
Multi-Agent Oriented Programming
– Environment Oriented Programming –

The CArtAgO Platform

Olivier Boissier

ENS Mines Saint-Etienne
http://www.emse.fr/~boissier

Web Intelligence Master — Nov 2011

Thanks to A. Ricci, M. Piunti, DEIS Univ. Bologna, Cesena Italy, for

providing most of the slides and figures

Outline

1 Origins and Fundamentals

2 Environment Oriented Programming

3 Agent & Artifact Model

4 CArtAgO

5 Programming Artifacts

6 Programming Jason Agents & Artifacts

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Notion of Environment in MAS

� The notion of environment is intrinsically related to the notion
of agent and multi-agent system

� “An agent is a computer system that is situated in some
environment and that is capable of autonomous action in this
environment in order to meet its design
objective” [Wooldrige and Jennings, 1995]

� “An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon the environment
through effectors.” [Russell and Norvig, 2003]

� Including both physical and software environments

WI Master, Nov 2011 3 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Classic Properties of Environment in MAS

� Basic classification [Russell and Norvig, 2003]
� Accessible versus inaccessible: indicates whether the agents

have access to the complete state of the environment or not
� Deterministic versus non deterministic: indicates whether a

stage change of the environment is uniquely determined by its
current state and the actions selected by the agents or not

� Static versus Dynamic: indicates whether the environment can
change while an agent deliberates or not

� Discrete versus Continuous: indicates whether the number or
percepts and actions are limited or not

� Further classification [Ferber, 1999]
� Centralized versus Distributed: indicates whether the

environment is a single monolithic system or a set of cells or
places assembled in a network

� Generalized versus Specialized: indicates whether the
environment is independent of the kind of actions that can be
performed by agents or not.

WI Master, Nov 2011 4 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Action Models

� Action defined as a transition of the environment state:
� from an observational point of view, the result of the behavior

of an agent -its action- is directly modelled by modifying the
environmental state variables

� not fully adequate for modelling Multi-Agent Systems: several
agents are acting concurrently on a shared environment
(concurrent actions)

� Influence & reactions [Ferber and Muller, 1996]: clear
distinction between the products of the agents behavior and
the reaction of the environment

� influences come from inside the agents and are attempts to
modify the course of events in the world

� reactions are produced by the environment by combining
influences of all agents, given the local state of the
environment and the laws of the world

� handling simultaneous activity in the MAS

WI Master, Nov 2011 5 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example of ”Agents in Environment” Approach

[Russell and Norvig, 2003]

WI Master, Nov 2011 6 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example of ”Environment in Agents” Approach

MOVINGBEHAVIOR METHODSFOR: PRIVATE-PRIMITIVES

PRIMCHOOSEARANDOMPLACE

| PLACES <COLLECTION> P <AGENTSPLACE> NOPLACES |
P:=SELF PLACE.

P ISNIL IFTRUE: [^NIL].

NOPLACES:=P NONOBSTACLENEIGHBOURS.

PLACES:=NOPLACES SELECT: [:PP | SELF CANHEADTO: PP].

PLACES ISEMPTY IFTRUE: [PLACES := NOPLACES].

^PLACES AT: ((RND NEXT) * (PLACES SIZE - 1)) ROUNDED + 1

...

Example of MANTA Programming [Drogoul, 2003]

WI Master, Nov 2011 7 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Environment along Agent Perspective

� Agent-Oriented Programming perspective
� languages / platforms for programming agents and MAS

� Agent-0, Placa, April, Concurrent Metatem, ConGolog /

IndiGolog, AgentSpeak, AgentSpeak(L) / Jason, 3APL,

IMPACT, Claim/Sympa, 2APL, GOAL, Dribble, etc

� Jack, JADE, JADEX, AgentFactory, Brahms, JIAC, etc

� Environment support
� typically minimal: most of the focus is on agent architecture &

agent communication
� in some cases: basic environment API: for customising the

MAS with a specific kind of environment

WI Master, Nov 2011 8 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Environment in the Jason Platform

User
Environment

Agent
Architecture

getPercepts

change
percepts

executeAction

+init(String[] args)
+stop()

+getPercepts(String agName): List<Literal>
+executeAction(String agName, Structure action): boolean

+addPercept(String agName, Literal p)
+removePercept(String agName, Literal p)
...

-globalPercepts: List<Literal>
-agPercepts: Map<String,List<Literal>>

Environment

+init(String[] args)
+executeAction(String agName, Structure action): boolean

UserEnvironment

WI Master, Nov 2011 9 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Summary (1)

actions

percepts

SIMULATED

WORLD

OR

INTERFACE

OR

WRAPPER TO

EXISTING

TECHNOLOGY

EXTERNAL

WORLD
(PHYSICAL OR

COMPUTATIONAL)

MAS ENVIRONMENT

REAL WORLD
(PHYSICAL OR

COMPUTATIONAL)

mimicking

Example:

JAVA

PLATFORMAGENTS

MAS

WI Master, Nov 2011 10 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Summary (2)

� In most cases, no direct support.

� Indirectly supported by lower-level implementing technology
(e.g. Java)

� In some cases, first environment API

� useful to create simulated environments or to interface with
external resources

� simple model: a single / centralised object
� defining agent (external) actions: typically a static list of

actions, shared by all the agents
� generator of percepts: establishing which percepts for which

agents

WI Master, Nov 2011 11 / 88

1 Origins and Fundamentals

2 Environment Oriented Programming

3 Agent & Artifact Model

4 CArtAgO

5 Programming Artifacts

6 Programming Jason Agents & Artifacts

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Environment as a first-class abstraction in MAS

� considering environment as an explicit part of the MAS

� providing an exploitable design and programming abstraction
to build MAS applications

� Outcome
� distinguishing clearly between the responsibilities of agent and

environment
� separation of concerns

� improving the engineering practice with three support levels
� basic interface support
� abstraction support
� interaction-mediation support

WI Master, Nov 2011 13 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Basic Interface Support

The environment enables agents to access the deployment context
� i.e. the hardware and software and external resources with

which the MAS interacts
� e.g. sensors and actuators, a printer, a network,a database, a

Web service, etc.

Figure from [Weyns et al., 2007]WI Master, Nov 2011 14 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Abstraction Support

Bridges the conceptual gap between the agent abstraction and
low-level details of the deployment context

� shields low-level details of the deployment context

Figure from [Weyns et al., 2007]WI Master, Nov 2011 15 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Interaction-Mediation Support

� Regulate the access to shared resources
� Mediate interaction between agents

Figure from [Weyns et al., 2007]WI Master, Nov 2011 16 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Environment Definition Revised

Environment Definition [Weyns et al., 2007]

The environment is a first-class abstraction that provides the
surrounding conditions for agents to exist and that mediates both
the interaction among agents and the access to resources

WI Master, Nov 2011 17 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Highlights 1/2

� First-class abstraction
� environment as an independent building block in the MAS
� encapsulating its own clear-cut responsibilities, irrespective of

the agents

� The environment provides the surrounding conditions for
agents to exist

� environment as an essential part of every MAS
� the part of the world with which the agents interact, in which

the effects of the agents will be observed and evaluated

WI Master, Nov 2011 18 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Highlights 2/2

� Environment as a glue
� on their own, agents are just individual loci of control.
� to build a useful system out of individual agents, agents must

be able to interact
� the environment provides the glue that connects agents into a

working system

� The environment mediates both the interaction among agents
and the access to resources

� it provides a medium for sharing information and mediating
coordination among agents

� as a mediator, the environment not only enables interaction, it

also constrains it

� as such, the environment provides a design space that can be

exploited by the designer

WI Master, Nov 2011 19 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Responsibilities 1/3

� Structuring the MAS
� the environment is a shared “space” for the agents, resources,

and services which structures the whole system

� Kind of structuring
� physical structure

� refers to spatial structure, topology, and possibly distribution

� interaction structure
� refers to infrastructure for message transfer, infrastructure for

stigmergy, or support for implicit communication

� social structure
� refers to the embodiement of the organizational structure

within the environment

WI Master, Nov 2011 20 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Responsibilities 2/3

� Embedding resources and services
� resources and services can be situated either in the physical

structure or in the abstraction layer introduced by the
environment

� the environment should provide support at the abstraction
level shielding low-level details of resources and services to the
agents

� Encapsulating a state and processes
� besides the activity of the agents, the environment can have

processes of its own, independent of agents
� example: evaporation, aggregation, and diffusion of digital

pheromones

� It may also provide support for maintaining agent-related state
� for example, the normative state of an electronic institution or

tags for reputation mechanisms

WI Master, Nov 2011 21 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Responsibilities 3/3

� Ruling and governing function
� the environment can define different types of rules on all

entities in the MAS.
� constraints imposed by the domain at hand or laws imposed

by the designer

� may restrict the access of specific resources or services to

particular types of agents, or determine the outcome of agent

interactions

� preserving the agent system in a consistent state according to

the properties and requirements of the application domain

� Examples
� coordination infrastructures
� e-Institutions

WI Master, Nov 2011 22 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Reference Abstract Architecture

Figure from [Weyns et al., 2007]
WI Master, Nov 2011 23 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Approaches

� Looking for general-purpose approaches for conceiving,
designing, programming, executing the environment as agents’
world

� orthogonality
� generality
� expressiveness

� Uniformly integrating different MAS aspects
� coordination, organisation, institutions, ...

� Examples of concrete models and technologies
� AGRE/AGREEN/MASQ [Baez-Barranco et al., 2007]
� GOLEM [Bromuri and Stathis, 2007]
� A&A, CArtAgO [Ricci et al., 2007]

WI Master, Nov 2011 24 / 88

1 Origins and Fundamentals

2 Environment Oriented Programming

3 Agent & Artifact Model

4 CArtAgO

5 Programming Artifacts

6 Programming Jason Agents & Artifacts

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Background Human Metaphor

WHITEBOARD
artifact

ARCHIVE
artifact

COM. CHANNEL
artifact

TASK SCHEDULER
artifact

RESOURCE
artifact

CLOCK
artifact

BAKERY

workspace

agents can join
dynamically the workspace

WI Master, Nov 2011 26 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Agent & Artifacts (A&A) Basic Concepts

Agents

� autonomous, goal-oriented pro-active entities
� create and co-use artifacts for supporting their activities,

� besides direct communication

Artifacts
� non-autonomous, function-oriented, stateful entities

� controllable and observable

� modelling the tools and resources used by agents
� designed by MAS programmers

Workspaces

� grouping agents & artifacts

� defining the topology of the computational environment

WI Master, Nov 2011 27 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

A&A Programming Model Features

Abstraction
� artifacts as first-class resources and tools for agents

Modularisation
� artifacts as modules encapsulating functionalities, organized in

workspaces

Extensibility and openness

� artifacts can be created and destroyed at runtime by agents

Reusability

� artifacts (types) as reusable entities, for setting up different
kinds of environments

WI Master, Nov 2011 28 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

A&A Meta-Model in more Details

Artifact

Operation

Observable
Event

generate

Agentuse

perceive

Workspace

Environment

Observable
Property

update

perceive

observe

Manual

has

consult

link

create

dispose

link

join

quit

WI Master, Nov 2011 29 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Artifact Abstract Representation

OperationX(Params)

...

ObsPropName(Args)

...

SIGNALS

USAGE

INTERFACE

OBSERVABLE

PROPERTIES

OperationY(Params)

...

LINK

INTERFACE

OPERATIONS

WI Master, Nov 2011 30 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

A World of Artifacts

inc

count 5

reset

a counter

switch

state true

a flag

...

GetLastTradePrice

a Stock Quote Web Service

availablestate

...wsdl

query

createTable

addRecord

a data-base

...

1001n_records

table_names ...

... ...

put

n_items 0

max_items 100

get

a bounded buffer

setTodo

last_todo ...

cancelTodo

next_todo check_plant

an agenda

postEvent

registerForEvs

clearEvents

an event service

in

rd

out

a tuple space

WI Master, Nov 2011 31 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Simple Artifacts Taxonomy

Individual or Personal Artifacts
� designed to provide functionalities for a single agent use

� e.g. agenda for managing deadlines, a library, ...

Social Artifacts
� designed to provide functionalities for structuring and

managing the interaction in a MAS

� coordination artifacts, organisation artifacts, ...

� e.g. blackboard, game-board, ...

Boundary artifacts

� to represent external resources/services (e.g. a printer, a Web
Service)

� to represent devices enabling I/O with users (e.g. GUI,
Console, etc) WI Master, Nov 2011 32 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Actions/Percepts in Artifact-Based Environments

Actions and Percepts constitute the Contract provided by the
environment

Action Repertoire

� is given by the dynamic set of operations provided by the
overall set of artifacts available in the workspace

� can be changed by creating/disposing artifacts.

Action success/failure semantics is defined by operation semantics

Percept Repertoire

� is given by the dynamic set of properties representing the
state of the environment and by the signals concerning events
signalled by the environment

� can be changed by creating/disposing artifacts.

WI Master, Nov 2011 33 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Interaction Model: Operation Execution (1)

op(Params)

ValuePropName

ValuePropName
...

...

AGENT

op(parms)
action

� Performing an action corresponds to triggering the execution
of an operation

� � acting on artifact’s usage interface

WI Master, Nov 2011 34 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Interaction Model: Operation Execution (2)

OPERATION EXECUTION
op(Params)

ValuePropName
Value
...

...

SIGNALS OBS PROPERTIES
CHANGE

AGENT

op(parms)
action

action completion
- with success or failure -

� Operation execution is:
� a process structured in one or multiple transactional steps
� asynchronous with respect to agent ...which can proceed

possibly reacting to percepts and executing actions of other
plans/activities

� Operation completion causes action completion, generating
events with success or failure, possibly with action feedbacks

WI Master, Nov 2011 35 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Interaction Model: Observation (1)

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

focus

AGENT
OBSERVER

� Agents can dynamically select which artifacts to observe
� predefined focus/stopFocus actions

WI Master, Nov 2011 36 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Interaction Model: Observation (2)

AGENT
OBSERVER

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

use

� By focussing an artifact
� observable properties are mapped into agent dynamic

knowledge about the state of the world, as percepts (e.g.
belief base)

� signals are mapped into percepts related to observable events

WI Master, Nov 2011 37 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Artifact Linkability

WSP-X WSP-Y

linkedOp

� Basic mechanism to enable inter-artifact interaction
� linking artifacts through interfaces (link interfaces)

� operations triggered by an artifact over an other artifact

� Useful to design & program distributed environments
� realised by set of artifacts linked together

� possibly hosted in different workspaces

WI Master, Nov 2011 38 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Artifact Manual

� Agent-readable description of artifact’s...
� functionality

� what functions/services artifacts of that type provide

� operating instructions
� how to use artifacts of that type

� Towards advanced use of artifacts by intelligent agents
� dynamically choosing which artifacts to use to accomplish their

tasks and how to use them
� strong link with Semantic Web research issues

� Work in progress
� defining ontologies and languages for describing the manuals

WI Master, Nov 2011 39 / 88

1 Origins and Fundamentals

2 Environment Oriented Programming

3 Agent & Artifact Model

4 CArtAgO

5 Programming Artifacts

6 Programming Jason Agents & Artifacts

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

CArtAgO

� CArtAgO framework / infrastructure
1 environment for programming and executing artifact based

environments
2 Java-based programming model for defining artifacts
3 set of basic API for agent platforms to work within

artifact-based environment

� integration with agent programming platforms: available
bridges for Jason, Jadex, AgentFactory, simpA, ongoing for
2APL and Jade

� Distributed and open MAS: workspaces distributed on
Internet nodes

� Agents can join and work in multiple workspace at a time
(Role-Based Access Control (RBAC) security model)

� Open-source technology
� available at http://cartago.sourceforge.net

WI Master, Nov 2011 41 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

CArtAgO Architecture

Agent Framworks /
Middlewares

CARTAGO

M
A

S

A
p

p
lic

a
ti
o

n

Artifact-based working environmentsApplication Agents

E
x
e

c
u

ti
o

n

P
la

tf
o

rm

MAS
Middleware

Layer

Application
Specific
Logic

workflow
engine

blackboard

shared
kb

map

Any

OS

JVM

OS

JVM

workspaces

artifacts

agent
bodies

JASON

3APL

JADE

workspaces

JADEX

...

JASON

shared

task

scheduler

shared

KB

blackboard

map

WI Master, Nov 2011 42 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Pre-defined Artifacts

� Each workspace contains by default a predefined set of
artifacts

� providing core and auxiliary functionalities
� i.e. a pre-defined repertoire of actions available to agents...

� Among the others
� workspace, type: cartago.WorkspaceArtifact

� functionalities to manage the workspace, including security

� operations: makeArtifact, lookupArtifact, focus,...

� node, type: cartago.NodeArtifact
� core functionalities related to a node

� operations: createWorkspace, joinWorkspace, ...

� console, type cartago.tools.Console
� operations: println,...

� blackboard, type cartago.tools.TupleSpace
� operations: out, in, rd, ...

�

WI Master, Nov 2011 43 / 88

1 Origins and Fundamentals

2 Environment Oriented Programming

3 Agent & Artifact Model

4 CArtAgO

5 Programming Artifacts
Observable Property
Operations
Links between Artifacts

6 Programming Jason Agents & Artifacts

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Defining an Artifact

� An artifact type extends the cartago.Artifact class
� An artifact is composed of:

� state variables: class instance fields
� observable properties with a set of primitives to

define/update/.. them
� signal primitive to generate signals
� operation controls: methods annotated with @OPERATION

- The operation init is the operation which is automatically

executed when the artifact is created (analogous to

constructor in objects).

� internal operations: operations triggered by other operations,
methods annotated with @INTERNAL OPERATION

� await primitive to define the operation steps
� guards - both for operation controls and operation steps -:

methods annotated with @GUARD

WI Master, Nov 2011 45 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Observable property

� Observable property is defined by a name and a value.

� The value can change dynamically according to artifact
behaviour.

� The change is made automatically observable to all the agents
focussing the artifact.

� Defined by using defineObsProperty, specifying
� the name of the property
� the initial value (that can be of any type, including objects)

� Accessed by
� getObsProperty
� updateObsProperty

WI Master, Nov 2011 46 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Change of property

Change of the value of a property using primitive

� getObsProperty(String name).updateValue(Object value)

or updateObsProperty(String name, Object value)

� the specified value must be compatible with the type of the
corresponding field

� the value of the property is updated with the new value

� an event is generated (content is the value of the property)
property updated(PropertyName,NewValue,OldValue)

� the event is made observable to all the agents focussing the
artifact

WI Master, Nov 2011 47 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Example

inc

count 5

OBSERVABLE PROPERTIES:

count: int

USAGE INTERFACE:

inc: { op_exec_started(inc),

 count(X),

 op_exec_completed(inc) }

Example

public class Counter extends Artifact {
void init() {
defineObsProperty("count",0);

}
@OPERATION void inc() {
int count = getObsProperty("count").intValue();

updateObsProperty("count",count+1);

}
}

WI Master, Nov 2011 48 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Example (revisited)

inc

count 5

OBSERVABLE PROPERTIES:

count: int

USAGE INTERFACE:

inc: { op_exec_started(inc),

 count(X),

 op_exec_completed(inc) }

Example

public class Counter extends Artifact {
void init() {
defineObsProperty("count",0);

}
@OPERATION void inc() {
ObsProperty prop = getObsProperty("count");

prop.updateValues(prop.intValue()+1);

}
}

WI Master, Nov 2011 49 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Operations

� Operation op(param1,param2,...) is defined as:
� a method op, in the artifact class returning void
� annotated with @OPERATION

� Parameters can be input and/or output operation parameters
� Output operation parameters (OpFeedbackParam<T>) can be

used to specify the operation results and related action
feedback

� Operation can be composed of zero, one or multiple atomic
computational steps

Example

public class Counter extends Artifact {
int count; // state variable

@OPERATION void init() { count = 0; }
@OPERATION void inc() { count++; }

}

WI Master, Nov 2011 50 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Observable Events

Observable events are generated by default:

� op execution completed, op execution failed,
op execution aborted ...

Observable event can be generated explicitly, within an operation
by the method

� signal(String evType, Object variable params)

� Generated event is a tuple, with evType label, composed of
the sequence of passed parameters

� Generated event can be observed by
� the agent responsible of the execution of the operation
� all the agents observing the artifact

� signal(AgentId id, String evType, Object variable params)

� Generated event is perceivable only by the specified agent that
must be observing the artifact, anyway.

WI Master, Nov 2011 51 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Example of Observable Events

Example

public class Count extends Artifact {
int count;

@OPERATION void init() { count = 0; }
@OPERATION void inc() {

count++;

signal("new value", count);

}
}

WI Master, Nov 2011 52 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Observable Events (cont’ed)

Failed primitive

� failed(String failureMsg)

� failed(String failureMsg, String descr, Object... args)

An action feedback is generated, reporting a failure msg and
optionally also a tuple descr(Object...) describing the failure.

WI Master, Nov 2011 53 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Example of Observable Events

Example

public class BoundedCounter extends Artifact {
private int max;

void init(int max) {
defineObsProperty("count",0);

this.max = max;

}

@OPERATION void inc() {
ObsProperty prop = getObsProperty("count");

if (prop.intValue() < max) {
prop.updateValue(prop.intValue()+1);

signal("tick");

} else {
failed("inc failed","inc failed","max value reached",max);

}
}

}

WI Master, Nov 2011 54 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Example: Bounded Buffer with Output Parameters

public class BBuffer extends Artifact {
private LinkedList<Item> items;

private int nmax;

@OPERATION void init(int nmax) {
items = new LinkedList<Item>();

this.nmax = nmax;

defineObsProperty("n items",0);

}

@OPERATION(guard="bufferNotFull") void put(Item obj) {
items.add(obj);

getObsProperty("n items").updateValue(items.size());

}

@OPERATION void get(OpFeedbackParam<Item> res) {
await("itemAvailable");

Item item = items.removeFirst();

res.set(item);

getObsProperty("n items").updateValue(items.size());

}

@GUARD boolean bufferNotFull(Item obj) { return items.size() < nmax; }
@GUARD boolean itemAvailable() { return items.size() > 0; }

}

WI Master, Nov 2011 55 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Operation Guards

Guard on an operation is specified as:
� a boolean method annotated with @GUARD, having the same

number and type of parameters of the guarded operation
� Its name is included as the attribute guard of the

@OPERATION annotation
or used as parameter of the method await in the body of the

operation
� The operation will be enabled only if (when) the guard is

satisfied

Example

public class MyArtifact extends Artifact {
int m;

@OPERATION void init() { m=0; }
@OPERATION(guard="canExecOp1") void op1() { ... }
@OPERATION void op2() { m++; }
@GUARD boolean canExecOp1() { return m == 5; }

} WI Master, Nov 2011 56 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Example: Bounded Buffer with Guarded Operations

OBSERVABLE PROPERTIES:

n_items: int+

max_items: int

USAGE INTERFACE:

put(item:Item) / (n_items < max_items): {...}

get / (n_items >= 0) :

 { new_item(item:Item),...}

put

n_items 0

max_items 100

get

public class BBuffer extends Artifact {
private LinkedList<Item> items;

private int nmax;

@OPERATION void init(int nmax) {
items = new LinkedList<Item>();

defineObsProperty("max items",nmax);

defineObsProperty("n items",0);

}

@OPERATION(guard="bufferNotFull") void put(Object obj) {
items.add(obj);

getObsProperty("n items").updateValue(items.size());

}
@GUARD boolean bufferNotFull(Item obj) {

int maxItems = getObsProperty("max items").intValue();

return items.size() < maxItems;

}

@OPERATION(guard="itemAvailable") void get() {
Object item = items.removeFirst();

getObsProperty("n items").updateValue(items.size());

signal("new item",item);

}
@GUARD boolean itemAvailable() { return items.size() > 0; }

}

WI Master, Nov 2011 57 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Multi-step Operation

Structured (non-atomic) operations are implemented with

� one @OPERATION representing the entry point

� one or multiple transactional steps, possibly with guards

� await primitive to define the steps

WI Master, Nov 2011 58 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Example of Multi-step Operation

public class MyArtifact extends Artifact {
int internalCount;

@OPERATION void opWithResults(double x, double y,

OpFeedbackParam<Double> sum, OpFeedbackParam<Double> sub) {
sum.set(x+y);

sub.set(x-y);

}
@OPERATION void structureOp(int ntimes) {

internalCount=0;

signal("step1 completed");

await("canExecStep2", ntimes);

signal("step2 completed", internalCount);

}
@OPERATION void update(int delta) {

internalCount += delta;

}
@GUARD boolean canExecStep2(int ntimes) {

return internalCount >= ntimes;

}
} WI Master, Nov 2011 59 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Example: Simple synchronisation artifact

ready

all_ready false

OBSERVABLE PROPERTIES:

all_ready: {true,false}

USAGE INTERFACE:

ready / true: { op_exec_completed }

public class SimpleSynchronizer extends Artifact {
int nReady, nParticipants;

@OPERATION void init(int nParticipants) {
defineObsProperty("all ready",false);

nReady = 0;

this.nParticipants = nParticipants;

}
@OPERATION void ready() { // to synch

nReady++;

await("allReady");

getObsProperty("all ready").updateValue(true);

}
@GUARD booolean allReady() {

return nReady >= nParticipants;

}
}

WI Master, Nov 2011 60 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Example: Bounded Buffer with Guarded Steps

OBSERVABLE PROPERTIES:

n_items: int+

max_items: int

USAGE INTERFACE:

put(item:Item) / (n_items < max_items): {...}

get / (n_items >= 0) :

 { new_item(item:Item),...}

put

n_items 0

max_items 100

get

public class BBuffer extends Artifact {
private LinkedList<Item> items;

private int nmax;

@OPERATION void init(int nmax) {
items = new LinkedList<Item>();

defineObsProperty("max items",nmax);

defineObsProperty("n items",0);

}
@OPERATION void put(Object obj) {

await("bufferNotFull", obj);

items.add(obj);

getObsProperty("n items").updateValue(items.size());

}
@GUARD boolean bufferNotFull(Item obj) {

int maxItems = getObsProperty("max items").intValue();

return items.size() < maxItems;

}
@OPERATION void get() {

await("itemAvailable");

Object item = items.removeFirst();

getObsProperty("n items").updateValue(items.size()-1);

signal("new item",item);

}
@GUARD boolean itemAvailable() { return items.size() > 0; }

}

WI Master, Nov 2011 61 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Temporal Guards on Operation Steps

� Specified with await time primitive

� parameter indicates the number of milliseconds that must
elapse before the step could be executed, after having being
triggered

� its value is a long value greater than 0

WI Master, Nov 2011 62 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Example of Temporally Guarded Operation

public class Clock extends Artifact {
boolean working;

final static long TICK TIME = 100;

void init(){
working = false;

}
@OPERATION void start() {

if (!working) { working = true; execInternalOp("work");

} else {
failed(‘‘already working’’); }

}
@OPERATION void stop() {

working = false;

}
@INTERNAL OPERATION void work() {

while (working){
signal(‘‘tick’’);

await time(TICK TIME);

}
}

}
WI Master, Nov 2011 63 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Link Interface

� Set of operations that can be triggered by an artifact on
another artifact

� Operations are annotated with @LINK (can be composed by
multiple steps, can generate events, etc.)

Example

public class LinkableArtifact extends Artifact {
int count;

@OPERATION init() { count= 0; }
@LINK void inc() {

log("inc invoked."); count++;

signal("new count value",count);

}
}

� Call of the operation from the linking Artifact is done using
the execLinkedOp primitive.

WI Master, Nov 2011 64 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & ArtifactsObservable Property Operations Links between Artifacts

Linking Artifacts

� Executing execLinkedOp triggers the operation

� Once triggered, linked operation execution is the same as
normal operations

� The only difference is:
� the events that are generated by a linked operations, are made

observable to the agent using or observing the artifact that
triggered the execution of the link operation

� In the case of a chain, with an agent X executing an operation
on an artifact, which links the operation of an artifact B,
which links an operation of an artifact C, all the observable
events generated by B and C linked operations are made
observable to X

WI Master, Nov 2011 65 / 88

1 Origins and Fundamentals

2 Environment Oriented Programming

3 Agent & Artifact Model

4 CArtAgO

5 Programming Artifacts

6 Programming Jason Agents & Artifacts

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

The Simplest Artifact

inc

count 5

OBSERVABLE PROPERTIES:

count: int

USAGE INTERFACE:

inc: { op_exec_started(inc),

 count(X),

 op_exec_completed(inc) }

public class Counter extends Artifact {
@OPERATION void init() {
defineObsProperty("count",0);

}
@OPERATION void inc() {
int count = getObsProperty("count").intValue();

getObsProperty("count").updateValue(count+1);

}
}

WI Master, Nov 2011 67 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Jason Agents using the Simplest Artifact (1)

!create and use.

+!create and use : true

<- !setupTool(Id);

// first use

inc;

// second use specifying the id

inc [artifact id(Id)].

+!setupTool(C): true

<- makeArtifact("ourCount", "Counter",C).

WI Master, Nov 2011 68 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Jason Agents observing the Simplest Artifact (2)

!observe.

+!observe : true

<- ?myTool(C); // query goal

focus(C).

+count(V) : V < 10 <- println(count percept: ,V)).

+count(V)[artifact name(Id,’ourCount’’)] : V >= 10

<- println(stop observing.));

stopFocus(Id).

+?myTool(CounterId): true

<- lookupArtifact(ourCount,CounterId).

-?myTool(CounterId): true <-.wait(10); ?myTool(CounterId).

WI Master, Nov 2011 69 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Producer-Consumer Artifact

� bounded-buffer artifact for producers-consumers scenarios

OBSERVABLE PROPERTIES:

n_items: int+

max_items: int

USAGE INTERFACE:

put(item:Item) / (n_items < max_items): {...}

get / (n_items >= 0) :

 { new_item(item:Item),...}

put

n_items 0

max_items 100

get

public class BBuffer extends Artifact {
private LinkedList<Item> items;

private int nmax;

@OPERATION void init(int nmax) {
items = new LinkedList<Item>();

defineObsProperty("max items",nmax);

defineObsProperty("n items",0);

}

@OPERATION(guard="bufferNotFull") void put(Object obj) {
items.add(obj);

getObsProperty("n items").updateValue(items.size()+1);

}
@GUARD boolean bufferNotFull(Item obj) {

int maxItems = getObsProperty("max items").intValue();

return items.size() < maxItems;

}

@OPERATION(guard="itemAvailable") void get() {
Object item = items.removeFirst();

getObsProperty("n items").updateValue(items.size()-1);

signal("new item",item);

}
@GUARD boolean itemAvailable() { return items.size() > 0; }

}
WI Master, Nov 2011 70 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Producer Jason Agent

item to produce(0).

!produce.

+!produce : true

<- !setupTools(Buffer); !produceItems.

+!produceItems : true

<- ?nextItemToProduce(Item);

put(Item);

!!produceItems.

+?nextItemToProduce(Item) : true <- -item to produce(Item);

+item to produce(Item+1).

+!setupTools(Buffer) : true

<- makeArtifact("myBuffer", "BoundedBuffer", [10], Buffer).

-!setupTools(Buffer) : true

<- lookupArtifact("myBuffer",Buffer).

WI Master, Nov 2011 71 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Consumer Jason Agent

!consume.

+!consume: true

<- ?bufferToUse(Buffer);

.print("Going to use ",Buffer);

!consumeItems.

+!consumeItems : true

<- get(Item); !consumeItem(Item); !!consumeItems.

+!consumeItem(Item) : true <- ...

+?bufferToUse(BufferId) : true

<- lookupArtifact("myBuffer",BufferId).

-?bufferToUse(BufferId) : true

<- .wait(50); ?bufferToUse(BufferId).

WI Master, Nov 2011 72 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Synchronisation Artifact

ready

all_ready false

OBSERVABLE PROPERTIES:

all_ready: {true,false}

USAGE INTERFACE:

ready / true: { op_exec_completed }

public class SimpleSynchronizer extends Artifact {
int nReady, nParticipants;

@OPERATION void init(int nParticipants) {
defineObsProperty("all ready",false);

nReady = 0;

this.nParticipants = nParticipants;

}
@OPERATION void ready() { // to synch

nReady++;

nextStep("setAllReady");

}
@OPSTEP(guard="allReady") void setAllReady() {

getObsProperty("all ready").updateValue(true);

}
@GUARD booolean allReady() {

return nReady >= nParticipants;

}
}

WI Master, Nov 2011 73 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Jason Synch Agent - Reactive

Example

!work.

+!work: true <- ...

// locate the synch tool

lookupArtifact(mySynch,Synch);

// observe it.

focus(Synch);

// ready for synch

ready.

// react to all ready(true) percept

+all ready(true)[artifact id(mySynch)] : true

<- // all ready, go on.

...

WI Master, Nov 2011 74 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example: A Tuple-Space Artifact

public class SimpleTupleSpace extends Artifact {
 TupleSet tset;

 void init(){
 tset = new TupleSet();
 }

 @OPERATION void out(String name, Object... args){
 tset.add(new Tuple(name,args));
 }

 @OPERATION void in(String name, Object... params){
 TupleTemplate tt = new TupleTemplate(name,params);
 await("foundMatch",tt);
 Tuple t = tset.removeMatching(tt);
 bind(tt,t);
 }

 @OPERATION void rd(String name, Object... params){
 TupleTemplate tt = new TupleTemplate(name,params);
 await("foundMatch",tt);
 Tuple t = tset.readMatching(tt);
 bind(tt,t);
 }

 @GUARD boolean foundMatch(TupleTemplate tt){
 return tset.hasTupleMatching(tt);
 }

 private void bind(TupleTemplate tt, Tuple t){...}

� Multi-step operations
� operations composed by multiple transactional steps, possibly

with guards
� await primitive to define the stepsWI Master, Nov 2011 75 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Remarks

� Process-based action execution semantics
� action/operation execution can be long-term
� action/operation execution can overlap

� Key feature for implementing coordination functionalities

WI Master, Nov 2011 76 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example: Dining Philosopher Agents

philo(0,"philo1",0,1).
philo(1,"philo2",1,2).
philo(2,"philo3",2,3).
philo(3,"philo4",3,4).
philo(4,"philo5",4,0).

!prepare_table.

+!prepare_table
 <- for (.range(I,0,4)) {
 out("fork",I);
 ?philo(I,Name,Left,Right);
 out("philo_init",Name,Left,Right);
 };
 for (.range(I,1,4)) {
 out("ticket");
 };
 println("done.").

!boot.

+!boot
 <- .my_name(Me);
 in("philo_init",Me,Left,Right);
 +my_left_fork(Left); +my_right_fork(Right);
 println(Me," ready.");
 !!enjoy_life.

+!enjoy_life
 <- !thinking; !eating; !!enjoy_life.

+!eating
 <- !acquireRes; !eat; !releaseRes.

+!acquireRes : my_left_fork(F1) & my_right_fork(F2)
 <- in("ticket"); in("fork",F1); in("fork",F2).

+!releaseRes: my_left_fork(F1) & my_right_fork(F2)
 <- out("fork",F1); out("fork",F2); out("ticket").

+!thinking <- .my_name(Me); println(Me," thinking").
+!eat <- .my_name(Me); println(Me," eating").

WAITER PHILOSOPHER AGENT

WI Master, Nov 2011 77 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example 4: A Clock

public class Clock extends Artifact {

 boolean working;
 final static long TICK_TIME = 100;

 void init(){ working = false; }

 @OPERATION void start(){
 if (!working){
 working = true;
 execInternalOp("work");
 } else {
 failed("already_working");
 }
 }

 @OPERATION void stop(){ working = false; }

 @INTERNAL_OPERATION void work(){
 while (working){
 signal("tick");
 await_time(TICK_TIME);
 }
 }
}

!test_clock.

+!test_clock
 <- makeArtifac("myClock","Clock",[],Id);
 focus(Id);
 +n_ticks(0);
 start;
 println("clock started.").

@plan1
+tick: n_ticks(10)
 <- stop;
 println("clock stopped.").

@plan2 [atomic]
+tick: n_ticks(N)
 <- -+n_ticks(N+1);
 println("tick perceived!").

CLOCK CLOCK USER AGENT

� Internal operations
� execution of operations triggered by other operations
� implementing controllable processes

WI Master, Nov 2011 78 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example 5: GUI Artifacts

setValue

value 16.0

user

ok

closed

agent

� Exploiting artifacts to enable interaction between human users
and agents

WI Master, Nov 2011 79 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example 5: Agent and User Interaction

public class MySimpleGUI extends GUIArtifact {
 private MyFrame frame;

 public void setup() {
 frame = new MyFrame();

 linkActionEventToOp(frame.okButton,"ok");
 linkKeyStrokeToOp(frame.text,"ENTER","updateText");
 linkWindowClosingEventToOp(frame, "closed");
 defineObsProperty("value",getValue());
 frame.setVisible(true);
 }

 @INTERNAL_OPERATION void ok(ActionEvent ev){
 signal("ok");
 }

 @OPERATION void setValue(double value){
 frame.setText(""+value);
 updateObsProperty("value",value);
 }
 ...

 @INTERNAL_OPERATION
 void updateText(ActionEvent ev){
 updateObsProperty("value",getValue());
 }

 private int getValue(){
 return Integer.parseInt(frame.getText());
 }

 class MyFrame extends JFrame {...}
}

!test_gui.

+!test_gui
 <- makeArtifact("gui","MySimpleGUI",Id);
 focus(Id).

+value(V)
 <- println("Value updated: ",V).

+ok : value(V)
 <- setValue(V+1).

+closed
 <- .my_name(Me);
 .kill_agent(Me).

GUI ARTIFACT USER ASSISTANT AGENT

WI Master, Nov 2011 80 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Remark: Action Execution & Blocking Behaviour

� Given the action/operation map, by executing an action the
intention/activity is suspended until the corresponding
operation has completed or failed

� action completion events generated by the environment and
automatically processed by the agent/environment platform
bridge

� no need of explicit observation and reasoning by agents to
know if an action succeeded

� However the agent execution cycle is not blocked!
� the agent can continue to process percepts and possibly

execute actions of other intentions

WI Master, Nov 2011 81 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example 6: Action Execution & Blocking Behaviour

// agent code

@processing_stream
+!processing_stream : true
 <- makeArtifact(“myStream”,”Stream”,Id);
 focus(Id);
 +sum(0);
 generate(1000);
 ?sum(S);
 println(S).

@update [atomic]
+new_number(V) : sum(S)
 <- -+sum(S+V).

// artifact code

class Stream extends Artifact {
 ...
 @OPERATION void generate(int n){
 for (int i = 0; i < n; i++){
 signal("new_number",i);
 }
 }
}

� The agent perceives and processes new number percepts as
soon as they are generate by the Stream

� even if the processing stream plan execution is suspended,
waiting for generate action completion

� The test goal ?sum(S) is executed after generate action
completion

� so we are sure that all numbers have been generated and
processed

WI Master, Nov 2011 82 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Other Features

� Other CArtAgO features not discussed in this lecture
� linkability

� executing chains of operations across multiple artifacts

� multiple workspaces
� agents can join and work in multiple workspaces, concurrently

� including remote workspaces

� RBAC security model
� workspace artifact provides operations to set/change the

access control policies of the workspace, depending on the

agent role

� ruling agents’ access and use of artifacts of the workspace

� ...

� See CArtAgO papers and manuals for more information

WI Master, Nov 2011 83 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

A&A and CArtAgO: Some Research Explorations

� Designing and implementing artifact-based organisation
Infrastructures

� ORA4MAS infrastructure

� Cognitive stigmergy based on artifact environments
� Cognitive artifacts for knowledge representation and

coordination

� Artifact-based environments for argumentation

� Including A&A in AOSE methodology

� ...

WI Master, Nov 2011 84 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Applying CArtAgO and JaCa

� Using CArtAgO/JaCa for building real-world applications and
infrastructures

� Some examples
� JaCa-WS / CArtAgO-WS

� building SOA/Web Services applications using JaCa

� http://cartagows.sourceforge.net

� JaCa-Web
� implementing Web 2.0 applications using JaCa

� http://jaca-web.sourceforge.net

� JaCa-Android
� implementing mobile computing applications on top of the

Android platform using JaCa

� http://jaca-android.sourceforge.net

WI Master, Nov 2011 85 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Bibliography I

Baez-Barranco, J., Stratulat, T., and Ferber, J. (2007).

A unied model for physical and social environments. a unied model for

physical and social environments.

In Weyns, Parunak, M., editor, Environments for Multi-Agent Systems III,

Third International Workshop, E4MAS 2006, Hakodate, Japan, May 8,

2006, Selected Revised and Invited Papers, number 4389 in LNCS.

Springer.

Bromuri, S. and Stathis, K. (2007).

Situating Cognitive Agents in GOLEM.

In Engineering Environment-Mediated Multiagent Systems (EEMMAS’07).

Drogoul, A. (2003).

De la simulation multi-agent la rsolution collective de problmes. Une tude

de l’mergence de structures d’organisation dans les systmes multi-agents.

PhD thesis, Universit Paris 6.

WI Master, Nov 2011 86 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Bibliography II

Ferber, J. (1999).

Multi-Agent Systems, An Introduction to Distributed Articial Intelligence.

Addison-Wesley.

Ferber, J. and Muller, J. (1996).

Inuences and reaction: A model of situated multiagent systems.

In Tokoro, M., editor, Second international conference on multi-agent

systems (ICMAS 1996), Kyoto, Japan.

Ricci, A., Viroli, M., and Omicini, A. (2007).

’Give Agents their Artifacts’: The A&A Approach for Engineering Working

Environments.

In 6th international Joint Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS 2007). Honolulu, Hawai’i, USA.

Russell and Norvig (2003).

Artificial Intelligence, A Modern Approach (second edition).

WI Master, Nov 2011 87 / 88

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Bibliography III

Weyns, D., Omicini, A., and Odell, J. (2007).

Environment as a First-class Abstraction in MAS.

Autonomous Agents and Multi-Agent Systems, 14(1):5–30.

Wooldrige, M. J. and Jennings, N. R. (1995).

Intelligent agents: Theory and practice.

The Knowledge Engineering Review, 10(2):115–152.

WI Master, Nov 2011 88 / 88

