by solving longest path problems on an auxiliary acyclic network.

In order to solve the problem with many scenarios, we apply the sample average
approximation method [6]. First we consider M separate sets of scenarios. Each set
of scenarios, i ∈ {1, . . .M} contains a small number of m scenarios, {ci1, . . . , cim}.
The model is solved for each set of scenarios i using the decomposition approach
described above. Let X i denote the obtained first stage solution. The M candidate
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solutions X1, . . . , XM , are then compared using a different, and much larger, set of n
scenarios {ĉ1, . . . , ĉn}. This larger set of n scenarios can be regarded as a benchmark
scenario set representing the true distribution (see [5]). The best solution is given by
X∗ = argmin{zn(X i) : i ∈ {1, . . . ,M}}.

3 Computational tests

We report the results from a computational experimentation based on ten real-world
instances, considering two different ships, seven ports, four products, and a time
horizon of eight days. The instances differ by the initial inventory levels. To solve the
master problem we used the solver Xpress Optimizer. The results have shown that:
(i) the running times of the decomposition method are much lower than the running
times obtained by solving the complete model. Additionally, the number of times the
separation problem (to find optimality cuts) is called is very small and few cuts are
added; (ii) by increasing m the cost of the selected solution decreases but the running
times increase substantially; and (iii) the gains for using stochastic programming
instead of the deterministic model based on expected values are in general very high.
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Abstract

We consider a special lot-sizing problem in the context of purchasing al-
liances. We focus on a supply chain which consists of several retailers and one
supplier. The retailers are free to cooperate in order to benefit from quantity
discounts. In case of a cooperation, transshipments are possible, that is, move-
ment of a product from one retailer to another. A mixed integer programming
problem is introduced to cope with the decision problem of who orders when,
for whom, how many products and how many products are in stock or being
transshipped. Our goal is to minimize the total cost of the system. A Benders
Decomposition approach is applied to find a solution to this problem.

Keywords: Supply Chain Management, Cooperative Lot-sizing, Benders Decompo-
sition

1 Introduction

In times of globalization supply chain management has become a topic of constantly
growing importance. Supply Chain managers are forced to think of themselves as
members of complex supply chain networks instead of isolated decision makers. In
this paper we combine the three different aspects cooperative procurement, quantity
discounts and lateral transshipments from the literature. We present a cooperative
procurement situation under consideration of quantity discounts and the possibility
of lateral transshipments among coalition partners.

Cost efficient procurement can make a substantial difference in terms of com-
petition advantages. Therefore, cooperative procurement can be beneficial for the
cooperating parties. In practice, famous examples for purchasing alliances such as
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the Renault-Nissan Purchasing Organization have proven to be advantageous. In the
literature, game theory is used as a tool to evaluate the goodness of cooperations
in supply chain management. For a review of game theoretic approaches in supply
chain management we refer to Leng and Parlar [1]. Game theoretic approaches to
find fair cost allocations among partners of a coalition in a cooperative procurement
application and more literature references in the field of game theory can be found in
Drechsel and Kimms [2].

One of the most obvious reasons to participate in cooperative procurement is the
exploitation of quantity discounts. A lot of research has been done in the field of
quantity discounts in supply chains. Benton and Park [3] give an overview of work
that has been published in the years between the mid-seventies and the mid-nineties
investigating the influences of different kinds of quantity discounts on lot sizes. Lee et
al. [4], Munson and Hu [5], Shinn et al. [6], Choudhary and Shankar [8] or Goossens
et al. [7] integrate quantity discounts into other existing problems such as supplier
selection problems, carrier selection problems, inventory management or procurement
problems.

After products have been ordered they need to be shipped to their destination.
Lateral transshipments which often occur in inventory management problems in the
literature are a possibility to do so. Therefore, inventory management problems with
transshipments are the third field of research which is of higher interest for the work
of this paper. Paterson et al. [9] give an excellent review of what has been contributed
before 2011 in the field of inventory management considering lateral transshipments.
More recent work is that of Özdemir et al. [10], Paul and Yenipazarli [11] or Tr-
uschkin and Elbert [12] where production capacities, point process driven demand
and impacts of transport policies on the modal split are examined. Hochmuth and
Köchel [13] present a simulation optimization approach as an alternative to heuristic
solution methods. Coelho et al.[14] take a look at inventory-routing problems and
take transshipments into account.

Cooperative procurement, quantity discounts and lateral transshipments are es-
tablished research fields. But to the best of our knowledge both quantity discounts
and lateral transshipments have not been integrated simultaneously in a cooperative
procurement setting yet. Transshipments, however, have the potential to intensify
the exploitation of quantity discounts and might be necessary in purchasing alliances.
Thus, we present a mixed integer programming model from an integrated perspective
in order to solve the optimization problem before finding cost allocations. Benders
Decomposition from Benders [15] is applied to find a solution. The problem setting
is the following:

The underlying problem describes a situation of cooperative procurement where
one decision maker needs to find a procurement plan for a system consisting of one
supplier and multiple retailers. We assume that all retailers have demand for the same
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single product. The retailers however are not equally treated by the supplier. That is,
the supplier offers different prices to different retailers depending on their negotiating
power. Therefore, it is possible that some retailer A can order the same amount of
products for a lower price than some other retailer B. In that case, retailer B could
benefit from a cooperation with retailer A. In a cooperation demands of cooperating
retailers are bundled so that retailer A orders products to satisfy his own demand and
that of retailer B. Afterwards, the products demanded by retalier B are moved to his
location. We call such a movement of products a transshipment. Transshipments are
possible between all retailers and there are no capacity restrictions for transshipment
quantities. They can be executed in any period before the period of demand satis-
faction and after the period of ordering. The strategy of demand bundling leads to
higher order quantities. We assume that higher order quantities are rewarded by the
supplier by granting all-units quantity discounts. The quantity discount schedule is
equal for all retailers. Further, all retailers have inventories with no capacity limits.
Products in stock are interpreted as tied-up captial so that the cost of capital eval-
uated with the help of the actual purchasing prices determines the inventory costs.
The decision maker determines all product flows of the system that is, direct orders
from the supplier to retailers and transshipments between retailers. Thus, order and
inventory quantities are directly affected by his decisions which influence the variable
purchasing costs considering quantity discounts and the inventory costs. The goal is
to minimize the total costs consisting of variable and fix purchasing costs, inventory
costs and transshipment costs.
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Abstract

We study the single-item uncapacitated lot sizing problem with multi-mode
replenishment and batch deliveries (ULS-MMB). Specifically, we consider that
each replenishment mode has an FTL cost structure, incurring a fixed ordering
cost plus a fixed cost per batch. This problem arises in practice when a company
can order the product units from different suppliers in each period. We show
that this problem is NP-hard even when restricted to a single period. We then
show that ULS-MMB can be transformed into a lot sizing problem with only
one replenishment mode per period, that is, ULS-MMB is a special case of
lot-sizing with time-varying batch sizes. This simple observation allows us to
improve some results known in the literature of multi-mode replenishment. We
also propose a very efficient 2-approximation algorithm and establish that the
problem admits an FPTAS.

1 Introduction

We consider the single-item uncapacitated lot-sizing problem where a firm can place
orders to multiple suppliers and the quantities ordered from a supplier are replenished
by batch (i.e. truck or container). Each supplier incurs a specific procurement cost,
and we assume that any quantity can be ordered from any supplier in each period. In
the following we call indifferently a replenishment mode a supplier or simply a mode.
This problem can also be seen as a one vendor-one buyer problem with different
transportation modes available to ship the units between them. We consider in the
following that the buyer has to satisfy his demands known over a time horizon of T
periods, with the possibility to use up to M different modes in each period. Shortages
are not allowed, that is demand dt in period t has to be satisfied from the available

1

IWLS 2014 - International Workshop on Lot Sizing

17



units in stock at the buyer or/and by ordering units in period t from one or more
suppliers. Carrying inventory at the buyer from period t to t + 1 incurs a holding
cost of ht per unit. Ordering some units from supplier i in period t incurs a fixed
setup cost fit and a fixed cost per batch kit in addition to a unit procurement cost
pit. We also denote by Bit the size of the batches used by supplier i to ship its units
in period t. The ordering cost assumed for each supplier is known in the literature
as a Full Truck Load (FTL) cost structure. It is also called stepwise cost or multiple
setup cost. The total replenishment cost rit(x) for an amount x ordered in period t
with mode i is given by :

r(0) = 0 and rit(x) = fit + pitx + dx/Bitekit for x > 0

We can formulate problem ULS-MMB as follows :

(ULS-MMB)





min
∑T

t=1(
∑M

i=1 rit(xit) + htst)

s.t. st−1 +
∑M

i=1 xit = dt + st ∀t = 1, . . . , T

xit ∈ R+ ∀i = 1, . . . ,M, ∀t = 1, . . . , T
st ∈ R+ ∀t = 1, . . . , T

In the formulation xit represents the quantity ordered from supplier i in period t
and st the stock level at the buyer at the end of period t. Wlog, we assume no initial
inventory, that is s0 = 0 and null lead time. This formulation is non-linear because
of the FTL procurement cost rit().

In the literature we have only found the three following studies considering lot
sizing from multiple suppliers under multiple setup cost structure: Jaruphongsa et
al. [5], Eksioglu [4] and Bai and Xu [2]. Jaruphongsa et al. [5] consider the special case
of ULS-MMB with only two modes and stationary procurement costs at each retailer,
that is rit() = ri() for all periods t. They establish some dominance properties, and
propose polynomial time dynamic programming algorithm for the cases with at most
one mode having multiple setup cost structure (other mode can have fixed charge cost
structure). Eksioglu [4] considers also ULS-MMB with stationary costs, but with M
modes. The author proposes a polynomial time algorithm in O(MT 2) with only fixed
charge cost structures using some dominance properties proposed by Jaruphongsa et
al. [5]. The same author proposes a primal-dual heuristic for the case of M modes
with batch deliveries. Bai and Xu [2] consider some special cases of ULS-MMB with
incremental and all-unit quantity discount cost structures and multiple setup costs,
and give polynomial and exponential time algorithms for those cases. Notice that in
none of these studies the complexity status of problem ULS-MMB is established.
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2 Transformation to the single-mode problem

Naturally one can think that the multi-mode replenishment problem is more general
then the classical single-mode problem. Here we observe that ULS-MMB is also a
special case of the lot-sizing problem with only one replenishment mode, namely the
uncapacitated lot-sizing problem with batch deliveries and time-varying batch sizes
(ULS-B). Specifically, an instance I of ULS-MMB can be transformed in linear time
into an instance I ′ of ULS-B over MT periods as follows: For each period t of I,
Mt periods {M(t − 1) + 1, . . . ,Mt} appear in I ′. The demand is null for all these
M periods except for period Mt where demand dt occurs. The holding cost between
those periods is null, and the cost to carry units from period Mt to (Mt + 1) is ht.
Finally, the procurement cost for a period t′ = M(t− 1) + i, i = 1, . . . ,M , is equal to
rit(). Notice that the supplier-dependent procurement costs (fit, kit, pit) now appear
independently over the periods of I ′. This new problem is a “classical” lot sizing
problem with only one supplier (one mode) over a time horizon of MT periods.

There are several natural properties that one could use from this observation. For
the special case studied in [5] where the procurement cost does not contain a fixed cost
per batch (kit = 0), the classical results for the uncapacitated lot sizing problem with
setup costs can be used. In particular the zero-inventory-ordering property is domi-
nant and only one mode is used in each ordering period. Wagelmans et al. [6] is one of
the three studies proposing an algorithm in O(T log T ) time for setup costs and linear
variable costs. As a consequence ULS-MMB can be solved in time O(MT log (MT ))
when fixed cost per batch are null. As stated before, Eksioglu [4] gives a polynomial
time algorithm in O(MT 2) for this case.

3 Complexity result

We establish that ULS-MMB is NP-hard even restricted to a single period, with
null setup, null unit procurement and null holding costs. That is, the replenishment
cost of supplier i is simply ri(x) = dx/Bieki. Notice that this complexity result
implies in particular that ULS-MMB is NP-hard for stationary replenishment costs,
like the problem considered in [4]. The result uses the equivalence between problem
ULS-MMB restricted to a single period and problem ULS-B with only one positive
demand, occurring at the last period. This latter problem has been proved NP-hard
in Akbalik and Rapine [1].

4 Approximation algorithms

It can be shown that the primal-dual heuristic proposed by Eksioglu [4] for problem
ULS-MMB with stationary procurement costs at each retailer can perform arbitrar-
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ily bad compared to the optimal solution. Thus, we investigate if approximation
algorithms exist for problem ULS-MMB, and more generally for problem ULS-B. To
propose an efficient approximation, we replace each FTL procurement cost rit(x) by
an affine procurement cost ait(x) = fit/2 + (kit/2 + pit/2)x for x > 0. The resulting
problem is polynomial, and can be solved in time O(MT log (MT )), see Section 2.
Since we have the property that ait(x) ≤ rit(x) ≤ 2ait(x) for any quantity x, we
obtain a 2−approximation.

Chubanov et al. [3] give an FPTAS for a very general class of lot-sizing problems,
assuming simply monotone cost structures for procurement and holding costs. One
additional assumption is that each cost function is computable in polynomial time
for any quantity. Observe that for ULS-MMB, computing r∗t (X), the minimal cost
to order a quantity X in period t from the set of suppliers, is an NP-hard problem.
However, after the transformation, we obtain an instance of problem ULS-B where
each procurement cost can clearly be evaluated in constant time. As a consequence,
problem ULS-MMB admits an FPTAS.
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Abstract

We consider a stochastic lot-sizing problem and study a chance-constraint
programming formulation involving joint probabilistic constraints. We propose
a solution approach based on a ”partial sample approximation”. This method
does not require the use of any additional binary variables and thus leads to
significantly reduced computation time as compared to the previously published
”sample approximation” method.

1 Capacitated lot-sizing with stochastic demand

We consider a single-item capacitated lot-sizing problem over a planning horizon
involving T periods. We denote s the setup cost, h the inventory holding cost per
unit per period and c the production capacity. We introduce two sets of decision
variables: xt represents the quantity produced in period t, yt is a binary variable
which equals 1 in case a setup takes place in period t and 0 otherwise.

We consider that the demand to be satisfied in period t is subject to uncertainty
and model it as a random variable Dt following a known probability distribution. The
cumulated demand over periods 1...t is denoted DC1t =

∑t
τ=1Dτ . The fact that Dt

is stochastic implies that the inventory at the end of period t, It =
∑t

τ=1 xτ −DC1,t,
is also a random variable. Hence it might be very costly to ensure that it will remain
positive for every possible realization of the demand. One possibility is to assume
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that the unsatisfied demand is backlogged and to penalize it through backlog costs
in the objective function. Another possibility is the use of chance constraints to limit
the probability of a stock-out. This is the topic of the present paper.

We thus propose to formulate the problem as follows (see (1)-(4) below). The
objective function (1) seeks to minimize the total setup costs and the expected inven-
tory holding costs. Note that we use the same approximation as in [1] to compute the
expected inventory holding costs, i.e. we assume E

[∑T
t=1 max(0, It)

]
≈ E

[∑T
t=1 It

]
.

Constraints (2) ensure that if a production takes place, the corresponding setup cost
is incurred and the capacity limit is respected. Constraint (3) is a joint probabilistic
constraint which imposes a lower bound (denoted p) on the probability that the in-
ventory level remains positive at the end of all the periods of the planning horizon.
Constraint (3) can be seen as a service-level constraint ensuring that the risk of a
stock-out during the planning horizon is below an acceptable level defined as 1− p.





Z∗ = min S

T∑

t=1

yt + h

T∑

t=1

[ t∑

τ=1

xτ − E[DC1,t])
]

(1)

xt ≤ cyt ∀t (2)

Pr
( t∑

τ=1

xτ ≥ DC1,t, ∀t
)
≥ p (3)

yt ∈ 0, 1, xt ≥ 0 ∀t (4)

To the best of our knowledge, chance-constraint programming formulations in-
volving joint probabilistic constraints have been investigated for lot-sizing problems
by only two papers. In [1], a solution approach based on a partial enumeration of the
p-efficient points of the discrete joint distribution of (DC11, ..., DC1T ) is proposed. [2]
uses the sample approximation method introduced by [3]: it relies on an approxima-
tion of the joint probabilistic constraint by a Monte Carlo sampling of the random
vector (DC11, ..., DC1T ) and requires that the obtained production plan do not lead
to any stock-out for at least p% of the sampled vectors. This methods leads to the
formulation of a MILP involving one binary variable for each sampled vector. It could
thus be solved by a commercial solver such as CPLEX. However the large sample size
needed to get a good approximation of the chance constraint leads to a high number
of binary variables in the formulation, which poses some computational difficulty in
practice. The present paper proposes a way of avoiding this difficulty thanks to an
approximation which does not require the introduction of additional binary variables.
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2 A partial sample approximation approach

The proposed method relies on the assumption that the random variable repre-
senting the demand in period 1, D1, is independent of the other random variables
D2, D3, ..., DT . It uses a Monte Carlo sampling similar to the one used by [3]. How-
ever we do not apply it on all random variables but only on D2, D3, ..., DT : we thus
refer to it as a partial sample approximation. More precisely, we introduce the ran-
dom vector ∆C = (0, DC22, ..., DC2t, ..., DC2T ) providing the cumulated demand over
periods 2 to t for each t = 1...T and randomly generate N independent and identi-
cally distributed sampled vectors ∆C1, ..., ∆Ci,..., ∆CN . This allows us to use the
following approximation of the chance constraint (3):

Pr
( t∑

τ=1

xτ ≥ DC1,t, ∀t
)

= Pr
( t∑

τ=1

xτ −∆Ct ≥ D1, ∀t
)

(5)

=

∫

∆C

∫

D1

1

( t∑

τ=1

xτ −∆Ct ≥ D1, ∀t
)
fD1(D1)dD1f∆C(∆C)d∆C (6)

= E
[ ∫

D1

1

( t∑

τ=1

xτ −∆Ct ≥ D1, ∀t
)
fD1(D1)dD1

]
(7)

≈ 1

N

N∑

i=1

[
Pr
( t∑

τ=1

xτ −∆Ci
t ≥ D1, ∀t

)]
(8)

≈ 1

N

N∑

i=1

[
Pr
(
mint=1..T

( t∑

τ=1

xτ −∆Ci
t

)
≥ D1

)]
(9)

Equality (6) relies on the fact that D1 is independent of ∆C so that the density
function f(DC11, ..., DC1T ) is equal to the product of the density functions of D1

and ∆C: fD1(D1)f∆C(∆C). Equality (7) translates (6) in terms of the expected
value of a random variable π(∆C) where function π : RT → [0, 1] is defined as:
π(V ) =

∫
D1
1
(∑t

τ=1 xτ − V ≥ D1, ∀t
)
fD1(D1)dD1. Function π provides, for a

given vector V describing the cumulated demand over periods 2 to t, the probability
that no stock-out occurs during the planning horizon. (8) can be understood as a
sample average approximation of the expected value of π(∆C). We denote πi =
Pr
(∑t

τ=1 xτ − ∆Ci
t ≥ D1, ∀t

)
the probability that no stock-out occurs during the

planning horizon in case the realization of vector ∆C is equal to the sampled vector
∆Ci

t . The joint probability defining πi now involves a single random variable D1 and
can be reformulated as in equation (9), which is easier to handle.

In case D1 is assumed to follow a uniform distribution on interval [L1, U1], problem
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(1)-(4) can be approximated by the following mixed-integer linear program:





ZPSA = min S

T∑

t=1

yt + h

T∑

t=1

[ t∑

τ=1

xτ − E[DC1,t]
]

(10)

xt ≤ cyt ∀t (11)

1

N

N∑

i=1

πi ≥ p (12)

πi ≤
∑t

τ=1 xτ −∆Ci
t − L1

U1 − L1

∀i,∀t (13)

πi ≤ 1 ∀i (14)

yt ∈ {0, 1}, xt ≥ 0 ∀t (15)

3 Preliminary computational results

We provide some preliminary computational results to compare the proposed partial
sample approximation to the sample approximation used in [2]. Both approaches
lead to the formulation of a MILP, which are solved with the solver CPLEX 12.6. We
consider a small lot-sizing problem involving T = 10 periods. We set h = 1, S = 50,
c = 100 and p = 0.9. The demand Dt is assumed to follow a uniform distribution
U(10, 50). The number of samples used in the approximation, N , is varied from 100
to 10000. For each value of N , 10 instances are randomly generated.

Table 1 displays the results obtained with both methods. Each line corresponds
to the average value over the 10 related instances. Costs is the average value of
the optimal solution cost, Prob is a post-optimization estimation of the probability

Sample Approx. Partial Sample Approx.
N Cost Prob Time Cost Prob Time
100 813 0.813 0.4s 878 0.882 0.4s
1000 878 0.887 172s 896 0.904 4.6s
10000 893 0.902 120.4s
indicates that no guaranteed optimal solution was found within 1 hour of computation.

Table 1: Preliminary computational results
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Pr
(∑t

τ=1 x
∗
τ ≥ DC1,t

)
involved in constraint (3) and Time is the computation time

needed to solve to optimality the MILP. These results show that the proposed partial
sample approximation method leads to significantly reduced computation time as
compared the sample approximation method. Additional computational experiments
are currently on-going to confirm these preliminary results on larger instances and to
extend the approach to the case where the demand is normally distributed.
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Abstract

Single-stage capacitated lot-sizing problems (CLSP) are essential for many
planning tasks in production systems. Due to the hierarchical planning ap-
proach, which is widely used in industrial practice and implemented in com-
mercial enterprise resource planning as well as production planning and control
systems, a subsequent scheduling is necessary to gain executable production
plans. Capacity consumption depends on many factors as, for example, sys-
tems workload, machine availability, or yield. Thus, a feasible and optimal
solution of the CLSP may lead to unplanned delays after sequencing and pro-
cessing the orders on the shop floor. Using a so called clearing function (CF),
which represents the relationship between the workload and the output of a pro-
duction system, this capacity consumption in a CLSP is improved in various
ways and tested on a real-world application.

1 Introduction

In the hierarchical planning approach (capacitated) lot-sizing and scheduling are suc-
cessive stages using production systems data as well as time periods on different
aggregation levels. An interdigitation is reasonable and necessary in order to improve
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the results in a hierarchical planning environment (cf. [1]). For the standard CLSP
formulation it is assumed that each product is processed on a single production seg-
ment so that each product consumes capacity on one (aggregated) resource (cf. [2]).
Our test problem, based on an electrical parts manufacturer in Germany, considers a
detailed work plan for each product which determines the individual processing steps
within a production segment on individual resources on the shop floor level.

The overall capacity consumption of a production order is estimated by its lead
time (i.e. the time between the release into the production system and the time of the
completion of the order). Measurements show that lead times are varying and highly
dependent on the systems workload. The majority of production planning models
fail to consider these dependencies (cf. [3]). Due to the lack of detailed information
on the waiting times as a result of competing resources and the dependencies of the
lead times and the workload, delays in the completion of lots may occur. In recent
literature these dependencies are often described by a clearing function (CF) which
represents the relationship between the workload and the output of a production
system. Hence, we anaylze the integration of the concept of clearing functions and
the capacity estimation for the lot-sizing as follows:

1. A simulation-based estimation of a product-specific CF is developed.

2. Several integrations of CF into the CLSP and its evaluation on a real-world
application as a test problem ar analyzed.

2 Planning Models

We resort to the classical CLSP formulation (as given in [2]) and describe in the
following the relevant extensions. In order to deal with a rolling planning environment
we allow backorders which are penalized in the objective function.

All model modifications discussed in the following affect the capacity constraints.
Due to the aggregation of machines to a product segment, the available capacity
(limited by the capacity constraints) can be greater than the length of the period.
Thus, the processing time (including the setup time) of a lot may not exceed the
length of a period which limits the feasible lot size. These restrictions are as follows:
Parameters:

C: Available capacity of the resource in a period.
dk,t: Demand for product k in period t.
hk: Unit inventory holding cost for product k.
K: Number of products.
sk: Setup costs for product k.
T : Number of Periods.
tbk: Capacity needed for producing one unit of product k.
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trk: Capacity needed for setup a lot of product k.
εt: Additional capacity consumption in period t to finish lots, released in

prior planning runs.

Decision variables:

γk,t: Binary variable which indicates whether a setup for product k occurs in
period t.

qk,t: Planned lot of product k in period t.
εt: Additional capacity consumption in period t to finish lots, released in

prior planning runs.

Capacity constraints

K∑

k=1

(tbk · qk,t + trk · γk,t) + εt ≤ C∀ 1 ≤ t ≤ T ∧ 1 ≤ k ≤ K. (1)

Maximum lot size

qk,t · tbk + trk ≤ ∆Per ⇒ qmax
k =

∆Per − trk
tbk

∀ 1 ≤ t ≤ T ∧ 1 ≤ k ≤ K. (2)

In the first modification (CLSP*) we measure the average lead times which occur
by using the CLSP for lot-sizing the orders (in a simulation run). We use demand
scenarios, which effects typical order situations in the real-world application. These
average lead times (µk,s) replace essentially the process times (tbk) in (1) and (2).

The other two modifications use the CF. The first one CLSPCF-I addresses the
effect that waiting times reduces the amount of produced pieces within a period.
We use CF to estimate the occurring waiting times within the production system
depending on the systems workload: For a planned lot qk,t of a product k in period
t CFk(qk,t) is the feasible output and wk,t = qk,t − CFk(qk,t) the amount of pieces
(wk,t) which could not be processed within a period. Thus, wk,t · tbk is the additional
capacity consumption for product k. In total the capacity constraint is modified to:

K∑

k=1

(tbk · qk,t + trk · γk,t) + εt ≤ C −
K∑

k=1

(wk,t · tbk)∀ 1 ≤ t ≤ T ∧ 1 ≤ k ≤ K. (3)

In addition the value of qmax
k is calculated depending on the systems workload as

follows.

qk,t ≤ qmax
k ⇒ qmax

k =
∆Per − trk − wk,t · tbk

tbk
∀ 1 ≤ t ≤ T ∧ 1 ≤ k ≤ K (4)
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For the last modification (CLSPCF-E) we use two characteristic points of a CF.
The relation between workload and output of a production system is linear up to a
specific limit and nonlinear beyond that point. We determine this workload limit κk,
for each product k. Secondly, the product-specific clearing function CFk converges
to a maximum output Ok. We limit the available capacity by C =

∑K
k=1 tbk ·κk + trk,

∀ 1 ≤ k ≤ K and the maximum lot size by qmax
k = min {qk;CFk(qk) = Ok}.

3 Computational results

The lot-sizing is done in an rolling planning environment. We use a 12-period planning
horizon with a 6-period overlap and simulate over 1000 periods in total.

For all products and all WIP inventories between 1 to 500 pieces a simulation run
about 1200 periods is executed; note: each product has the same WIP inventory, and
500 is clearly above the maximum output of the production system. This delivers an
expected output which is used as value of the CF. Due to this procedure, the CFs are
independent to the investigated demand scenarios.

We compared our models with the lot-sizing method of Groff (as a very good
setting in a commercial enterprise resource planning system). Taking limited capacity
into account by CLSP causes that the amount of delayed orders (PDO) by Groff is
between 3,5% and 6,2% higher than the ones by CLSP; the concrete numbers depend
on the demand scenario. Just a little bit better than the PDOs by CLSP are the
ones by CLSPCF-I - the highest improvement is 5,9%. Much lower PDOs are achieved
by CLSP*. The improvements are between 10,7% and 38,6%. All approaches are
outperformed by CLSPCF-E. Their PDOs are between 40% and 52% lower than the
ones by CLSP.
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1 Introduction

In production management, two main activities are lot-sizing and scheduling, which
are performed at tactical and operational levels respectively. Lot-sizing problems con-
sist in determining production quantities and periods per product in order to satisfy
the demands all along a planning horizon of several days, weeks or months. Schedul-
ing problems concern the definition of the sequence of operations on resources, as
well as starting and completion times of operations, in order to execute the produc-
tion plan. In single-resource floor shops and other systems where resources are not
shared between jobs, the scheduling decisions are limited to determining the produc-
tion periods for each product, i.e. deciding setup variables. Then, the consideration
of capacity constraints in the lot-sizing mathematical model is enough to guaran-
tee consistency at scheduling level. In more complex systems, detailed capacity or
scheduling constraints are necessary.

In this paper, we focus on lot-sizing problems including capacity constraints and
lot-sizing problems with detailed scheduling. The first ones are classified in the liter-
ature in small-time bucket problems and big-time bucket problems [2].
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2 Small time-bucket lot-sizing problems

In this group of problems, we can find:

• The Discrete Lot-sizing and Scheduling Problem (DLSP), which uses an “all
or nothing” assumption to limit the capacity consumption of each period, and
imposes the production of only one product per period.

• The Continuous Setup Lot-sizing Problem (CSLP), which authorizes the pro-
duction of only one product per period, using any fraction of the available
capacity.

• The Proportional Lot-sizing and Scheduling Problem (PLSP), which allows pro-
ducing at most two products per period using the whole period capacity and
only one resource.

The DLSP and the CSLP are mainly studied in single-level single-resource sce-
narios. To the best of our knowledge, scarce publications concerning the multi-level
DLSP exist and there are not any references related to the multi-level CSLP. Con-
cerning multi-resource systems, some few works consider parallel-machine systems.
In the other hand, contributions around the PLSP cover, in a better balanced way,
single-level and multi-level problems in single-resource and multi-resource manufac-
turing systems. Once again, multi-resource systems correspond to parallel-machine
floor shops.

As examples of small time bucket problems, we can cite the work of Gicquel et
al. [4] who model a DLSP with sequence-dependent setup times and costs and the
work of Stadtler [9], where a multi-level single-resource PLSP with setup crossover is
modeled.

3 Big time-bucket lot-sizing problems

The big-time bucket lot-sizing problems are:

• The Capacitated Lot-Sizing Problem (CLSP), which does not limit the number
of setups per period or the capacity consumption.

• The General Lot-sizing and Scheduling Problem (GLSP), which divides each
macro-period on several micro-periods, imposing the hypothesis of the DLSP
for each micro-period. Then, apart from lot-sizes, a setup pattern per macro-
period is decided.
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The CLSP is the most studied lot-sizing problem with capacity constraints. Most
of the works studying the CLSP consider single-level single-resource scenarios. How-
ever, we can find some works dealing with single-level parallel-machine problems and
multi-level single-machine problems. One of the few works studying a lot-sizing prob-
lem with scheduling constraints is that of Mateus et al. [7], who consider a CLSP
with sequence-dependent setup times and costs in a parallel-machine system. A CLSP
with sequence-dependent setups in a complex multi-resource system, configured as a
job-shop, is modeled and solved using MIP-based heuristic by Mohammadi [8].

Contributions related to the GLSP are also mainly focused on single-level single-
resource problems. Nevertheless, we can find some recent works studying a multi-
level parallel-machine problem (e.g. [10]). The integrated multi-level GLSP with
sequence-dependent setup times in a job-shop environment is modeled by Fandel and
Stammen-Hegene [3].

4 Lot-sizing problems with detailed scheduling

Scheduling constraints typically considered in lot-sizing problems are those of sequence-
dependent setup times and costs, information that can also be considered in the
objective function. However, these constraints do not guarantee feasibility of produc-
tion plans at operational level in complex manufacturing systems. They only allow
selecting the sequence that best fits a cost or time criterion. To guarantee feasi-
ble production plans, starting and completion times (detailed scheduling) must be
considered in the formulation.

A pioneer work dealing with the integrated lot-sizing and scheduling problem in
job-shop systems is that of Dauzère-Pérès and Lasserre [1], who propose an iterative
approach that solves a lot-sizing problem for a sequence of operations and a scheduling
problem for fixed lot sizes. A recent approach solving the integrated lot-sizing and
scheduling problem in job-shops systems was proposed by Gómez Urrutia et al. [5],
who decompose the problem in a set of lot-sizing problems with fixed sequence solved
by a Lagrangian heuristic. The sequence is iteratively improved using a Tabu Search
metaheuristic. Other approaches, focused on the chemical industry, were proposed
by Li and Ierapetritou [6].

5 Conclusions

We have introduced a review on lot-sizing problems including capacity or scheduling
decisions. Most of the works deal with single-resource problems. Complex manufac-
turing systems like job-shops and flow-shops have received few attention. Studies on
multi-level problems in this kind of systems are almost non-existent in the literature.
Opportunities in this field are oriented toward the development of efficient approaches
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linking lot-sizing and detailed scheduling decisions in complex systems through inte-
grated approaches. This would overcome the inconsistency of hierarchical approaches
used by ERP and APS systems.
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Abstract

This paper focuses on the capacitated lot sizing problem with two extensions
namely setup carryover and setup splitting. The capacitated lot sizing problem
finds the production quantities and periods of the products on a single machine.
The problem is extended with the concepts of setup carryover and splitting
to use the capacity more efficiently. The setup carryover is defined as the
production of a product that is continued over from one period to the following
without incurring extra setup costs or times. When the setups are relatively
long and can not be finished in a period, the option of setup splitting permits to
finish it in the consecutive period. Although there have been number of studies
considering setup carryover in lot sizing literature, setup splitting is generally
disregarded. However, these two concepts complement each other and should
be taken into account together. The aim of this paper is to show the importance
of the setup splitting in the capacitated lot sizing models.

1 Problem Statement

Lot sizing problems are one of the most important production planning problems.
They try to answer two main questions. The first one is what amount and the second
one is in which periods we should produce in order to minimize the total costs.
According to the type of the demand, lot sizing problems can be classified into two as
static and dynamic lot sizing problems. Static lot sizing problems deal with stationary
demand whereas dynamic lot sizing problems face with dynamic demand changing
through the planning horizon. Considering the dynamic lot sizing problem and its
features, the decision maker has to properly divide the planning horizon into periods
[1]. These periods can be long enough to produce more than one product or they are
relatively short so at most two products can be produced. Due to its importance on
the efficiency of the production and inventory systems, lot sizing problems are one of
the most challenging production planning problems and have been studied for many
years with different modelling features. Among these problems, the capacitated lot
sizing problem (CLSP) has received a lot of attention from researchers. The CLSP is
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a typical example of a big bucket model which takes capacity constraints into account.
However, it does not sequence or schedule the products in a period. The main issue in
CLSP is the setup operations. Setups in CLSPs can be expressed as fixed fees and/or
as setup times with related costs attached. Setups stated as fixed fees include labour,
wastage etc. [2]. The capacity lost due to cleaning, preheating, machine adjustments,
calibration, inspection, test runs, change in tooling and starting up a new product is
considered as setup time [3]. Setup times can be fixed, different for products (i.e.
product dependent) or they can depend on the production sequence (i.e. sequence
dependent). Setup operations may have an important effect on the lot sizing and
scheduling decisions in some production environments when setup times are assumed
[4]. To incorporate more real-world features of production environments, different
setup settings have been added to CLSP models. Among them, setup carryover and
setup splitting are very important. The setup carryover can be defined as maintaining
a setup state of a product from one period to the next one. By doing so, it is possible
to save on setup costs and capacity along with the decrease in inventory levels. The
setup carryover assumption can be found in both small and large bucket models in
literature [5], [6], [7]. The setup splitting can be defined as the opportunity to
start a setup operation in one period and continue it to the following one [4]. The
setup splitting can also be called as the setup crossover as in [4] since the incomplete
setup operation crosses over time periods. Another name for the setup splitting is
the period-overlapping setup by [8]. Including the setup splitting assumption into
CLSP is important especially when the setup times are long. In some production
environments such as process industries, setup operations might be performed in more
than two periods. With setup splitting option, it possible to increase the flexibility
and find better solutions. In such cases where the setup times are significant, the
assumption of the setup splitting is necessary to assure the feasibility [9]. The
setup splitting complements the setup carryover, however this issue hasnt received
the attention of researchers in literature. To fill this important gap in literature,
this study focuses on the CLSP with the extensions of setup carryover and splitting.
The objective is to show the importance of the setup splitting among periods when
long setup times are considered. Therefore, it is possible to use the capacity more
efficiently. We study three different models and show the importance of the setup
splitting through these models therefore we do not attempt to develop new and faster
algorithms to solve this problem.

2 Results

In this talk, we show the importance of setup splitting in capacitated lot sizing prob-
lems. For this purpose, we study three different models; the first one is the capacitated
lot sizing problem; the second one is the capacitated lot sizing problem with setup
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carryover and the third one is the capacitated lot sizing problem with setup carryover
and setup splitting. Setup splitting plays an important role in developing feasible
schedules and increasing flexibility especially when the setup times are long com-
pared to the length of a period. Although the setup carryover and setup splitting
complement each other, setup splitting has been mostly ignored in literature due to
the complexity of the model. This study addresses this complex problem and aims
to fill this important gap in literature. The future research directions in this area
can be to propose effective solution approaches to deal with this problem and include
different modeling options such as paralel machines, sequence dependent setup times
etc. to get more realistic production settings.
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1 Introduction

Stochastic dynamic lot sizing problem aims to determine when and how much to
order in time-varying stochastic period demands. As such, it can be referred as the
stochastic extension of the well-known deterministic dynamic lot sizing problem [13].
More specifically, this problem considers a single product periodic review finite horizon
inventory system. Period demands are independently distributed random variables.
The demand distribution may vary from period to period. A fixed ordering cost is
incurred once an order is placed. A linear holding cost is incurred for each unit carried
forward in inventory. Also, demands not satisfied from inventory are backordered.

In one of the early studies, Bookbinder and Tan investigate this problem and
propose the so-called static-dynamic uncertainty strategy [2]. In this strategy, order
schedule is fixed once and for all at the beginning of the planning horizon, and order
quantities are dynamically determined based upon observations of the actual inven-
tory at each replenishment epoch. This strategy is particularly appealing since it
completely eliminates the setup oriented system nervousness that refers to revisions
in replenishment schedules. Hence, static-dynamic uncertainty strategy is of prac-
tical interest in a variety of settings including material requirement planning, joint
replenishments, and shipment consolidation environments for the sake of its rigid re-
plenishment schedule [3, 8, 4, 5]. Due to all of the above mentioned points, it has
drawn a great deal of attention in the literature.
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A significant progress has been made on the application of static-dynamic un-
certainty strategy in stochastic lot sizing in the last decade. The problem has been
investigated under penalty cost scheme and various service level measures, namely α,
β, and βc. α service level refers to a lower bound on the non-stockout probability
level, whereas β, and βc service levels refer to lower bounds on the expected propor-
tion of demand satisfied from stock for each replenishment cycle and over the whole
planning horizon, respectively.

Simple heuristics for this problem under penalty cost scheme are developed in
[1] and [7]. In [9], a deterministic equivalent mixed integer programming model is
proposed for the problem under α service level constraint. This integer programming
formulation is adopted by [10], [11], and [6] to take into account penalty cost scheme,
βc, and β service level measures, respectively. Recently, an extended mixed integer
programming formulation for the problem under α service level constraint is developed
in [12]. They prove that the extended formulation has a stronger linear relaxation
bound than that of [9] and also numerically show that the extended formulation can
solve large scale problem instances in very reasonable time.

In this paper, we adopt this extended formulation and present new extended for-
mulations for the static-dynamic uncertainty strategy in stochastic lot sizing problem
under β and βc service level measures, and penalty cost scheme. We conduct an
extensive numerical study and illustrate that the extended formulations can solve
realistic-sized problem instances in a reasonable amount of time. Our results reveal
that the linear relaxation of extended formulations provide very tight bounds which
lead to the optimal solutions without requiring excessive number of branching.
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Abstract

We study the big-bucket capacitated lot sizing problem with setup times.
We use the novel methodology of Akartunali et al. (2014) that exploits two-
period relaxations of the formulation in order to generate inequalities that cut-
off the optimal solution of the linear programming relaxation. Our approach
applies column generation in an unconventional way, with the master problem
being a distance minimizing formulation and the subproblems being combina-
torial two-period relaxations of the original problem. We identify a lower bound
of the dimensionality of the generated cuts and provide extensive computational
experiments that show how the generated bounds compare with other state-of-
the-art approaches. Our results show that, for certain classes of problems, the
bound improvement is considerable.

1 Introduction

The capacitated lot-sizing problem with setup times (CLSP) is a well-studied com-
binatorial mixed-integer problem of high practical and theoretical importance [7, 6].
The problem is defined over a given discrete and finite time horizon. The goal is to
schedule the production amounts of a set of items that has known demands in each
time period so that all item demands are covered. Items are produced in a single
machine, and a production is possible only after a setup takes place. Each discrete
period has finite time capacity, which is consumed by the setup and production pro-
cesses that take place. Setup operations and production quantities help in inventory
carry given, item-specific, fixed and unit costs respectively. The mathematical pro-
gramming formulation seeks to find a feasible production schedule that minimizes the
joint cost of inventory holding and setups. We first define our notation.
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Indices and Sets:
NT Number of periods
NI Number of items

Variables:
xit Production quantity of item i in period t
yit Setup of item i in period t (1 if production occurs, 0 otherwise)
sit Inventory held of item i at the end of period t

Parameters:
f i
t Fixed cost per setup of item i in period t
hit Holding cost per unit of item i from period t to period t+ 1
dit Demand for item i in period t

dit,t′ Total demand from period t to t′, i.e., dit,t′ =
∑t′

t=t d
i
t

ai, ST i Per-unit processing/setup time for item i
Then, the CLSP formulation can be written as follows:

min
NT∑

t=1

NI∑

i=1

f i
ty

i
t +

NT∑

t=1

NI∑

i=1

hits
i
t (1)

s.t. xit + sit−1 − sit = dit t ∈ [1, . . . , NT ], i ∈ [1, . . . , NI] (2)

NI∑

i=1

(aixit + ST iyit) ≤ Ct t ∈ [1, . . . , NT ] (3)

xit ≤M i
ty

i
t t ∈ [1, NT ], i ∈ [1, . . . , NI] (4)

y ∈ {0, 1}NTxNI , x ≥ 0, s ≥ 0 (5)

2 Two-period closures and valid inequalities

We introduced in [1] a polytope that can be used to describe subspace relaxation of
the CLSP. The structure of the two-period polytope defined over periods (t, t + 1)
and parametrized by period k ≥ t+ 1, hereby referred to as X2PL

t,k , is as follows:

xit′ ≤M i
t′y

i
t′ i = [1, ..., NI], t′ = t, t+ 1 (6)

xit′ ≤ dit′,ky
i
t′ + sik i = [1, ..., NI], t′ = t, t+ 1 (7)

xit + xit+1 ≤ dit,ky
i
t + dit+1,ky

i
t+1 + sik i = [1, ..., NI] (8)

xit,k + xit+1,k ≤ dit,k + sik i = [1, ..., NI] (9)

NI∑

i=1

(aixit′ + ST iyit′) ≤ Ct′ t′ = t, t+ 1 (10)

x, s ≥ 0, y ∈ {0, 1}2×NI (11)
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We also make a note of the single period relaxations of [3, 4] due to their relevance.
We assume that an optimal solution of a linear programming relaxation of CLSP is
at hand. For fixed t and k, it is possible to use that solution to construct a point
p := (x, y, s) ∈ R5×NI

+ , formed by the production and setup variables of periods
(t, t + 1) and the inventory variables of period k. Our methodology uses an extreme
point representation of X2PL

t,k to generate valid inequalities that cut-off p. First, we
formulate the problem of finding the point of X2PL

t,k that has the minimum distance
from p as a linear program, using the linearizable L∞ norm. If we denote by p the
index of the extreme points of X2PL

t,k , where we dropped the subscripts (t, k) for ease of
notation, then the minimum distance linear program can be cast as follows (associated
dual variables of each constraint are given in brackets):

min z∞ (12)

s.t.
∑

p

λp(xp)
i
t′ − z∞ ≤ xit′ ∀i, t′ = t, t+ 1 (α−

i
t′) (13)

xit′ ≤
∑

k

λp(xp)
i
t′ + z∞ ∀i, t′ = t, t+ 1 (α+i

t′) (14)

∑

p

λp(yp)
i
t′ − z∞ ≤ yit′ ∀i, t′ = t, t+ 1 (β−

i
t′) (15)

yit′ ≤
∑

p

λp(yp)
i
t′ + z∞ ∀i, t′ = t, t+ 1 (β+i

t′) (16)

∑

p

λp(sp)
i − z∞ ≤ sik ∀i (γi) (17)

∑

p

λp ≤ 1 (η) (18)

λp ≥ 0, z∞ ≥ 0 (19)

Upon termination of column generation, and if z∞ > 0, a valid inequality that
cuts off p := (x, y, s) can be generated in the form:

NI∑

i=1

t+1∑

t′=t

[(α∗+
i
t′ + α∗−

i
t′)x

i
t′ + (β∗+

i
t′ + β∗−

i
t′)y

i
t′ ] +

NI∑

i=1

γ∗isik + η∗ ≤ 0 (20)

We refer the interested reader for details (including validity proofs and other tech-
nical details) to [1]. It is interesting to note that a valid inequality can be generated
before completing the column generation process, but it might not be as strong as the
one generated upon column generation termination. Also, we investigate the strength
of the generated inequalities by establishing tight lower bounds on their dimension.
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3 Computational Results

Table 1 shows preliminary computational results that were run on the Trigeiro X
dataset [7], and compares with the recent algorithms of [5, 2]. For the sake of brevity,
we show results for the 10 X sets for which our algorithm had the larger integrality
gaps, but report the average of all 34 X sets. Each X set consists of five instances.

Instance Group Pimentel PD X2PL
X11429 9.6 4.99 4.74
X12429 8 3.92 3.56
X11419 10.37 7.07 3.33
X12419 5.97 4.25 2.13
X11229 3.05 2.07 2.01
X12119 1.73 3.46 1.9
X12229 3.24 1.92 1.65
X11119 1.54 3.13 1.62
X11129 2.53 2.87 1.46
X11219 2.38 2.51 1.41
Average 2.09 1.41 0.97

Table 1: Average integrality gaps for the decomposition approaches of [5, 2] and
X2PL for the Trigeiro X dataset.

The talk will give an overview of the developed methodology, and will primarily
elaborate on the computational results and implementation challenges that the sep-
aration algorithm poses. The interested reader is referred to [1] for extensive details
of results and discussions.
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Abstract

We present a model for a dynamic capacitated lotsizing problem with se-
quence dependent setups, linked lotsizes and multiple machines. Setup re-
sources are scarce since setups are carried out by a common setup resource.
This means that all operations have to be synchronized in order to avoid over-
lapping. Multiple setups for the same product per macro-period are possible.

1 Introduction

In a German food company as well as in the automobile industry (see for example [1]),
we found a special lotsizing problem. Since setup states can be preserved and setups
are sequence dependent, sequences have to be determined simultaneously. A unique
assignment of products to machines exists which would usually enable an isolated
solution of the simultaneous lotsizing and scheduling problem for each production
machine, respectively. This approach is not sufficient for the underlying problem, as
setups on different production machines are carried out by specialized setup resources,
which can perform only one setup at a time. With regard to the common setup
resource, setups on all production machines have to be synchronized.

Only few literature exists considering common setup resources. [1] present a model
based on the Proportional Lotsizing and Scheduling Problem for one common setup
resource. [2] use the big bucket model formulation for the CLSP-L-SD (Capacitated
Lotsizing Problem with Linked Lotsizes and Sequence Dependent Setups) proposed
by [3] as basic model and extend it by a common setup resource. [4] present a familiar
problem as they extend the GLSP (General Lotsizing and Scheduling Problem) and
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CLSP-L-SD by tools which are attached to a machine during the whole production
process and have to be synchronized, too.

[2] show that their big bucket model formulation is superior to the small bucket
model by [1] (e.g. larger problems can be solved). In addition, the model proposed
by [2] presents the underlying problem more precisely. Therefore, we use their for-
mulation for further extensions.

In the CLSP-L-SD, it is assumed that only one setup and one production opera-
tion can take place per period as a second setup would be associated with unnecessary
costs since two lots of the same product can be combined within one period. How-
ever, an additional scarce resource (the common setup resource) exists in our case,
which restricts the solution space. Regarding high utilizations and/or long setups
in combination with a common setup resource, it can make sense to split production
quantities and accept additional setups in order to generate feasible production plans.

We present a new model formulation based on [2] which considers multiple setup
and production operations for the same product in one macro-period.

2 Problem description

A simultaneous lotsizing and scheduling problem is considered. A product can be
produced more than once per macro-period. Setups are carried out by a common
setup operator and have to be synchronized for all machines and all positions within
a macro-period.

Furthermore, the underlying problem has the following characteristics:

• The planning horizon is divided into T periods.

• K products are produced.

• M production machines are available.

• Each product is uniquely assigned to a single machine (k ∈ Km, m = 1, 2, . . . ,M).

• Capacities of the production machines are limited by bmt (t = 1, 2, . . . , T , m =
1, 2, . . . ,M).

• A setup operation is performed by a setup resource and a setup resource can
perform only one setup at a time.

• Each setup operation is linked with sequence dependent time and costs.

• Setup states are carried over to the next period.

• Production of a lot may run over several consecutive macro-periods and posi-
tions within one macro-period.
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• Backlogging and overtime are not allowed.

• The objective is to minimize the sum of holding and setup costs.

3 Solution approach

Based on the model formulation by [3] for the capacitated lotsizing and scheduling
problem with sequence dependent setups and linked lotsizes, [2] introduce new vari-
ables documenting start and end times for setup operations as well as additional
constraints which coordinate setup and production operations on each machine. A
binary variable and corresponding equations ensure the synchronization of setups over
all machines.

In order to enable multiple setups and production of the same product in a macro-
period, a number of positions P is introduced. Each macro-period is associated
with a given number of positions p ∈ Pt, which defines how many times a setup
can take place for a product and period at most. Existing variables linked with
setup and production operations and corresponding constraints are adapted to this
approach. Further adaptions are necessary as all operations have to be coordinated
on a particular production machine and over all positions.

The model is solved with IBM ILOG CPLEX 12.6 and the optimization language
OPL. Since the problem becomes even more complex by enabling multiple setups,
computation times increase in comparison to the model formulation presented by [2].
Therefore, heuristic solution approaches are necessary.
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Abstract

We present a new model formulation for a multi-product capacitated lot siz-
ing problem with quality-dependent remanufacturing and product substitution.
The returned products possess different quality levels and can be remanufac-
tured to the next better or to a higher one. External demands for new products
as well as for remanufactured products depending on the quality are consid-
ered. The demand of remanufactured products with a given quality level can
also be satisfied by any remanufactured product with a higher quality level or
in addition by a new product. However, this substitution is not allowed in the
other direction. Furthermore, a solution approach based on column generation
is proposed and first numerical results are presented.

1 Introduction

In closed-loop supply chains forward-oriented and backward-oriented product flows
are considered, i.e., used products can be returned into the supply chain by cos-
tumers. This offers the opportunity to remanufacture these returned products to sell
them again and gain additional profit. In the literature new products and remanu-
factured products are often regarded as perfect substitutes to fulfill period’s demand.
However, this assumption does not always hold as customers may refuse to pay the
same price for brand new as well as for remanufactured products. Furthermore, dif-
ferent quality levels of returned products are also considered which depend on the
customer’s product usage. The better the quality level of a returned product, the less
is the remanufacturing effort which has to be done. The different quality levels lead
to quality-dependent remanufacturing costs and times. Additionally, we also assume
a demand for remanufactured products with different quality levels which can arise
from different demand markets.
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2 Model Assumptions

We present a multi-product capacitated lot sizing problem with quality-dependent re-
manufacturing options and product substitution. The processes of (re)manufacturing
products take place on multiple machines. Each machine can either remanufacture
returned products or manufacture new products. Returned products of a given qual-
ity level can be remanufactured to the next better quality level or to a higher one.
The processing time of remanufacturing a product to a given quality level depends
on the initial quality level of the returned product. Furthermore, returned products
can also be disposed of. In Figure 1 the considered product flows are illustrated.

CustomersManufacturing

Remanufactured 
items

Returned
items Disposal

Remanufacturing

Customers

Manufactured 
items

Figure 1: Product flow within the considered closed-loop supply chain.

In each period newly manufactured products as well as remanufactured products with
a given quality level are demanded. The external demand of newly manufactured
products can only be satisfied by new ones. To fulfill the demand of remanufactured
products with a given quality level a downstream substitution is possible, this means
a higher quality level can substitute a lower one. In addition, a newly manufactured
product can always substitute a remanufactured one.
The objective is to maximize the sales revenue over a given planning horizon with
respect to (re)manufacturing, setup, holding, and disposal costs.
As the proposed model can be reduced to the well-known capacitated lot sizing prob-
lem (CLSP), this problem is also NP-hard. Therefore, a heuristic is necessary to
obtain good solutions in reasonable running times.
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3 Solution Approach

[1] give a structured survey of solution approaches for dynamic capacitated lot sizing
problems. They point out, that MP-based heuristics are more flexible in matters of
model extensions due to their general procedure. To solve our model the use of an
MP-based solution approach seems to be promising as well.
Therefore, we adapt the solution approach based on column generation suggested for
the capacitated lot sizing problem with remanufacturing (CLSP-RM) in [2]. First
numerical results are presented.
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Abstract

In this study, we investigate two-period subproblems proposed by Akartunali et
al. (2014). In particular, we study the polyhedral structure of the mixed integer
sets related to various two-period relaxations. We derive several families of valid
inequalities and investigate their facet-defining conditions. Then we discuss
the separation problems associated with these valid inequalities. Finally we
investigate the computational strength of these cuts when they are included
in a branch-and-cut framework to reduce the integrality gap of the big bucket
lot-sizing problems.

1 Introduction

Production planning problems have been interesting for both researchers and prac-
titioners for more than 50 years. The problem aims to determine a plan for how
much to produce and stock in each time period during a time interval called planning
horizon. It is an important challenge for manufacturing companies because it has a
strong impact on their performance in terms of customer service quality and oper-
ating costs. In this study, we focus on multi-level, multi-item production planning
problems with big bucket capacities, i.e., each resource is shared by multiple items
and hence different items can be produced in a specific time period. These real-world
problems remain challenging to solve to optimality as well as to obtain strong bounds.

Let NT , NI and NK be the number of periods, items, and machine types, re-
spectively. We assume that each machine type operates only on one level, and each
level can employ a number of machine types. The set endp indicates all end-items,
i.e. items with external demand; the other items are assumed to have only internal
demand. Let xit, y

i
t, and sit represent production, setup, and inventory variables for

item i in period t, respectively. The setup and inventory cost coefficients are indicated
by f it and hit for each period t and item i. The parameter δ(i) represents the set of
immediate successors of item i, and the parameter rij represents the number of items
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required of i to produce one unit of item j. The parameter dit denotes the demand for
end-product i in period t, and dit,t′ is the total demand between t and t′. The param-
eter aik represents the time necessary to produce one unit of i on machine k, and ST ik
is the setup time for item i on machine k, which has a capacity of Ck

t in period t. Let
M i

t represent the maximum number of item i that can be produced in period t. Fol-
lowing the notation of [2], the multi-level, multi-item production planning problems
with big bucket capacities can then be formulated:

min
NT∑

t=1

NI∑

i=1

f ity
i
t +

NT∑

t=1

NI∑

i=1

hits
i
t

s.t. sit−1 + xit = sit + dit, t ∈ [1, NT ], i ∈ endp, (1)

sit−1 + xit = sit +
∑

j∈δ(i)
rijxjt , t ∈ [1, NT ], i ∈ [1, NI] \ endp, (2)

NI∑

i=1

(aikx
i
t + ST iky

i
t) ≤ Ck

t , t ∈ [1, NT ], k ∈ [1, NK], (3)

xit ≤M i
ty
i
t, t ∈ [1, NT ], i ∈ [1, NI], (4)

y ∈ {0, 1}NT×NI , x ≥ 0, s ≥ 0. (5)

Here, (1) and (2) are flow conservation constraints for end-items and intermediate
items respectively. The constraints (3) are the big bucket capacity constraints, and
(4) guarantee that the setup variable is equal to 1 if production occurs. Finally, (5)
give the integrality and non-negativity constraints.

We note that uncapacitated relaxation and single-item relaxation have been stud-
ied previously by [5]. In addition, [4] introduced and studied the single-period re-
laxation with preceding inventory, where they also derived cover and reverse cover
inequalities for this relaxation. Finally, we also remark the work of [3] on a single-
period relaxation as a relevant study.

2 Two-Period Relaxation

Now, we present the feasible region of a two-period, single-machine relaxation of
the multi-level, multi-item production planning problems with big bucket capacities,
denoted by X2PL (see [1] for details).

xit′ ≤ M̃ i
t′y

i
t′ , i ∈ {1, . . . , NI}, t′ = 1, 2,

xit′ ≤ d̃it′y
i
t′ + si, i ∈ {1, . . . , NI}, t′ = 1, 2,

xi1 + xi2 ≤ d̃i1y
i
1 + d̃i2y

i
2 + si, i ∈ {1, . . . , NI},
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xi1 + xi2 ≤ d̃i1 + si, i ∈ {1, . . . , NI},
NI∑

i=1

(aixit′ + ST iyit′) ≤ C̃t′ , t′ = 1, 2,

x ≥ 0, s ≥ 0, y ∈ {0, 1}2×NI .

Since we consider a single machine, we dropped the k index from this formulation,
however, all parameters are defined in the same lines as before. Observe that the
obvious choice for the horizon would be t + 1. In this case, the definition of the
parameter M̃ i

t′ is the same as of the basic definition of M i
t+t′−1, for all i and t′ = 1, 2.

Similarly, capacity parameter C̃t′ is the same as Ct+t′−1, for all t′ = 1, 2. Cumulative
demand parameter d̃it′ represents simply dit+t′−1, t+1 (or echelon demand in case of

subassemblies with no external demand), for all i and t′ = 1, 2, i.e., d̃i1 = di1,2 and

d̃i2 = di2.
Next, we remark the following polyhedral result for X2PL (see [1] for details).

Proposition 2.1 Assume that M̃ i
t > 0,∀t ∈ {1, . . . , NT},∀i ∈ {1, . . . , NI} and

ST i < C̃t,∀t ∈ {1, . . . , NT},∀i ∈ {1, . . . , NI}. Then conv(X2PL) is full-dimensional.

In this study, we investigate the case of ST i = 0,∀i ∈ {1, . . . , NI}. Then two
relaxations of X2PL are established and their polyhedral structures are studied. We
present the trivial facet-defining inequalities and then we derive several classes of valid
inequalities such as cover and reverse cover inequalities for those mixed integer sets
and establish conditions on them to define facets. Next, we discuss on the separation
problems associated to those valid inequalities. Lastly, we include these cuts in the
branch-and-cut algorithm to improve the integrality gap of the multi-level, multi-
item production planning problems with big bucket capacities. This talk will cover
the details of these aspects.
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Abstract

We consider a game where there is a separate market (for a single product)
in each of a given set of discrete time periods. Each player can decide the
quantity of product to place in each time period (market). Each player has
her own production facility which is represented as an uncapacitated lot-sizing
model (i.e. production incurs fixed cost and inventories are allowed). We show
that this game is potential and always admits at least one pure Nash Equilib-
rium. There are in general several such equilibria. When there are no variable
production and inventory cost, we can compute one pure Nash Equilibrium
in polynomial time. When there is only one period, it is NP-Hard to find an
optimal pure Nash equilibrium (i.e. with respect ot a given objective function),
but one can compute such an optimal equilibrium in pseudo-polynomial time.

1 Introduction

We consider the situation where several producers compete for a single-product mar-
ket over time. Our goal is to understand what is the likely behaviour of these re-
spective producers (how they will produce and when, how much they will place in
the market and when) and what will the resulting market prices will be. The natural
conceptual framework for such a study are Game Theory and the key concept of a
Nash Equilibrium.

The model we build has a discretized finite time horizon with T > 0 periods. In
each period t there is a market for the single product. We assume that in a single
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period t, everyone buys and sells at the same market price pt. The market in period
t is represented by the demand function pt = at − btqt where pt is the market price,
qt is the total quantity placed in the market, and at, bt are given parameters. We
assume that m > 0 producers (or players) compete for this mutli-period market. The
production structure of each producer is represented by an uncapacitated lot-sizing
model. That is, each producer i has to decide how much to produce in each of the time
period t (production variable xi

t) and how much to place in the market (variable qit).
They are fixed and variable (linear) production costs, no upper limit on production
quantities, and a producer can build inventory by producing in advance. We assume
without loss of generality that there is no inventory cost. So we obtain the following
model.

Each player i = 1, ...,m solves the following parametric programming optimization
problem.

max
yi,xi,qi,hi

Πi(x, y, q) =
T∑

t=1

(at − bt

m∑

j=1

qjt − cit)q
i
t −

T∑

t=1

F i
t y

i
t (1a)

subject to xi
t + hi

t−1 = hi
t + qit for t = 1, . . . , T (1b)

0 ≤ xi
t ≤Myit for t = 1, . . . , T (1c)

hi
0 = hi

T = 0 (1d)

yit ∈ {0, 1}, hi
t ≥ 0 for t = 1, . . . , T, (1e)

where hi
t is the inventory of producer i at the end of period t, M is a large constant,

cit and F i
t are the unit (variable) and fixed production cost respectively and yit is a

binary variable indicating whether there is positive quantity produced in period t by
player i.

IWe call this an Uncapacitated Lot-Sizing Game or ULSG in short. A pure Nash
Equilbrium (pNE in short) is an assignment to the variables x, y, q, h so that they are
indeed optimal solution to the parametric program (1a)–(1e).

2 Literature Review

Most of the literature about lot sizing games focuses in the cooperative direction. In
this type of games instead of searching for a Nash equilibrium, the goal is to find
coalitions between the players such that they do not have incentive to leave it (that
would traduce in an utility decrease). See for example [5].

The authors of [1] study a Bertrand and Cournot competition game with one
period. Their Cournot competition model is similar to our one period lot sizing
game, but their market price functions are more general (for example, the parameters
a and b can be different for each player).
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On the paper [2] a Bertrand price competition game is analyzed. Here, the prob-
lem is similar to our lot sizing game (if we invert the demand function). The main
difference is in the players’ strategies. Each player has as strategy a selection of a
market price which is maintained throughout the game. Given the market price of
each player the demands in each time period for each player are determined. The au-
thors are able to get sufficient conditions for the existence and efficiency of computing
one Nash equilibrium if the fixed costs are constant during the all time horizon for
each player.

Hongyan Li and Joern Meissner [4] consider a lot sizing game in which the players’
strategies are the production capacities purchased in the beginning of the time hori-
zon and a lot-size plan. The cost of buying capacity depends on the total capacity
purchased by the players. After this choice, the players’ problem is just a single-
item lot sizing problem with limited capacity. The authors prove the existence of a
capacity equilibrium under modest assumptions.

The authors of [3] built a methodology to solve Cournot oligopolies when part of
the players’ decision variables are integer. Typically, in the continuous game, under
some assumptions (e.g. players’ objective function is convex and their constraints
are linear), Karush-Kuhn-Tucker conditions are enough to establish each player opti-
mization problem and thus, compute a Nash equilibrium for the game. However, the
presence of discrete variables makes the KKT-conditions not valid. In this way, the
authors propose a new approach that provides a compromise between complemen-
tarity and integrality, showing that when there is a Nash equilibrium satisfying the
integrality requirement it can be found.

3 Contribution

We are interested in the following questions related to this game. Does there always
exist one pNE for this game? Can there be multiple pNE? Can we compute one (any)
pNE in polynomial time (if such a pNE exists)? Can we optimize a function linear
in the variables over the set of pNE in polynomial time? We are able to partially
answer these questions by proving the following results.

Proposition 1 ULSG is a potential game, and the maximizer of the following po-
tential function

Φ(x, y, q) =
T∑

t=1

m∑

p=1

−F p
t y

p
t − cptx

p
t +

(
at −

bt
2

(2qpt +
∑

j 6=p

qjt )

)
qpt

=
m∑

p=1

(
Πp (x, y, q) +

T∑

t=1

qpt bt
2

∑

j 6=p

qjt

)
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is always a pNE. This implies that a pNE always exists for the ULSG.

This justifies the fact that we only consider pure Nash Equilibria, and not mixed
strategies (where players are allowed to choose among the possible strategies with
some given probability, instead of selecting only one).

Proposition 2 When c = 0, ULSG is a congestion game, and maximizing the po-
tential function Φ is equivalent to solving a minimum-cost network flow problem that
can be solved in polynomial time. Therefore finding a pNE for ULSG when there are
no variable costs can be done in polynomial time.

Proposition 3 Even when T = 1 and the objective function is given by
∑m

i=1 f
iyi,

optimizing over the set of pNE is NP-Hard.

This is proved by showing that optimizing over the set of pNE is at least as hard as
Subset-Sum.

Proposition 4 When T = 1, one can optimize over the set of pNE in pseudo-
polynomial time.

Proposition 5 When F = 0, the set of pNE of ULSG is a polytope. Furthermore
there is only one pNE unless the problem is degenerate.

The main question left open is whether one can compute a pNE in polynomial
time in the general case. Another question is whether the existence of a pNE extends
when the lot-sizing model includes capacities or backlogging.
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Abstract

In this research, we study bi-level lot-sizing problems in which reusable by-
products are generated during production. The generated by-products can be
reused as raw materials after further processing. However, by-products can be
“recycled” only a given number of times. The industrial problem concerns the
supply chain of “SOI” (Silicon-On-Insulator) fabrication units. Based on the
industrial model, an uncapacitated single-item version of the problem is defined
and analyzed. Numerical experiments of both problems are discussed.

1 Introduction
Silicon-on-Insulator (SOI) wafers are used instead of silicon-only wafers in semicon-
ductor manufacturing for higher performance and efficiency. SOI wafers can be pro-
duced using different technologies. Among them, Smart-CutTM Technology is a very
economic and efficient way of fabricating SOI wafers. Using this technology, a thin
crystalline layer of a so-called donor wafer (Top wafer) is laid on another silicon wafer
(called the handle or Base Wafer) using bonding and splitting processes [2]. As only
a thin layer of the Top wafer is transferred to the final product (SOI wafer), it can
be reused to produce other SOI wafers. Before reusing the used Top wafer in the SOI
production line, it must be reprocessed.
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The purchased raw material -which is not yet used in production- is called “Fresh
Wafer”. The generated by-product during production is called “Negative Wafer”.
The Negative Wafers are not reusable immediately as raw material. The process of
making by-products reusable is called “Refreshing”. The refreshed Negative Wafer
which can be used again as raw material in production is called “Refresh Wafer”. A
purchased raw material (Fresh Wafer) has a limited refresh life. It means that the
generated by-product (Negative Wafer) can be reused (refreshed) a limited number
of times. The supply chain is depicted in Figure 1.

Refreshable
Negative  

Wafer (l-1) 

SOI 
Fabrication 

(Top + Base) 

Refresh 
Process 

Refresh  
Wafer (l) 

Fresh 
Wafer 

Top 

SOI 
Supplier Customer 

SOI & Refresh Production Lines 

Base 
Wafer 

Figure 1: Supply chain of a SOI fabrication unit using the Smart-CutTM Technology

2 Literature Review
Existing concepts in the lot-sizing literature, such as “by-product”, “co-product”,
“remanufacturing”, and “recycling” are close to this research. Let us distinguish the
new aspects of our research. The problem studied is bi-level, with a parent-component
relationship in the item structure between raw materials and the final product. The
raw material once used for production is considered as “by-product”. The process
of restoring the generated by-products makes them reusable again as raw materials.
Therefore, this process can be considered as a “remanufacturing process”. To the
best of our knowledge, our problem is not addressed in the literature.

In the literature, the difference between by-product (by-production) and co-product
(co-production) is not clear. Both co-products and by-products are generated during
production process or at each production run. Co-products have their own indepen-
dent demand and cannot be used interchangeably. Whereas by-products are unde-
sired “sub-products” generated during production. They must normally be reworked
before being able to reuse them.

A multi-item uncapacitated lot-sizing problem in which co-products are produced
at each production run is treated in [1], where co-products have their own demand
and cannot fulfill the demand of the main product. Other studies consider the co-
production of a range of products with different performances in a single production
run. The co-products are then sorted according to their key performance to satisfy
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demands of each co-product [6]. Remanufacturing in reverse logistics is considered
in [4], where there is not only a one-way flow of the products to the customers but
materials and products may be returned to the manufacturer for remanufacturing and
reuse. This is what is called a “closed-loop supply chain”. Spengler et al. [5] propose
mathematical planning models for recycling generated by-products during production,
and dismantling and recycling products at the end of their lifetime. Several other
studies use the term remanufacturing to denote the restoring or recycling of products
[3]. The term remanufacturing is used differently in the literature compared to our
industrial problem in which remanufacturing is part of the manufacturing process
where the customer is not involved.

3 Problem Modeling and Analysis
Based on the industrial problem, a reduced problem is defined with only a single
final product and refresh reference. The complete model with procurement, refresh
and production setup constraints and related costs will be presented in the workshop.
Here, we present the main idea to model the remanufacturing process of the by-
products in the refresh process of the reduced single-item model. In order to model
the flow conservation constraints, we define two parameters T and dt, which stand
respectively for the number of periods and the demand at period t. The parameter l
indicates how many times the raw material has been used and how many more times
it can be used to be fully amortized and reach its maximum refresh level lmax. l = 0
indicates that the raw material is a Fresh Wafer (has never been used), and l > 0
that the raw material is a Refresh Wafer.

The decisions variables are:

xl
t Production quantity using Top Wafer at level l in period t,

pt Quantity of Fresh Wafer purchased in period t,
zlt Quantity of Top Wafer at level l to be refreshed in period t,
st Finished goods (SOI) inventory in period t,

sl
+

t Top (Fresh or Refresh) Wafer inventory at level l in period t,

sl
−
t Negative Wafer inventory at level l in period t.

The flow conservation constraints of the single-item bi-level lot-sizing problem
with reusable by-products are expressed as follows:

st−1 +
lmax∑

l=0

xl
t = dt + st ∀t (1)

sl
+

t−1 + pt = xl
t + sl

+

t ∀t, l = 0 (2)

sl
+

t−1 + zl−1
t−1 = xl

t + sl
+

t ∀t, l > 0 (3)

sl
−
t−1 + xl

t−1 = zlt + sl
−
t ∀t, l (4)
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Constraint (1) models the finished goods (SOI) flow conservation while Constraint
(2) models the purchased raw material (Fresh Wafer) flow conservation. Each time
a production takes place in period t, (xl

t > 0 in Constraint (1)), a Negative Wafer
is generated. The generated Negative Wafer enters the Negative flow conservation
Constraint (4). If the Negative Wafer has not yet reached its maximum refresh level, it
can possibly be refreshed. Constraint (3) models the Refresh Wafer flow conservation.

During the workshop, the detailed industrial model and some numerical experi-
ments will be presented. Properties of the single-item version of the industrial model
will be discussed.
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Abstract

Several researchers have proposed so-called MIP based heuristics, such as
relax-and-fix and fix-and-optimize, to solve several variants of lot-sizing prob-
lems. Computational results show that these MIP based heuristics perform well
on sets of randomly generated problem instances. In this research, we make
a first attempt to analyze the worst case behavior and we will present some
preliminary results

1 Introduction

In recent years several researchers have applied MIP based heuristics to lot-sizing
problems. In general, a MIP based heuristics uses a MIP formulation of the lot-sizing
problem under consideration as a starting point. Since the problem can often not be
solved to optimality in a reasonable amount of time, the integrality of a subset of
the variables is relaxed and this relaxed problem is solved. Using the information of
the resulting solution, some variables are fixed and the problem with the remaining
unfixed variables is reoptimized. This procedure continues until all variables are fixed.

Different types of MIP based heuristics, such as fix-and-optimize and relax-and
fix, are proposed to solve complex lot-sizing problems. Typically, these lot-sizing
problems have multiple items, capacities, setup times, setup carry-overs, scheduling
decisions, etc. We mention the papers [1], [3], [2] and [4] as examples, but this list is
far from complete.

1

IWLS 2014 - International Workshop on Lot Sizing

64



2 Problem setting and research question

A commonly used MIP based heuristic is the so-called relax-and-fix heuristic (also
called fix-and-relax heuristic). Formally, this heuristic works as follows. Consider
a MIP formulation of some (lot-sizing) problem and let yj be the integer variables
indexed by j ∈ J . In iteration k, we have a set Ik ⊂ J corresponding to the integer
variables that will be optimized over, and a set Fk ⊆ Ik corresponding to the integer
variables that will be fixed at the end of the iteration. For convenience, let

F k =
⋃

i=1,...,k

Fi and Ik =
⋃

i=1,...,k

Ii.

Starting with k = 1 and F0 = ∅, the following steps are performed in a relax-and-fix
heuristic:

Step 1 construct problem (Pk) where the variables yj with j ∈ F k−1 are fixed, yj
with j ∈ Ik−F k−1 are integer, and yj with j ∈ J−Ik are relaxed (to continuous
variables)

Step 2 solve (Pk) and fix the integer variables yj with j ∈ Fk to the optimal values
found

Step 3 while not all variables are fixed, set k = k + 1, and go to Step 1

Clearly, to have a valid algorithm with n iterations, we must have In = J and the
sets Fk (k = 1, . . . , n) should partition J .

Several decisions need to be made when implementing a relax-and-fix heuristic for
a lot-sizing problem. For example, one needs to decide on (i) which formulation to
use (for example, an aggregate, shortest path, or facility location formulation), (ii)
how to decompose the problem (for example, decompose over the items or over the
periods), and (iii) how to choose the relaxing strategy (for example, how to set the
amount of overlap, i.e., the size of |Ik−1 ∩ Ik|). Clearly, all these decisions effect the
performance of the relax-and-fix heuristic.

As mentioned in the introduction, quite some research has been done on the
performance of relax-and-fix heuristics by testing it on sets of randomly generated
instances. However, to the best of our knowledge, the worst case behavior of relax-
and-fix heuristics has not been investigated so far. This is the main goal of our
research.

3 Preliminary results

Our starting point is the simplest case possible: a T periods single-item lot-sizing
problem with time-invariant cost parameters using an aggregate formulation. Fur-
thermore, we set Ik = Fk = {k} for k = 1, . . . , T , which means that we have a
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forward rolling and non-overlapping time window of size 1 over the iterations. Our
preliminary results are the following:

1. When using a bad big-M (so one that is large) in the aggregate formulation,
the relax-and-fix heuristic reduces to the Freeland-Colley heuristic.

2. Even when using a tight big-M , the worst case ratio of the relax-and-fix heuristic
is unbounded.

Furthermore, we found instances with the following counterintuitive properties:

1. When increasing the setup cost, the length of the first order cycle decreases.

2. When increasing the size of the time window, the performance of the relax-and-
fix heuristic gets worse.
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The integrated optimization of production, inventory and distribution routing
decisions in supply chains offers tremendous cost saving opportunities to firms. In
order to realize these savings, one has to solve a production-routing problem (PRP),
which jointly considers production, inventory and distribution routing decisions.

The PRP can be seen as an integration of two-level lot sizing and vehicle routing
problems, which are very difficult problems even separately. Thus, the PRP is a very
complex problem. Because of its complexity, there are only a few exact algorithms (see
[3], [6], [8]) available in the literature for the PRP. On the other hand, many heuristics
have been proposed for the PRP with the most successful ones being proposed by
Absi et al. [1], Adulyasak et al. [2], and Archetti et al. [6]. For a recent review on
the PRP, interested readers can refer to Adulyasak et al. [4].

We consider a production-distribution system in which a supplier orders (or pro-
duces) a single product and distributes to N retailers over a finite time horizon with
a fleet of vehicles. Each retailer faces external customer demand in each discrete
time period and may keep inventory to meet the demand without backordering. The
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supplier manages the inventories at the retailers by deciding on when and how much
to ship to each retailer, and guarantees that neither retailers nor itself will stock-out
in any period. The supplier decides on how much to order in each period, and may
ship to the retailers immediately or keep inventory for replenishing retailers in later
periods. When an order is placed at the supplier in a period, a fixed order cost inde-
pendent of the size of order and a variable order cost per unit ordered are incurred.
For each unit kept in inventory at a retailer or supplier in a period, a holding cost
is incurred. The amount of inventory kept at a retailer cannot exceed the storage
capacity of that retailer. A fleet of homogeneous vehicles based at the supplier is
available for distribution. Each vehicle, departing from and returning back to the
supplier, can visit multiple retailers in a multi-stop route without exceeding its ca-
pacity. A vehicle traveling from a facility to another facility incurs a transportation
cost. We assume that the vehicle can only perform a single tour in every period. The
PRP is to decide on when and how much to order at the supplier, when and how
much to ship to each retailer, and the routing of vehicles such that the sum of fixed
and variable order costs, transportation cost as well as inventory carrying costs at
the supplier and retailers is minimized.

We propose an a priori tour-based three phase heuristic (denoted by 3P) for the
problem. We solve a giant traveling salesman problem (TSP) over all retailers and
supplier in the first phase. In the second phase, we formulate the problem as a mixed
integer program (MIP) with an approximation of the true routing cost using the giant
tour obtained in the first phase and solve it. Finally, we solve a capacitated vehicle
routing problem (CVRP) or a TSP depending on the number of vehicles needed in
each period in the third phase so as to obtain a feasible solution.

We have performed computational experiments on benchmark instances intro-
duced by [6]. These instances involve respectively 14, 50, and 100 retailers in three
sets of instances. Each set has 480 instances. There is a single vehicle in the instances
with N = 14 whereas the number of available vehicles is unlimited for the other in-
stances. We have compared our results with the results of the heuristics (IM-VRP
and IM-MultiTSP) proposed by [1], the adaptive large neighborhood search heuris-

N = 14 N = 50 N = 100
Heuristic Ave. Cost # Best Ave. Cost # Best Ave. Cost # Best
3P 179325.3 255 587908.2 221 1085460.3 195
IM-VRP – – 588182.7 185 1086168.9 206
IM-MultiTSP 179414.5 181 589774.5 48 1090640.8 19
ALNS 181802.9 2 590210.0 24 1089588.6 3
H 180829.9 0 592608.1 6 1092508.9 57

Table 1: Summary of computational results
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tic (ALNS) proposed by [2], and the local search heuristic (H) proposed by [6]. We
have solved the MIP in the second phase using Cplex 12.5, the CVRPs in the third
phase using the heuristic of [7], and the TSPs in the first and third phases using the
Concorde solver [5].

A summary of the computational results on the instances introduced by [6] is
presented in Table 1, where first column indicates the name of the heuristic, the
columns named as ’Ave. Cost’ the average of the objective function values obtained
over 480 instances, and the columns named as ’# Best’ the number of the times a
heuristic finds the smallest objective function value. Note that columns 2-3, 4-5, 6-7
show the results for the instances with N = 14, 50, and 100, respectively, and the
column 3 shows the number of the times a heuristic finds the optimal solution. The
computational results reveal that our heuristic yields very good results improving
many existing results. We should note that the computational time 3P required did
not exceed six minutes even for the largest instances.

References

[1] N. Absi, C. Archetti, S. Dauzere-Peres, D. Feillet. An iterative two phase heuris-
tic approach for the production routing problem, Transportation Science, forth-
coming (2014).

[2] Y. Adulyasak, J.-F. Cordeau, R. Jans. Optimization-based adaptive large neigh-
borhood search for the production routing problem. Transportation Science, 48,
20-45 (2014).

[3] Y. Adulyasak, J.-F. Cordeau, R. Jans, Formulations and branch-and-cut algo-
rithms for multivehicle production and inventory routing problems, INFORMS
Journal on Computing, 26, 103-120 (2014).

[4] Y. Adulyasak, J.-F. Cordeau, R. Jans, The production routing problem: A re-
view of formulations and solution algorithms, Computers & Operations Research,
http://dx.doi.org/10.1016/j.cor.2014.01.011 (2014).

[5] D.L. Applegate, R.E. Bixby, V. Chavatal, W.J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton Uni. Press, Princeton, NJ (2007).

[6] C. Archetti, L. Bertazzi, G. Paletta, M.G. Speranza, Analysis of the maximum
level policy in a production-distribution system, Computers & Operations Re-
search, 38, 1331-1396 (2011).

[7] C. Groer, B. Golden, E. Wasil, A library of local search heuristics for the vehicle
routing problem, Mathematical Programming Computation, 2, 79-101 (2010).

3

IWLS 2014 - International Workshop on Lot Sizing

69



[8] M. Ruokokoski, O. Solyali, J.-F. Cordeau, R. Jans, H. Sural, Efficient formula-
tions and a branch-and-cut algorithm for a production-routing problem. GERAD
TechnicalReport G-2010-66, HEC Montreal, Canada (2010).

4

IWLS 2014 - International Workshop on Lot Sizing

70



New cutting planes for inventory routing

Pasquale Avella
Dipartimento di Ingegneria, Universita del Sannio
avella@unisannio.it

Maurizio Boccia
Dipartimento di Ingegneria, Universita del Sannio
maurizio.boccia@unisannio.it

Laurence Wolsey
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Abstract

Recently various authors have worked on a vendor-managed inventory rout-
ing problem. Here we present a new way to obtain valid inequalities for this
problem and then present several families of inequalities obtained by this ap-
proach.

1 Introduction

Recently various authors [3, 5, 6, 7, 8, 9] have worked on a vendor-managed inventory
routing problem appearing in Archetti et al [2]. Here we present a new way to obtain
valid inequalities for this problem and then present several families of inequalities
obtained by this approach. Essentially we look at the single period subproblem aris-
ing in each period (to obtain the full problem, it suffices to add the standard flow

conservation at each client in each period (sit−1 + xi
t = Di

t + sit, 0 ≤ sit ≤ S
i
).

The talk will also involve proofs of validity, separation heuristics and the latest
computational results.
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2 The single-period IRP subproblem

Let I denote the set of clients, node 0 the depot and I0 = I∪{0}. In the single period
model presented below, C is the capacity of each of the K vehicles and W i an upper
bound on the amount that a vehicle can deliver to client i in the period. Each vehicle
if used must make a subtour visiting a subset of the clients beginning and ending at
the depot. Each client is visited by at most one vehicle. Di is the demand of client

i in the given period and S
i
= W i −Di is then the upper bound on the stock at the

end of the period. A are the arcs of the complete digraph with node set I0.
We use the variables:
xi is he amount delivered to client i
z0 is the number of vehicles used in the period
zi = 1 if client i receives a delivery in the period, and zi = 0 otherwise
yij = 1 if one of the vehicles travels on the arc ij ∈ A si denotes the stock at client i
at the end of the period.

The problem treated is:

∑

i∈I
xi ≤ Cz0, xi ≤ W izi, z0 ≥ zi, i ∈ I (1)

∑

j∈I0
yij =

∑

j∈I0
yji = zi, j ∈ I0, (2)

∑

i∈I0\S,j∈S
yij ≥ zk ∀ S ⊂ I, ∀ k ∈ S. (3)

C
∑

i∈I0\S,j∈S
yij ≥

∑

k∈S
xk ∀ S ⊂ I. (4)

x,∈ RT
+, z

i ∈ {0, 1} i ∈ I, z0 ∈ {0, 1, . . . , K}, yij ∈ {0, 1}A (5)

Optional:

xi ≤ Di + si, 0 ≤ si ≤ W i −Di, ∀ i ∈ I (6)

si ≤ W i −Di, si − xi ≤ W i − 2Di ∀ i ∈ I (7)

where W i ≤ C for all i ∈ I.

3 Metric Inequalities

In the following inequalities, we assign non-negative weights µij to the set of arcs A.
Proposition 1. Let S ⊂ I, and let t ∈ T . The Metric Inequality

∑

i∈I∪{0}

∑

j∈I
µijyij ≥

∑

i∈S
xi (8)
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is valid for the set (1)-(5) if µij ≥ 0 ∀(i, j) ∈ A and
∑

ij∈P
µij ≥ min(C,

∑

i∈v(P )∩S
W i), (9)

for each subtour P starting and ending at the depot, where v(P ) is the set of nodes
of P ∩ I.

Here we first show two classes of metric inequalities.

3.1 A Simple Metric Inequality

Proposition 2. Let S ⊆ I with (S1, S2) a partition of S.

∑

i∈I0\S

∑

j∈S1

Cyij+
∑

i∈I0\S

∑

j∈S2

W jyij+
∑

i∈S2

∑

j∈S2

min(W j, C−W i)yij+
∑

i∈S2

∑

j∈S1

(C−W i)yij ≥
∑

i∈S
xi

(10)
is a Metric Inequality with
µij = C for ij ∈ (I0 \ S : S1),
µij = W j for ij ∈ (I0 \ S : S2),
µij = min{W j, C −W i) for ij ∈ (S2 : S2),
µij = C −W i for ij ∈ (S2 : S1),
µij = 0 otherwise.

Example 1. C = 254. W = {195, 254, 150, 129, 128},
Taking S = {2, 5}, S2 = {5} and I0 \ S = {0, 1, 3, 4}, the simple metric inequality is:

254(y02 + y12 + y32 + y42) + 128(y05 + y15 + y35 + y45) + 126y52 ≥ x2 + x5.

Proposition 3. Let S ⊆ I be a subset of the customers. The Generalized Inequality:
∑

i∈I0

∑

j∈S
Ljy

ij +
∑

i∈S

∑

j∈S
Rijy

ij ≥
∑

i∈S
xi (11)

is valid for IRP if:

i) W i ≤ Li ≤ C for each i ∈ S;

ii) Li +Rij ≥ min(W i +W j, C) for each ij ∈ (S : S);

iii) Li +Rij +Rjk ≥ C for each ij, jk ∈ (S : S).

iv) Rij ≥ 0 for all ij ∈ (S : S).

Note that these conditions can be extended to deal with paths with three or more
clients.
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4 Extensions

Proposition 1 can be easily generalized, allowing us to obtain inequalities also involv-
ing stock variables. Also several multi-period variants of the metric inequalities can
be described.
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Abstract

In this extended abstract we review the highlights of our recently published
paper [1] which considers the uncapacitated lot-sizing problem with deter-
ministic demands. Production costs consist of convex costs that arise from
economic production functions plus set-up costs. A mixed integer, non-linear
programming formulation together with structural results are provided which
are used to construct a forward dynamic-programming algorithm that obtains
the optimal solution in polynomial time. For positive setup costs, the generic
approaches are found to be prohibitively time-consuming; therefore the forward
DP algorithm is modified via the conjunctive use of three rules for solution gen-
eration. Additionally, we propose six heuristics. Two of these are single-step
Silver-Meal (H1) and EOQ (H2) heuristics for the classical lot-sizing problem.
The third is a variant of the Wagner-Whitin (H3) algorithm. The remaining
three heuristics are two-step hybrids that improve on the initial solutions of
the first three by exploiting the structural properties of optimal production
subplans. An extensive numerical study has been done to rest the heuristics.

1 Introduction

In this paper, we consider the problem of dynamic lot-sizing in the presence of
polynomial-type convex production functions and non-zero setup costs. The dynamic
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lot-sizing problem is defined as the determination of the production plan that mini-
mizes the total (fixed setup, holding and variable production) costs incurred over the
planning horizon for a single, storable item facing deterministic demands. The so-
called classical dynamic lot-sizing problem was first analyzed by [2]. They established
that, in an optimal plan with positive fixed setup costs and linear production and
holding costs, production is done in a period only if its net demand (actual demand
less inventories) is positive, and a period’s demand is satisfied entirely by production
in a single period (that is, integrality of demand is preserved.) For details on such
results, we refer the reader to the reviews in [3], [6], [7], [4] and [8].

Most of the existing works on the dynamic lot-sizing problem deal with linear
and/or concave production functions rather than convex functions. Our work differs
from the existing literature in our main assumption about the structure of production
costs. Specifically, we consider variable production costs in period t of the polynomial
form

∑m
n=1 wt

nqt
rnt where qt denotes the quantity produced in the period,wn

t and rnt
are positive constants and m is the number of resources. The assumed non-linearity
are originated from a number of industrial settings as discussed in [1]: From the
input-output relation which follows a Cobb-Douglas or Leontieff production function
or from the penalties of the ecological factors as carbon emission fines as in [5].

2 Problem Formulation

Parameters and variables:

• qt amount of the production in period t.

• yt: binary variable for detecting setup in period t.

• Kt fixed setup cost in period t.

• production cost:
∑m

j=1w
j
t q

rjt
t , where wj

t and rjt are non-negative constants. We

assume that rjt > 1 ∀j, t resulting in convex variable production costs.

• ht unit holding cost at period t.

• Du,v = du + du+1 + . . .+ dv denote the total demand of periods {u, u+ 1, . . . , v}

• Pu,v denote the production planning sub problem of periods {u, u + 1, . . . , v}

We formulate the problem as a MINLP problem. This allows us to establish certain
structural properties of the optimal solution. We can state problem Pu,v formally as
follows.
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min
qu,...,qv

Fu,v =
v∑

t=u

[
(Ktyt +

m∑

j=1

wj
t q

rjt
t +

( v∑

i=t

hi

)
qt

]
−

v∑

t=u

htDu,t (1)

s.t.
t∑

i=u

qi ≥ Du,t t ∈ {u, . . . , v} (2)

qt ≥ 0, t ∈ {u, . . . , v} (3)

qt ≤ Dt,vyt, t ∈ {u, . . . , v} (4)

yt ∈ {0, 1}, t ∈ {u, . . . , v} (5)

The nonlinear convex production costs are the key difference between our model
and the classical well-known model introduced by [2] is that the fundamental zero
inventory property (ZIP) of the optimal solution in the classical model does not nec-
essarily hold. To illustrate this point, consider P1,T for the following simple example.
For T = 2, Kt = K = 700, ht = h = 1, m = 1, w1

t = w = 0.01, r1t = r = 2 for
1 ≤ t ≤ T and d = (100, 300). The optimal plan for this problem gives q∗1 = 175 and
q∗2 = 225 and I∗1 × q∗2 6= 0.

3 Analytical Result and Solution Approaches

Definition 1 In a given production plan, Qij for periods {i, . . . , j},

(1) period t is a regeneration point if It−1 = 0;

(2) a sequence of periods {u, u+1, . . . , v}, for i ≤ u ≤ v ≤ j, is a generation, denoted
by 〈u, v〉, if Iu−1 = Iv = 0 and It > 0 for t ∈ {u, u + 1, . . . , v − 1};

(3) the production plan of a generation is called a production sequence.

Theorem 1 (Optimal Production Plan Structure I) In an optimal production plan
Q∗1,T , for any generation 〈u, v〉,
(i) Q∗uv = (du) if 1 ≤ u = v ≤ T ,
(ii) Q∗u,v = (Duv, 0, . . . , 0) if 1 ≤ u < v ≤ T and rnt ≤ 1 for t ∈ [u, v],
(iii) Q∗u,v = (q∗u, . . . , q

∗
v) is of class G if 1 ≤ u < v ≤ T and rnt > 1 for t ∈ [u, v],
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Theorem 2 (Optimal Production Plan Structure II) If rnt ≥ 1 for all n, t, in an
optimal production plan, for generations 〈u, v〉 and 〈v + 1, v′〉,

m∑

n=1

rnv+1w
n
v+1(q

∗
v+1)

rnv+1−1 ≤
m∑

n=1

rnl w
n
l q
∗
l
rnl −1 +

v∑

i=l

hi, (6)

Lemma 1 If rnt ≥ 1 and Kt = 0 ∀t, in an optimal production plan, for generation
〈u, v〉, q∗j > 0 if q∗t > 0 for u ≤ t < j ≤ v.

3.1 Dynamic programming formulations

Backward formulation:

JT
t−1(It−1) = min

qt≥max(0,dt−It−1)

{
Kt1qt>0 + htIt +

m∑

n=1

wn
t q

rnt
t + JT

t (It)

}
t ∈ {1, . . . , T}

(7)
Forward formulation:

f ∗t = min
1≤i≤t−1

{f ∗i−1 + gi,t}, (8)

where gi,t is the cost of a type-G subplan within [i, t]. For the detail of the heuristics
and numeric tes bed the reader may refer to [1]. However, a compact statistics of
the heuristics performances is provided in Table 1.

References
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Demand Algorithm min max median average N(0) N(-)
d1 H1 1.23 89.23 17.97 24.43 0 0

H2 0.08 65.03 6.24 12.47 0 0
H3 0 65.03 5.01 12.76 124 0

d2 H1 0.79 28.2 10.72 11 0 0
H2 0 19.9 3.24 4.71 8 0
H3 0 19.9 1.58 4.16 161 0

d3 H1 0.5 7.59 3.18 3.33 0 0
H2 0 7.4 1.69 1.99 36 0
H3 0 5.37 0.44 1.04 235 0

d1 H4 1.09 44.17 13.06 15.39 0 0
H5 0.06 18.87 1.8 3.36 0 0
H6 -0.01 18.87 1.73 3.68 157 2

d2 H4 0.79 15.84 6.78 6.63 0 0
H5 -0.01 2.28 0.29 0.4 65 5
H6 -0.01 2.37 0.19 0.34 223 3

d3 H4 0 7.04 1.37 1.94 114 0
H5 0 1.29 0 0.17 636 0
H6 0 0.65 0 0.02 808 0

Table 1: Percentage deviation statistics for heuristics H1 - H6.
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Abstract

Lot sizing is a hard problem with many variants including more or less
practical details. We depart from a standard formulation for the base problem
in mixed-integer programming, and describe a general framework that can be
applied to obtain good solutions for more complex variants of the problem, such
as lot sizing and scheduling.

1 Introduction

The lot sizing problem consists of determining the optimal production plan for a set
of products under a given planning horizon, and has been proven to be NP-hard in
most practical situations [1]. In this work we study the so-called big bucket model,
under which multiple products may be produced in each planning period. A base
formulation for the problem, in mixed-integer linear programming (MIP), is shown
below.

minimize
∑

t∈T

∑

p∈P
(fp

t y
p
t + cptx

p
t + hp

t I
p
t ) (1)

Ipt−1 + xp
t − Ipt = dpt ∀ p ∈ P , t ∈ T (2)

∑

p∈P
xp
t +

∑

p∈P
gpt y

p
t ≤Mt ∀ t ∈ T (3)

xp
t ≤ (Mt − gpt )ypt ∀ p ∈ P , t ∈ T (4)

Ip0 = 0 ∀ p ∈ P (5)

xp
t , I

p
t ≥ 0 ∀ p ∈ P , t ∈ T (6)

ypt ∈ {0, 1} ∀ p ∈ P , t ∈ T (7)

1Funded by PhD grant SFRH/BD/66075/2009 from the Portuguese Foundation for Science and
Technology (FCT).
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For period t and product p we have the following decision variables: xp
t , deter-

mining the quantity of product p that is produced in period t; ypt (binary) is 1 if
product p is to be produced in period t, 0 otherwise; Ipt is the amount of product p in
inventory at the end of period t. Problem data includes: fp

t , cpt , h
p
t , the cost of setup,

production, and inventory (respectively); dpt is the demand for product p at period t;
gpt is the setup time required for producing p at period t; and Mt is the production
time available in period t.

For this basic formulation, solutions of very good quality can be found by state-
of-the-art MIP solvers for considerably large and difficult instances. However, re-
sults degrade significantly when additional practical aspects are incorporated into
the model (e.g., backlogging, multiple machines, scheduling with sequence-dependent
setup times and costs). These additions make the model progressively harder to solve
exactly in reasonable time and, in some cases (e.g., scheduling), the solutions reached
in limited time may be of poor quality.

We propose a general framework for tackling these more intricate variants of lot
sizing, based on the combination of Monte-Carlo tree search with linear program-
ming. The framework aims to be general and powerful enough to attain good quality
solutions in reasonable time for large lot sizing instances.

2 Monte-Carlo Tree Search

Monte-Carlo tree search [2] (MCTS) is an iterative procedure in which a search tree is
asymmetrically constructed, attempting to expand the tree towards its most promis-
ing parts while balancing exploitation of known good branches with exploration of
seemingly unrewarding branches. The algorithm is based on the idea of Monte-Carlo
evaluation, i.e., the reward associated with a particular internal node—corresponding
to a partial solution—can be estimated from the results of randomized simulations
started from that node. Each node keeps track of the number of simulations run from
its state as well as their outcomes, and these data are used to produce an estimate
value for the node when deciding how to expand the tree. Each iteration of MCTS
can be divided into the following four steps:

1. Selection: starting from the root node, select the child node which currently
looks more promising, according to a score function U(n). This is done recur-
sively until a node n which has not yet been expanded is reached.

2. Expansion: the children of the selected node n are created by applying possible
decisions in n to copies of n.

3. Simulation: from each node created in the expansion step, perform a simula-
tion until a terminal state (i.e., a complete solution or infeasibility) is reached,
and record its outcome.
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4. Backpropagation: propagate the outcome of each simulation up the tree until
the root node is reached; this updates statistics (simulation scores and counts)
on all nodes between the selected node and the root.

The steps above, adapted for the the problem of combinatorial optimization, are
summarized in the pseudo-code in Algorithm 1.

Algorithm 1: MCTS for (minimization) combinatorial optimization.

Data: problem instance I
Result: upper bound on optimal value (minimization problems)

1 r ← create root node with initial state from I
2 z∗ ←∞
3 repeat
4 n← starting from r, recursively select child node with maximum U(n)
5 C ← set of child nodes obtained by expanding n
6 foreach c ∈ C do
7 run a simulation from c
8 z ← result of the simulation
9 propagate z up until reaching r

10 if z < z∗ then
11 z∗ ← z

12 until computational budget is depleted
13 return z∗

3 Lot sizing and scheduling

The MCTS framework can be used to tackle the problem of integrated lot sizing and
scheduling, considering sequence-dependent changeovers. This problem, tackled e.g.,
with pattern generation for the scheduling part in [4], is known to be difficult to solve
using general-purpose MIP solvers, as the number of integer variables is dramatically
increased.

We propose a framework where the tree search will instantiate the integer variables
of model (1)–(7), based on information provided initially by the linear relaxation
of this incomplete model. Leaves of this tree correspond to having all the setup
variables instantiated; this will allow finding appropriate schedules in each period,
which in turn allows the evaluation of the objective function. This value—implied
by the setup variables but missing in the base formulation—will provide the main
guidance for MCTS, reinforcing search in nodes that have provided solutions, but
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have not yet been sufficiently explored. As an alternative, nodes can be evaluated
using solutions obtained through general-purpose MIP heuristics such as relax-and-
fix [5, 6] or the feasibility pump heuristic [3]. Yet another alternative, which is
computationally cheaper, is to make a probabilistic rounding of the binary variables
based on the linear relaxation solved at the node.

Besides simulation, uncertainty can also be introduced in the selection step of
MCTS. Here, the greedy selection rule can be replaced by a probabilistic choice
(assigning to each node a probability proportional to its current score) as a way to
prevent the search from stalling.

4 Remarks

We propose a general framework for tackling hard lot sizing problems, based on the
idea of partitioning model variables into two sets: one concerning important decisions,
consisting of the binary setup variables, which are fixed in the enumeration (tree
search) stage; and the other consisting of the production and sequencing variables,
for which values are determined after fixing all variables in the first group.

This framework allows for the inclusion of other details which cannot be repre-
sented in a MIP formulation, such as non-linear objective functions, or the interdepen-
dence between multiple competing agents in a more detailed market representation.
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Abstract

We present a model for a capacitated lotsizing problem with an integrated
coordination of a common setup resource. Furthermore we present a problem
specific neighborhood search algorithm to solve the problem efficiently. We
close the presentation with an outlook and an overview of the positioning of
known approaches in terms of complexity and size of neighborhood.

1 Introduction

In recent years a common setup operator for a dynamic lotsizing problem was found
in a number of different practical cases (see for example [1] and [2]). The common
setup resource in most cases is a setup operator that carries out all setup operations
on all machines. The practical cases all have in common that setup states can be
preserved, setup costs as well as times are sequence dependent and products are pre-
assigned to a single machine. Neglecting the setup operator the problem decomposes
into problems concerning a single machine each. Given a common setup operator this
solution approach is not suitable anymore as it might cause conflicts in the schedule
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of the setup operator. Taking a common setup resource into account a simultaneous
lotsizing and scheduling of the setup operator is required.
This problem was formulated as a mixed integer program and solved by a Fix-and-
Optimize (see for example [3]) approach in [1] initially. The Fix-and-Optimize heuris-
tic is a particular neighborhood search that is well-known to perform good even on
large instances of the Capacitated Lotsizing Problem (CLSP) and its variations. Nev-
ertheless, this approach is not specifically hand-tailored for the problem extension of
a common setup resource. For that reason our work focuses on building a new neigh-
borhood search that focuses on the common setup resource.

2 Problem description

The problem has the following characteristics:

• Simultaneous lotsizing and scheduling

• Big-bucket model

• Products can be produced only once per macro-period

• Setups are carried out by a common setup operator

• The setup operator can only carry out a single setup at a time

• Each product is uniquely assigned to a single machine

• Each machine has a limited capacity

• Setup times and costs are sequence dependent

• On each machine the final setup state in each period can be carried over to the
next

• Backlogging and overtime are not allowed

• The objective is to minimize the overall costs (sum of holding and setup costs)

3 Solution approach

The basis of the solution approach is the MIP formulation in [1]. To solve the above
described problem by a more specific approach we designed two different neighbor-
hood searches. In the first neighborhood search approach, the remaining subproblem,
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which has to be solved for each member of the search space, can be solved in polyno-
mial time. In the second neighborhood search approach the remaining subproblem is
again a MIP.
Both search algorithms are implemented in C++ while the remaining subproblems
are solved with CPLEX.
We compare our neighborhood searches with the approaches of [1] in terms of com-
plexity of the subproblem and size of search space. This trade-off and the positioning
of the different approaches within this tradeoff give an impression of the long-term
goals of our research.
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Abstract

We study the problem to determine time-phased production quantities in
a single-stage, multi-period and multi-product setting. The problem is a gen-
eralization of the well-known deterministic Capacitated Lot Sizing Problem
(CLSP). While the CLSP does not consider quality imperfections, we assume
that the production process is characterized by substantial yield uncertainty
described via an interrupted geometric distribution. The idea is that during
the production of each single product the process goes “out of control” with a
specific probability so that this and all following product units of the particular
lot have to be scrapped. In this situation, the lot size has a paramount effect
on the average cost of non-defective product units and lot sizing becomes im-
mensely important. Furthermore, a decision has to be made whether to operate
with a static robust production plan or to use some flexible production policy.

1 Introduction

We consider the problem to determine lot sizes for multiple products in a multi-
period setting with deterministic and time-dependent demand. The different products
require the same production resource, i.e., a machine, which has a limited period
capacity that can be extended via overtime. In order to be able to produce, the
machine requires product-specific setup operations, so that a lot sizing problem arises.
From this point of view, the problem resembles the well-established Capacitated Lot
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Sizing Problem (CLSP). However, as opposed to the CLSP, an additional difficulty
stems from yield uncertainty. We consider the case that during the production of each
single product unit the process goes “out of control” with a specific probability so
that this and all following product units of the particular lot have to be scrapped. In
this situation, the lot size has a paramount effect on the average cost of non-defective
product units and lot sizing becomes immensely important. In addition, as the yield
of each production lot is random, the end-of-period ent inventory is also a random
quantity. In such a situation, it may occasionally be impossible to meet the customer
demand without delay. Service level measures can be used to quantify the service to
the customers that results from any given production schedule.

We present an approximate modeling approach to determine robust production
plans subject to this yield uncertainty. To this end, we approximate the expected
end-of-period values of physical inventory and backlog and minimize the expected
cost subject to a backlog-oriented δ-service level constraint. This robust plan can be
used as component of a heuristic scheduling policy subject to yield uncertainty. Both
approaches can be compared to an exact stochastic dynamic programming approach,
which we also describe briefly.

2 Problem setting and related literature

Consider the following production situation: In order to produce different types of
products, a single production resource, e.g., a machine, is used. This machine has
a limited production capacity. In order to be able to produce a specific product,
the machine requires a setup operation. After the setup, multiple product units are
sequentially produced within a production lot, i.e., a serial production batch. The
production process can be either “in control” (and lead to “good” parts that conform
to the product specification) or “out of control” (and lead to defective parts that
have to be scrapped). In Figure 1 we show an example in which three different lots
of size seven are produced. During the production of the first lot, the process goes
out of control while attempting to produce product unit 5. The same happens during
the production of product unit 3 of the third lot. However, during the production
of the second lot, the process stays in control and the yield equals the lot size. Such
phenomena occur, for example, if tools break, pipes congest, etc.

We assume that after the setup operation, the process is always (initially) in
control. It stays in control with probability p during each processing operation for an
individual product unit which belongs to the currently processed lot. In this situation,
the random yield Y , i.e., the number of good parts in a lot of size q follows an
Interrupted Geometric (IG) distribution with parameters p and q. This distribution
is defined as follows:

2

IWLS 2014 - International Workshop on Lot Sizing

88



M

Machine First lot

7 6 5 4 3 2 1

Second lot

7 6 5 4 3 2 1

Third lot

7 6 5 4 3 2 1

Figure 1: Example of three different production runs with different yield
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Figure 2: Expected yield functions

Prob[Y = k] =

{
pk · (1− p) k = 0, 1, ..., q − 1

pq k = q
(1)

If the yield Y of a lot of size q is a random quantity and follows the IG distribution,
the expected value of conforming parts

E[Y ] =
p(1− pq)

1− p (2)

increases with the lot size q, but the marginal increase decreases with q as shown in
the examples of Figure 2 for a success parameter p = 0.8. For large lot sizes, a small
decrease of the success probability p leads to a remarkable fraction of bad parts.

We follow the conceptual approach that was presented for the stochastic CLSP
with random demand in [2]. Similar approaches to determine robust production plans
subject to demand uncertainty were presented in [6] and [5], while production policies
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for the case of both demand and yield uncertainty were recently discussed by [4]. Lot
sizing policies for interrupted geometric yield are discussed in [7], [1], and [3].

3 Robust planning vs. flexible scheduling

In our approach we assume there will be demand for the products after the end of the
current planning horizon. We compare three different approaches to deal with yield
uncertainty. We assume that in each approach the lot size is used which minimizes
long-term average costs. In a robust planning approach, the number of those lots
per product and periods is determined such that a pre-specified δ-service level is met.
In a semi-flexible approach, the number of lots is heuristically adjusted to the yield
outcome. Finally, for very small examples, the optimal policy can be determined via
backward induction in a stochastic dynamic program.
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Abstract

We present a stochastic version of the single-level, multi-product capacitated
lot sizing problem with remanufacturing (SCLSP-RM) on separate resources.
The objective is to determine robust (re)manufacturing plans for uncertain
demand and returns in order to minimize the expected costs with subject to
service-level constraints. We propose a non-linear model formulation that is ap-
proximated by a scenario approach and a piecewise linear approximation model.
In the case of the scenario approach, the expected values of random variables
are replaced by sample averages. The idea of the piecewise linear approxima-
tion model is to replace non-linear functions by piecewise linear functions. The
resulting mixed-integer linear programs can be solved in order to determine
robust (re)manufacturing plans.

1 Introduction

Closed-loop supply chains are characterized by a forward-oriented material flow of
products from the manufacturer to the customer and a backward-oriented material-
flow of product returns from the costumer to the manufacturer at the product’s
end-of-use. These product returns can be remanufactured to become as good as new.

2 Problem Statement

The objective of the Stochastic Capacitated Lot Sizing Problem with Remanufac-
turing (SCLSP-RM) is to determine a (re)manufacturing plan for K products which
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minimizes the sum of expected (re)manufacturing, holding and setup costs over a
planning horizon of T periods. Products can be (re)manufactured on a production
system, which contains two separated capacity-restricted resources: On the first one,
products can only be manufactured, while remanufacturing is located on the sec-
ond one. For this reason, (separate) setup operations are required for producing
and remanufacturing. The expected demands E{Dkt} and returns E{Rkt}, as well
as the variances V AR{Dkt} and V AR{Rkt} are known as a result of the applied
forecasting system. The demand can be satisfied by manufacturing quantities qkt or
remanufacturing quantities qrkt. Remanufacturing can only be processed completely,
if a sufficient amount of product returns Rkt are available and stored as recoverables
inventory Ip,rkt . Contrary, the source of material for the manufacturings is assumed to
be unlimited. For the non-linear model formulation of the SCLSP-RM it is referred
to [2]. The supply chain of the described (re)manufacturing process is illustrated in
Figure 1.

Recoverables

Inventory

Ip,rkt

Serviceables

Inventory

Ipkt

Manufacturing

Remanufacturing

Customers
Dkt

qrkt

qkt

Rkt

Figure 1: Supply chain with product returns and (re)manufacturing

As a consequence of uncertain period demands and product returns, the net inven-
tory levels of the serviceables and the recoverables are modeled as random variables.

A typical development of the inventory level for the recoverables within the plan-
ning horizon is illustrated in Figure 2. The incoming product returns Rkt raise the
physical inventory level of the recoverables Ip,rkt . As the recoverables are the source of
material for the remanufacturing process, the remanufacturing quantity qrkt reduces
the inventory level.

If a planned remanufacturing quantity exceeds the recoverables inventory, qrkt >
Ip,rkt , lost-remanufacturings LRkt have to be taken into account, as they cannot be
backlogged and remanufactured in subsequent periods. Consequently, the customer
demand cannot be served and the manufacturer is not able to fulfill the predefined
δ service-level (see [1]) and therefore lost-remanufacturings are restricted in order to
generate robust production plans.
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If,rkt ,Ip,rkt

qrktRkt

qrkt

LRkt

Figure 2: Development of the inventory level of the recoverables

3 Numerical Results

Table 1 presents the results of the 1296 test instances, that have been solved both for
the piecewise linear approximation model (LIN) and the scenario model (SCN). In
order to test the accuracy of the approximation models, the service-levels are verified
with a simulation study. Table 1 summarizes the relative and absolute deviation of
both of the approximation models from the simulation for the following parameters:

• SL: Analyzes the problem instances for which the required service-level is met
for all products in the last period of the planning horizon, or for which the
service-level is missed by at most 0.1, 0.5 or 1.0 percentage points, respectively.

• SLP: Reports the number of products within the test instances for which the
required service-level in the last period of the planning horizon is met, or for
which the service-level is missed by at most 0.1, 0.5 or 1.0 percentage points,
respectively.

It is remarkable that 100.00% of the test instances in the category SL and SLP
of both approximation models fulfill the predefined δ service-level with an accuracy
of one percentage point. If the range of fluctuation is reduced, the results clearly
indicate that the piecewise linear approximation model is more accurate than the
scenario approach.

The expected deviation in terms of the δ service-level is 0.03% (LIN) and -0.08%
(SCN). Consequently, in average the piecewise linear approximation model overesti-
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LIN SCN
Categories absolute percentage absolute percentage

SL 1953 75.35% 0 0.00%
SL - 0.1% 2592 100.00% 199 7.68%
SL - 0.5% 2592 100.00% 2274 87.73%
SL - 1.0% 2592 100.00% 2592 100.00%

SLP 37899 97.48% 10703 27.53%
SLP - 0.1% 38880 100.00% 23327 60.00%
SLP - 0.5% 38880 100.00% 38429 98.84%
SLP - 1.0% 38880 100.00% 38880 100.00%

Expected deviation 0.00032 0.03% -0.00074 -0.08%
Max. expected deviation 0.00144 0.15% -0.00853 -0.86%

Expected deviation (underesti-
mation)

0.00007 0.01% 0.00145 0.15%

Max. expected deviation (under-
estimation)

0.00043 0.05% 0.00853 0.86%

Table 1: Deviation of the numerical results in terms of δ service-level

mates the service-level slightly, whereby the scenario approach underestimates it. In
terms of the robustness of the production plans, a overestimation is preferable. It in-
dicates that the customers’ demand can be served according to the agreed conditions.
Nevertheless, the underestimation of the scenario approach is negligible. In general,
the variance of the sampling approach leads to more fluctuation of the realized cus-
tomer service-level than the piecewise linear model. This observation is supported
by the results of the maximum expected deviation of the underestimations. If the
service-level is underestimated, the scenario model underestimates the service-level
in average at a maximum of 0.05%, whereby the average maximum underestimation
of the scenario approach is 0.86%. Consequently, even if the piecewise linear approxi-
mation model is more accurate than the scenario approach, both model formulations
lead to robust and feasible results. Thus, both models accurately model the assumed
processes of production and remanufacturing under uncertain demand and product
returns.
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Abstract

We propose a mixed-integer program for planning the production and dis-
tribution of products for a medium-sized bakery company consisting of a single
production location and several shops where products are sold. The production
planning is based on the general lot sizing and scheduling (GLSP) model and
the distribution part is modeled as an inventory routing problem (IRP). We
consider the product freshness and the production and distribution costs ex-
plicitly in a multi-objective framework. Due to the complexity of the model we
solve the problem approximately. The computed approximation of the Pareto
front indicates that a considerable improvement of the freshness of products
can be achieved with only a small increase of the cost.

1 Introduction

Companies producing and selling fast deteriorating goods, such as bakery products,
diaries, or catering products are facing the problem that production and distribution
of the goods have to be executed fast and storing possibilities are consequently very
limited. So it is obvious that an integrated planning approach, where both functions
are planned simultaneously, might be even more beneficial than in cases with non-
perishable goods.

A typical mid-sized bakery company which we consider as a base for developing
and testing such a planning approach consists of a production plant, where the bakery
products are produced and geographically dispersed shops which have to be supplied
with fresh goods. Furthermore those types of companies are usually facing a harsh
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competition on the market. So in order to stay competitive, the companies have to
focus on reducing cost while simultaneously providing fresh products to the customer.
In the case of bakery goods we are facing for some of them a very fast deterioration
which leads to a noticeable quality reduction within a few hours.

We face two alternatives of considering perishability in the planning process. First,
a maximum age is determined which has to respected when establishing a production
and distribution plan. This allows to derive cost-minimal plans for a given freshness
requirement. Second, the freshness can be an objective to be maximized. This might
lead to plans with high cost due to small production and transportation batches.
Hence, we choose to investigate this trade-off between cost and freshness through a bi-
objective model, which allows us to estimate the Pareto curve and derive managerial
implications.

2 Problem Description

We consider a mid-sized bakery producing bakery goods which have to be delivered
to several shops. Some of the products have a shelf-life of only a few hours, which
means that their freshness decreases over time and that they must not be sold after
reaching a certain age. On the other hand, costs comprising production and delivery
costs are to be minimized.

The production process is captured by a General Lot Sizing Problem (GLSP)
(see [2]) which we combine with aspects of an Inventory Routing Problem (IRP).
The GLSP aims to integrate lot sizing and scheduling of several products on a single
capacitated machine, where the schedule is independent of predefined time periods.
The IRP deals with the distribution (or collection) of a product to (from) several
facilities over a given planning horizon (see [1]). Basically, three different decisions
are addressed: when to visit each facility, how much to distribute/collect each time a
facility is served and how to route the vehicle(s). The general objective of an IRP is
to minimize routing and inventory costs.

We face several trade-offs in our integrated model. First of all, the general trade-off
between our two objectives optimizing costs and freshness of the products. Producing
and delivering all products early in the morning might lead to low costs. However,
the earlier goods are delivered, the less fresh they are when sold to the customers.
Second, a trade-off situation with low routing costs but high production costs or the
opposite has to be faced. Distribution can be optimized by combining on one route
the delivery to bakeries which are located close-by. However, this possibly implies
that the production schedule needs to be adjusted to the optimized delivery routes
and therefore causes additional costs.
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3 Solution Approaches

We solve our problem with three different solution approaches, considering always
only one of the two objective functions. First, we try to solve the integrated model
exactly with the help of CPLEX.
For the purpose of comparing our global integrated production-distribution model
with the traditional sequential approach we mimic this method by modifying the in-
tegrated model. In order to solve the production part alone we remove all distribution-
related decision variables and constraints. Solving the resulting modified GLSP-like
problem delivers the solution for the production part. Then all the production related
variables are fixed to their computed values, and the remaining distribution decisions
are calculated by solving the routing model.
Third, we developed an iterative relax&fix- and fix&optimize heuristic. In the first
part the routing is relaxed, the resulting model is solved, and the binary decision
variables (i.e., setup and production date) are fixed. To get a feasible solution, the
model is now solved by setting the routing variable to binary (instead of relaxing).
After that, the iterative fix&optimize procedure starts fixing/freeing either the binary
tour variables or the setup and production variables and solving the resulting model.

4 Computational Results

For the test purpose we generated 81 test instances. The instances differ concerning
the number of products, the number of bakeries, the number of vehicles, and the
vehicle capacity. For each of the four parameters three different settings were chosen,
subsequently we get 34 = 81 instances.

We utilize CPLEX Optimization Studio 12.5 with a maximum runtime of 6 hours.
We get the results presented in Table 1 by minimizing costs. We test two different
settings regarding the MIP Emphasis of CPLEX, ”Emphasize optimality over feasi-
bility” and ”Emphasize feasibility over optimality”.

Sequential Heuristic Integrated O. Integrated F.
Unsolved Instances 22 2 21 14
Solved Instances 59 79 60 67
Solved Optimally 9 9 9 9
Best Solution 3 40 11 35
Shortest Runtime 7 11 9 0

Table 1: Results within 6 hours minimizing costs
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Regarding the freshness objective we tested the integrated approach and the
heuristic and present the results in Table 2. Since the optimal solution is not known,
the solution quality of the heuristic could not be evaluated but the gap could be
determined.

Integrated Approach Heuristic
Unsolved Instances 47 33
Solved Instances 34 48
Solved Optimally 0
Average Gap 76% 92%

Table 2: Results within 6 hours optimizing freshness

5 Pareto-Optimal Front

The points of the Pareto-optimal fronts were determined with a maximal computation
time of three hours per optimization run. In Figure 1 we present two Pareto-optimal
fronts for small problem instances.
The run of the curves shows that, starting at the point with the lowest cost, the fresh-
ness could be increased with just a bit higher cost. Further improvements regarding
freshness are only possible by accepting significantly higher costs.

Figure 1: Pareto-optimal fronts of two instances

References

[1] L. Bertazzi, M Savelsbergh, and M. G. Speranza, The Vehicle Routing Problem:
Latest Advances and New Challenges, 49–72. Springer US (2008)

[2] B. Fleischmann and H. Meyr, The general lotsizing and scheduling problem, OR
Spektrum, 19, 11–21 (1997)

4

IWLS 2014 - International Workshop on Lot Sizing

98



IWLS 2014 - International Workshop on Lot Sizing

List of Participants

Absi, Nabil
Ecole des Mines de Saint-Etienne
absi@emse.fr

Aggoune, Riad
Tudor
Riad.Aggoune@tudor.lu

Agra, Agostinho
University of Aveiro
aagra@ua.pt

Akartunali, Kerem
University of Strathclyde
kerem.akartunali@strath.ac.uk

Akbalik, Ayse
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Kiliç, Onur
Hacettepe University
onuralp@hacettepe.edu.tr

Kimms, Alf
University of Duisburg-Essen
alf.kimms@uni-due.de

Martins, Sara
Porto University
sara.martins@fe.up.pt

Meyr, Herbert
Hohenheim University
H.Meyr@uni-hohenheim.de

Michelli, Maldonado
Universidade Estadual Paulista-
UNESP
michellimaldo@gmail.com

Moreira, Fábio
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