
CArtAgO By Example

version: 2.0.1

Main author: aricci, asanti
Creation date: 20100801

Last Changes date: 20101014

DEIS, Università di Bologna, Italy

Contents

1 Introduction 2

2 Examples 5
2.1 Example 00 - Hello World . 5
2.2 Example 01 - Artifact definition, creation and use 7
2.3 Example 02 - Action Failure 12
2.4 Example 03 - Operations with output parameters (i.e. actions

with feedbacks) . 14
2.5 Example 04 - Operations with guards 16
2.6 Example 05 - Structured Operations 19
2.7 Example 05a - Implementing coordination artifacts 22
2.8 Example 06 - Internal operations and timed await: imple-

menting a clock . 25
2.9 Example 07 - Await with blocking commands: Implementing

artifacts for I/O . 28
2.10 Example 07a - Programming GUI as Artifacts 32
2.11 Example 08 - Linkability . 35
2.12 Example 09 - Java data-binding 38
2.13 Example 10 - Working with Multiple Workspaces 40
2.14 Example 11 - Working in Remote Workspaces 42

1

Chapter 1

Introduction

In the following we describe some main features of the artifact program-
ming model on the one side and of the integration with agent plat-
forms on the other side by making a sequence of simple examples, fo-
cussing each on one aspect. Jason is used as reference agent program-
ming language, to program agents All the examples can be found in the
examples/bridges/jason/basic folder.

Before going with the examples, it follows a sum up of some main key
point about CArtAgO (more can be found in the annotated reference):

• Workspaces — A CArtAgO environment is given by one or multi-
ple workspaces, possibly spread on multiple network nodes. Multiple
workspaces can be running on the same node. By default each node
has a default workspace. In order to work inside a workspace an agent
must join it. By default, when booted, an agent is automatically joined
to the default workspace. Then, the same agent can join and work
simultaneously in multiple workspaces.

• Agents’ action repertoire — By working inside a CArtAgO environ-
ment, the repertoire of an agent’s actions is determined by the set of
artifacts available/usable in the workspace, in particular by the opera-
tions provided by such artifacts. There is one-to-one mapping between
actions and operations: if there is an artifact providing an operation
myOp, then each agent of the workspace – modulo security constraints –
can perform an external action called myOp. Accordingly, by perform-
ing an external action, the action completes with success or failure if
the corresponding operation completes with success or fails. Since the
set of artifacts can be changed dynamically by agents (creating new

2

artifacts, disposing existing ones), the repertoire of actions is dynamic
too.

• Default artifacts — By default, each workspace contains a basic set of
predefined artifacts that provide core functionalities to the agents. In
particular:

– workspace artifact (cartago.WorkspaceArtifact) — provides
functionalities to create, dispose, lookup, link, focus artifacts of
the workspace. Also it provides operations to set roles and poli-
cies related to the RBAC security model.

– node artifact (cartago.NodeArtifact) — provides functionalities
to create new workspaces, to join local and remote workspaces

– blackboard artifact, type cartago.tools.TupleSpace – provides
a tuple space that agents can exploit to communicate and coor-
dinate;

– console artifact (cartago.tools.Console) — provides functional-
ities to print messages on standard output.

Specific points related to the Jason+CArtAgO integration (whose semantics,
however, should be preserved also in the other integrations, when possible):

• Mapping observable properties and events into beliefs — by focussing
an artifact, observable properties are mapped into agent’s belief base.
So each time an observable property is updated, the corresponding
belief is updated too. Percepts related to observable events adopt the
same syntax of belief-update events (so +event(Params)), however they
are not automatically mapped into the belief base;

• Java data-binding — Java object model is used in CArtAgO as data
model to represent and manipulate data structures. That means
that operations’ parameters, observable properties’ and signals’ ar-
guments are either Java’s primitive data types or objects. To work
with CArtAgO, Jason’s data type has been extended to work also with
objects – referenced by atoms with a specific functor – and a transla-
tion between primitive data types is applied. Translation rules: From
CArtAgO to Jason:

– boolean are mapped into boolean

– int, long, float, double are mapped into doubles (NumberTerm)

– String are mapped into String

3

– null value is mapped into an unbound variable

– arrays are mapped into lists

– objects in general are mapped by atoms cobj XXX that work as
object reference

From Jason to CArtAgO:

– boolean are mapped into boolean

– a numeric term is mapped into the smallest type of number which
is sufficient to contain the data

– String are mapped into String objects

– structures are mapped into String objects

– unbound variables are mapped into output parameters (repre-
sented by the class OpFeedbackParam)

– lists are mapped into arrays

– atoms cobj XXX referring to objects are mapped into the refer-
enced objects

Jason agents do not share objects: each agent has its own object pool.

4

Chapter 2

Examples

2.1 Example 00 - Hello World

This first example is the classic hello world. It is composed by a single agent
executing a println action to print on the console the message. The Jason
MAS configuration file hello-world is the following:

MAS hello_world {
environment:
c4jason.CartagoEnvironment

agents:
hello_agent agentArchClass c4jason.CAgentArch;

classpath: "../../../../lib/cartago.jar";
"../../../../lib/c4jason.jar";

}

The declarations environment: c4jason.CartagoEnvironment and
agentArchClass c4jason.CAgentArch are fixed, and specify that the
MAS will exploit CArtAgO environments and that agents need to have
a proper predefined architecture to work within such environment. The
classpath: declaration is needed to include CArtAgO library (cartago.jar)
and the specific Jason bridge (c4jason.jar) in the classpath.

The program spawns a single agent (hello agent) whose task is to print
on standard output the classic hello message. For that purpose it exploits
the println operation provided by the console artifact. Source code of the
hello agent (in hello agent.asl):

!hello.

5

+!hello : true
<- println("Hello, world!").

Highlights:

• by default an agent, when booting, joins the default workspace on
current node – this can be avoided or controlled by specifying further
parameters to the environment: c4jason.CartagoEnvironment decla-
ration (see later)

• println is an operation provided by the console artifact, which is
available by default in the default workspace: so the agent external
action println is mapped onto the operation of this artifact. This is
the case of operation execution without specifying the specific target
artifact.

6

2.2 Example 01 - Artifact definition, creation and
use

This example shows the basics about artifact creation and use, including
observation. Two agents create, use and observe a shared artifact.

MAS example01_useobs {

environment:
c4jason.CartagoEnvironment

agents:
user user agentArchClass c4jason.CAgentArch #1;
observer observer agentArchClass c4jason.CAgentArch #1;

classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar";
}

The user agent creates a c0 artifact of type c4jexamples.Counter and then
uses it twice, executing the inc action (operation) two times:

!create_and_use.

+!create_and_use : true
<- !setupTool(Id);

inc;
inc [artifact_id(Id)].

+!setupTool(C): true
<- makeArtifact("c0","c4jexamples.Counter",[],C).

Hightlights:

• Artifact creation – To create the artifact, the agent exploits the
makeArtifact action, provided by the workspace artifact. An empty
list of parameters is specified, and the artifact id is retrieved, bound
to the C variable.

• Operation invocation with no target artifact specified – operation in-
vocation – i.e. action execution – can be done either specifying or not
which is the specific target artifact providing the operation. No arti-
fact is specified in the first inc: the artifact is automatically selected
from the workspace. If there are no artifacts providing such action, the

7

action fails. If more than one artifact is found, first artifacts created
by the agent itself are considered. If more than one artifact is found,
one is selected non deterministically. Then, the rest of the artifacts
are considered, and one is selected non deterministically.

• Operation invocation with the target artifact specified – The second
time the inc is executed, the target artifact is specified. This can
be done by adding the annotation [artifact id(Id)], where Id must
be bound to the artifact identifier. Alternatively, the annotation
[artifact name(Name)] can be used, where Name must be bound to
the logic name of the artifact.

• Operation invocation with the target workspace specified – As a further
variant, the workspace identifier can be specified, instead of the target
artifact, by means of the wsp id annotation. Ex: inc [wsp id(WspID)]

The Counter artifact is characterised by a single inc operation and a count
observable property, updated by the operation. The operation also generates
a tick signal.

package c4jexamples;

import cartago.*;

public class Counter extends Artifact {

void init(){
defineObsProperty("count",0);

}

@OPERATION void inc(){
ObsProperty prop = getObsProperty("count");
prop.updateValue(prop.intValue()+1);
signal("tick");

}
}

Highlights

• Artifact definition – an artifact template can be implemented by defin-
ing a class – whose name corresponds to the artifact template name –
extending the Artifact base class.

• Artifact initialization – the init method in artifact classes represents
artifact constructor, useful to initialize the artifact as soon as it is

8

created. The actual parameter of the init method – in this case there
are no parameters – can be specified when executing the makeArtifact

action.

• Operations – Operations are implemented by methods annotated with
@OPERATION and with void return parameter. Methods parameter cor-
responds to operations parameters.

• Observable properties – New observable properties can be defined by
the defineObsProp primitive. In their most general form, an observ-
able properties is represented by a tuple, with a functor and one or
multiple arguments, of any type. In this case the count property has a
single argument value, of integer type. To retrieve the reference to an
observable property the getObsProperty primitive is provided, speci-
fying the property name. Then updateValue methods can be used to
change the value of the property.

• Signals – like observable properties, also signals can be tuple struc-
tures, with a functor and one or multiple arguments, of any type. In
this case the tick signal generated by the operation has no argument.
The primitive signal is provided to generate signals. It comes in two
flavours:

– signal(String signalName, Object... params) – generates a
signal which is perceivable by all the agents that are observing
the artifact (because they did a focus)

– signal(AgentId id, String signalName, Object... params) –
generates a signal which is perceivable only by the specified agent.
The agent must be observing the artifact, anyway.

• Atomicity and transactionality – Operations are executed transaction-
ally with respect to the observable state of the artifact. So no inter-
ferences can occur when multiple agents concurrently use an artifact,
since the operations are executed atomically. Changes to the observ-
able properties of an artifact are made observable only when:

– the operation completes, successfully

– a signal is generated

– the operation is suspended (by means of an await, described in
next examples)

9

If an operation fails, changes to the observable state of the artifact are
rolled back.

Finally, an observer agent observes the counter and prints on standard out-
put a message each time it perceives a change in count observable property
or a tick signal:

!observe.

+!observe : true
<- ?myTool(C); // discover the tool

focus(C).

+count(V)
<- println("observed new value: ",V).

+tick [artifact_name(Id,"c0")]
<- println("perceived a tick").

+?myTool(CounterId): true
<- lookupArtifact("c0",CounterId).

-?myTool(CounterId): true
<- .wait(10);

?myTool(CounterId).

Highlights

• Artifact lookup – agents can discover the identifier of an artifact by
means of the lookupArtifact action provided by the workspace arti-
fact, specifying either the logic name of the artifact to discover or its
type (in this last case, if multiple artifacts are found, one is chosen
non deterministically). In the example, if the observer agent exe-
cutes a lookupArtifact before the artifact has been created (by the
other agent), then the lookupArtifact fails and the repairing plan
-?myTool(...) is executed.

• Focus action – agents can select which parts (artifacts) of the envi-
ronment to observe by means of the focus action, provided by the
workspace artifact, specifying the identifier of the artifact to focus.
Variants:

– focus(ArtifactId id, IEventFilter filter) – specifies a filter
to select the percepts to receive

10

– focusWhenAvailable(String artName) – focuses the specified ar-
tifact as soon as it is available in the workspace;

• Observable properties - Beliefs mapping – by focussing an artifact,
artifact observable properties are mapped into the agent’s belief base.
So changes to the observable properties are detected as changes to the
belief base. In the example: +count(V) triggering event. Beliefs related
to observable properties are decorated with annotations that can be
used to select the relevant/applicable plan, in particular:

– source(percept), percept type(obs prop) – define the percept
type

– artifact id(Id), artifact name(id,name),
artifact type(id,type), workspace(id,wspname) – provide
information about the source artifact and workspace. It is
important to remark that, being beliefs, the value of observable
properties can be accessed by means of test goals (e.g. ?count(X),
when specifying context conditions, and so on).

– Percept mixing – due to the belief base model adopted in Jason,
beliefs (and so observable properties) with the same functor and
argument are collapsed together, mixing the annotations.

• Signals percept – by focussing an artifact, signals generated by an
artifact are detected as changes in the belief base – in the example:
+tick – even if in this case the belief base is not changed. As in the
case of observable properties, annotations that can be used to select
the relevant/applicable plan, in particular:

– source(ArtifactId), percept type(obs ev) – define the percept
type

– artifact id(Id), artifact name(id,name),
artifact type(id,type), workspace(id,wspname) – provide
information about the source artifact and workspace.

11

2.3 Example 02 - Action Failure

This example is a simple variation of the previous one, to show action failure.
As in the previous case, two agents create, use and observe a shared artifact,
in this case a bounded counter :

MAS example01b_useobs {

environment:
c4jason.CartagoEnvironment

agents:
user2 agentArchClass c4jason.CAgentArch #1;
observer agentArchClass c4jason.CAgentArch #1;

classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar";
}

The counter used by the agents has the following code:

public class BoundedCounter extends Artifact {
private int max;

void init(int max){
defineObsProperty("count",0);
this.max = max;

}
@OPERATION void inc(){
ObsProperty prop = getObsProperty("count");
if (prop.intValue() < max){
prop.updateValue(prop.intValue()+1);
signal("tick");

} else {
failed("inc failed","inc_failed","max_value_reached",max);

}
}

}

Highlights:

• failed primitive – Differently from the non-bound case, in this case
the inc action fails if the count already achieved the maximum value,
specified as a parameter of init. To specify the failure of an operation
the failed primitive is provided:

– failed(String failureMsg)

12

– failed(String failureMsg, String descr, Object... args)

An action feedback is generated, reporting a failure msg and optionally
also a tuple descr(Object...) describing the failure.

Then, the user2 agent creates a bounded counter with 50 as bound and tries
to increment it 100 times: as soon as the maximum value is reached, the
action inc fails and a repairing plan is executed:

!create_and_use.

+!create_and_use : true
<- !setupTool(Id);

!use(Id).

+!use(Counter)
<- for (.range(I,1,100)){

inc [artifact_id(Counter)];
}.

-!use(Counter) [error_msg(Msg),inc_failed("max_value_reached",Value)]
<- println(Msg);

println("last value is ",Value).

+!setupTool(C): true
<- makeArtifact("c0","c4jexamples.BoundedCounter",[50],C).

Highlights:

• Failure info – on the Jason side, feedback information generated by
failed on the artifact side are included in annotations in the repairing
plan. In particular:

– error msg(Msg) contains the failure message;

– the description tuple is directly included as annotation
(inc failed(...) in the example.

13

2.4 Example 03 - Operations with output param-
eters (i.e. actions with feedbacks)

Operations can have output parameters, i.e. parameters whose value is
meant to be computed by the operation execution. On the agent side such
parameters are managed as action feedbacks. At the API level, output
parameters are represented by the class OpWithFeedbackParam<ParamType>,
where ParamType must be the specific type of the output parameter. The
class provides then a set method to set the output parameter value.
In the following example, an agent creates and uses a Calc artifact, by
executing operations with output parameters:

MAS example03_output_param {

environment:
c4jason.CartagoEnvironment

agents:
calc_user agentArchClass c4jason.CAgentArch;

classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar";
}

The Calc used by the agents has the following code:

public class Calc extends Artifact {

@OPERATION
void sum(double a, double b, OpFeedbackParam<Double> sum){
sum.set(a+b);

}

@OPERATION
void sumAndSub(double a, double b, OpFeedbackParam<Double> sum,

OpFeedbackParam<Double> sub){
sum.set(a+b);
sub.set(a-b);

}
}

The source code of the agent follows:

!use_calc.

14

+!use_calc
<- makeArtifact("myCalc","c4jexamples.Calc",[]);

sum(4,5,Sum);
println("The sum is ",Sum);
sumAndSub(0.5, 1.5, NewSum, Sub);
println("The new sum is ",NewSum," and the sub is ",Sub).

Highlights:

• On the agent side output parameters are denoted by bound variables,
which are bound with operation execution.

• An operation can have any number of output parameters

15

2.5 Example 04 - Operations with guards

When defining an operation, a guard can be specified as a condition that
must be verified to start operation execution, otherwise such execution is sus-
pended. This can be done by including a guard attribute in the @OPERATION

annotation, specifying the name of the boolean method (guard method)
– annotated with @GUARD, representing the condition to be tested. Guard
methods are called passing the same parameters of the guarded operation
(so they must declare the same parameters). Typically guard methods do
checks on the value of internal and observable state of the artifact, without
changing it.

Operations with guards are useful to realise artifacts with synchronisa-
tion functionalities. In the following example, guards are used to implement
a bounded buffer artifact in a producers-consumers architecture.

MAS example04_prodcons {

environment:
c4jason.CartagoEnvironment

agents:
producer agentArchClass c4jason.CAgentArch #10;
consumer agentArchClass c4jason.CAgentArch #10;

classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar";
}

Ten producers agents and ten consumers agents exchange information items
by exploiting the bounded buffer. Guarded operations allow for realising a
simple coordinated behaviour, such that consumers’ get action is suspended
if the buffer is empty, and producers’ put action is suspended if the buffer
is full. Bounded buffer code:

public class BoundedBuffer extends Artifact {

private LinkedList<Object> items;
private int nmax;

void init(int nmax){
items = new LinkedList<Object>();
defineObsProperty("n_items",0);
this.nmax = nmax;

}

16

@OPERATION(guard="bufferNotFull")
void put(Object obj){
items.add(obj);
getObsProperty("n_items").updateValue(items.size());

}

@OPERATION(guard="itemAvailable")
void get(OpFeedbackParam<Object> res){
Object item = items.removeFirst();
res.set(item);
getObsProperty("n_items").updateValue(items.size());

}

@GUARD
boolean itemAvailable(OpFeedbackParam<Object> res){
return items.size() > 0;

}

@GUARD
boolean bufferNotFull(Object obj){
return items.size() < nmax;

}
}

Producers code:

item_to_produce(0).

!produce.

+!produce: true <-
!setupTools(Buffer);
!produceItems.

+!produceItems : true <-
?nextItemToProduce(Item);
put(Item);
!!produceItems.

+?nextItemToProduce(N) : true
<- -item_to_produce(N);

+item_to_produce(N+1).

+!setupTools(Buffer) : true <-

17

makeArtifact("myBuffer","c4jexamples.BoundedBuffer",[10],Buffer).

-!setupTools(Buffer) : true <-
lookupArtifact("myBuffer",Buffer).

Consumers code:

!consume.

+!consume: true
<- ?bufferReady;

!consumeItems.

+!consumeItems: true
<- get(Item);

!consumeItem(Item);
!!consumeItems.

+!consumeItem(Item) : true
<- .my_name(Me);

println(Me,": ",Item).

+?bufferReady : true
<- lookupArtifact("myBuffer",_).

-?bufferReady : true
<-.wait(50);

?bufferReady.

Highlights:

• Operation execution resume – When an agent executes a guarded oper-
ation whose guard is false, the operation execution is suspended until
the guard is evaluated to true.

• Mutual exclusion – Mutual exclusion and atomicity are enforce, any-
way: a suspended guarded operation is reactivated and executed only
if (when) no operations are in execution.

18

2.6 Example 05 - Structured Operations

In order to realise complex operations, a family of primitives (called await) is
provided to suspend the execution of an operation until some specified condi-
tion is met, breaking the execution of an operation in multiple transactional
steps. By suspending the execution of an operation, other operations can
be invoked before the current one is terminated. When the specified condi-
tion holds and no operations are in execution, the suspended operation is
resumed.

Complex operations which can be implemented by using this mechanism
include:

• long-term operations which need not to block the use of the artifact;

• concurrent operations i.e. operations whose execution must overlap,
which are essential for realising coordination mechanisms and func-
tionalities.

In the following example, two agents share and concurrently use an artifact,
which provides an operation using this mechanism.

MAS example05_complexop {

environment:
c4jason.CartagoEnvironment

agents:
complexop_userA agentArchClass c4jason.CAgentArch;
complexop_userB agentArchClass c4jason.CAgentArch;

classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar";
}

The artifact used by the two agents has the following code:

public class ArtifactWithComplexOp extends Artifact {

int internalCount;

void init(){
internalCount = 0;

}

@OPERATION void complexOp(int ntimes){
doSomeWork();

19

signal("step1_completed");
await("myCondition", ntimes);
signal("step2_completed",internalCount);

}

@GUARD boolean myCondition(int ntimes){
return internalCount >= ntimes;

}

@OPERATION void update(int delta){
internalCount+=delta;

}

private void doSomeWork(){}

}

In complexOp first we do some work, then we generate a signal
step1 completed, and after that, by means of await, we suspend the exe-
cution of the operation until the condition defined by the guard method
myCondition – whose name (and parameters, if needed) are specified as pa-
rameters of the await primitive – holds. The effect is to suspend the exe-
cution of the operation until the value of internalCount is greater than or
equal to the value specified by the complexOp ntimes parameter.

Besides complexOp, the update operation is provided to increment the
internal counter. In the example one agent – complexop userA – executes
a complexOp and the other agent – complexop userB – repeatedly execute
update. The action and plan of the first agent is suspended until the second
agent has executed a number of updates which is sufficient to resume the
complexOp operation.
Here it is the complexop userA source code:

!do_test.

@do_test
+!do_test
<- println("[userA] creating the artifact...");

makeArtifact("a0","c4jexamples.ArtifactWithComplexOp",[],Id);
focus(Id);
println("[userA] executing the action...");
complexOp(10);
println("[userA] action completed.").

+step1_completed

20

<- println("[userA] first step completed.").

+step2_completed(C)
<- println("[userA] second step completed: ",C).

It is worth noting that the agent reacts to step1 completed signal generated
by the artifact, printing a message on the console, even if the do test plan
execution is suspended waiting for complexOp(10) action completion.

complexop userB source code:

!do_test.

+!do_test
<- !discover("a0");

!use_it(10).

+!use_it(NTimes) : NTimes > 0
<- update(3);

println("[userB] updated.");
!use_it(NTimes - 1).

+!use_it(0)
<- println("[userB] completed.").

+!discover(ArtName)
<- lookupArtifact(ArtName,_).

-!discover(ArtName)
<- .wait(10);

!discover(ArtName).

The agent simply executes for 10 times the update operation. By running
the example it is possible to see the interleaving of the agent actions.

Highlights:

• Concurrency – the execution of the operations overlaps in time: how-
ever always only one operation step is in execution at a time, so no
interferences can occur in accessing and modifying artifact state

• Transactionality and Observability – by executing await, all the
changes to the observable properties done so far by the operation are
committed.

21

2.7 Example 05a - Implementing coordination ar-
tifacts

Here we show an example of how to exploit structured operations to im-
plement a coordination artifact, a simple tuple space, and its usage to solve
the dining philosophers coordination problem. The in and rd operations
(that corresponds to the in and rd Linda primitives) are easily implemented
exploiting the await mechanism:

public class TupleSpace extends Artifact {

TupleSet tset;

void init(){
tset = new TupleSet();

}

@OPERATION void out(String name, Object... args){
tset.add(new Tuple(name,args));

}

@OPERATION void in(String name, Object... params){
TupleTemplate tt = new TupleTemplate(name,params);
await("foundMatch",tt);
Tuple t = tset.removeMatching(tt);
bind(tt,t);

}

@OPERATION void rd(String name, Object... params){
TupleTemplate tt = new TupleTemplate(name,params);
await("foundMatch",tt);
Tuple t = tset.readMatching(tt);
bind(tt,t);

}

private void bind(TupleTemplate tt, Tuple t){
Object[] tparams = t.getContents();
int index = 0;
for (Object p: tt.getContents()){
if (p instanceof OpFeedbackParam<?>){
((OpFeedbackParam) p).set(tparams[index]);

}
index++;

}
}

22

@GUARD boolean foundMatch(TupleTemplate tt){
return tset.hasTupleMatching(tt);

}
}

(The description of Tuple, TupleTemplate and TupleSet classes is omitted).
This is actually the implementation of the blackboard tuple space artifact
available by default in any workspace.
It follows a solution to the dining philosophers problem using a tuple space:

MAS example05a_philo {

environment:
c4jason.CartagoEnvironment

agents:
waiter agentArchClass c4jason.CAgentArch;
philo agentArchClass c4jason.CAgentArch #5;

classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar";
}

The MAS is composed by a waiter agent and five philosophers The waiter is
responsible of preparing the environment, injecting the tuples representing
the forks (five fork(F) tuples) and tickets (four ticket tuples), which allow
for avoiding deadlocks.

philo(0,"philo1",0,1).
philo(1,"philo2",1,2).
philo(2,"philo3",2,3).
philo(3,"philo4",3,4).
philo(4,"philo5",4,0).

!prepare_table.

+!prepare_table
<- for (.range(I,0,4)) {

out("fork",I);
?philo(I,Name,Left,Right);
out("philo_init",Name,Left,Right);

};
for (.range(I,1,4)) {
out("ticket");

};
println("done.").

23

The philosophers repeatedly get a couple of forks, use them to eat, and
then release them. Before taking the forks they must get a ticket, which is
released then after releasing the forks.

!start.

+!start
<- .my_name(Me);

in("philo_init",Me,Left,Right);
+my_left_fork(Left);
+my_right_fork(Right);
println(Me," ready.");
!!living.

+!living
<- !thinking;

!eating;
!!living.

+!eating
<- !acquireRes;

!eat;
!releaseRes.

+!acquireRes :
my_left_fork(F1) & my_right_fork(F2)
<- in("ticket");

in("fork",F1);
in("fork",F2).

+!releaseRes:
my_left_fork(F1) & my_right_fork(F2)
<- out("fork",F1);

out("fork",F2);
out("ticket").

+!thinking
<- .my_name(Me); println(Me," thinking").

+!eat
<- .my_name(Me); println(Me," eating").

Highlights:

• no one created the tuple space artifact, since it is already available in
the workspace by default.

24

2.8 Example 06 - Internal operations and timed
await: implementing a clock

Sometimes it is useful to implement operations that trigger the asynchronous
execution of other operations inside the artifact, which are typically long-
term. For instance: a clock artifact can have the start operation, triggering
the execution of a long-term counting operation. Such operations are typ-
ically internal, i.e. not (necessarily) part of the usage interface, and are
annotated with @INTERNAL OPERATION. To trigger the execution of an inter-
nal operation the execInternalOp primitive is provided.
In the following example, an agent creates a clock and uses it.

MAS example06_clock {

environment:
c4jason.CartagoEnvironment

agents:
clock_user agentArchClass c4jason.CAgentArch;

classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar";
}

The clock artifact has two usage interface operations – start and stop – and
an internal operation count, triggered by start:

public class Clock extends Artifact {

boolean counting;
final static long TICK_TIME = 100;

void init(){
counting = false;

}

@OPERATION void start(){
if (!counting){
counting = true;
execInternalOp("count");

} else {
failed("already_counting");

}
}

25

@OPERATION void stop(){
counting = false;

}

@INTERNAL_OPERATION void count(){
while (counting){
signal("tick");
await_time(TICK_TIME);

}
}

}

Highlights:

• Timed await – await time primitive belongs to the await primitives:
it suspends the execution of the operation until the specified time (in
milliseconds) has elapsed (from now).

Like in the await case, by suspending the operation, the artifact
is made accessible to agents for executing operations and possible
changes to its observable state are committed and made observable.

The agent starts a clock, then reacts to ticks generated by it for a certain
number of times, and finally stopping it.

!test_clock.

+!test_clock
<- makeArtifact("myClock","c4jexamples.Clock",[],Id);

focus(Id);
+n_ticks(0);
start;
println("clock started.").

@plan1
+tick: n_ticks(10)

<- stop;
println("clock stopped.").

@plan2 [atomic]
+tick: n_ticks(N)

<- -+n_ticks(N+1);
println("tick perceived!").

Highlights:

26

• Controllable processes – these features make it possible to exploit arti-
facts also to implement controllable long-term processes, without the
need to use agents for this purpose (e.g. clock agent).

27

2.9 Example 07 - Await with blocking commands:
Implementing artifacts for I/O

In order to implement artifacts that provides I/O functionalities for inter-
acting with the external world (e.g. network communication, user I/O, GUI,
etc.), a further kind of await primitive is provided, accepting an object of
type IBlockingCommand representing a command to be executed. The prim-
itive suspends the execution of the operation until the specified command –
which typically contains some kind of I/O and a blocking behaviour – has
been executed.
In the following example, two agents communicate by means of two artifacts
that function as network port, providing I/O network communication based
on UDP sockets.

MAS example07_extcommand {

environment: c4jason.CartagoEnvironment

agents:
sender agentArchClass c4jason.CAgentArch #1;
receiver agentArchClass c4jason.CAgentArch #1;

classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar";
}

The agent sender creates and uses its port to send two messages:

!send_info.

+!send_info : true
<- makeArtifact("senderPort","c4jexamples.Port",[23000]);

sendMsg("hello1","localhost:25000");
sendMsg("hello2","localhost:25000").

The agent receiver creates and uses its own port to get the messages, using
two different receiving styles:

!receive_msgs.

+!receive_msgs : true
<- makeArtifact("receiverPort","c4jexamples.Port",[25000],Id);

receiveMsg(Msg,Sender);
println("received ",Msg," from ",Sender);
focus(Id);

28

startReceiving.

+new_msg(Msg,Sender)
<- println("received ",Msg," from ",Sender).

The first message is received by means of a receiveMsg action, while the
second as a signal new msg generated by the artifact.

The Port artifact exploits the await with a blocking command to imple-
ment its functionalities:

public class Port extends Artifact {

DatagramSocket socket;
ReadCmd cmd;
boolean receiving;

@OPERATION
void init(int port) throws Exception {
socket = new DatagramSocket(port);
cmd = new ReadCmd();
receiving = false;

}

@OPERATION
void sendMsg(String msg, String fullAddress) {
try {
int index = fullAddress.indexOf(’:’);
InetAddress address = InetAddress.getByName(fullAddress.substring(

0, index));
int port = Integer.parseInt(fullAddress.substring(index + 1));
socket.send(new DatagramPacket(msg.getBytes(),

msg.getBytes().length, address, port));
} catch (Exception ex) {
this.failed(ex.toString());

}
}

@OPERATION
void receiveMsg(OpFeedbackParam<String> msg, OpFeedbackParam<String> sender) {
await(cmd);
msg.set(cmd.getMsg());
sender.set(cmd.getSender());

}

@OPERATION

29

void startReceiving() {
receiving = true;
execInternalOp("receiving");

}

@INTERNAL_OPERATION
void receiving() {
while (true) {
await(cmd);
signal("new_msg", cmd.getMsg(), cmd.getSender());

}
}

@OPERATION
void stopReceiving() {
receiving = false;

}

class ReadCmd implements IBlockingCmd {

private String msg;
private String sender;
private DatagramPacket packet;

public ReadCmd() {
packet = new DatagramPacket(new byte[1024], 1024);

}

public void exec() {
try {
socket.receive(packet);
byte[] info = packet.getData();
msg = new String(info);
sender = packet.getAddress().toString();

} catch (Exception ex) {
}

}

public String getMsg() {
return msg;

}

public String getSender() {
return sender;

}

30

}
}

The ReadCmd implements a blocking command – implementing the
IBlockingCmd interface – containing in the exec method the command code,
in this case receiving an UDP packet from a socket.
Highlights:

• Command implementation – typically the class implementing a com-
mand provides methods to check success and retrieve results after the
command has been executed and the await unblocked.

31

2.10 Example 07a - Programming GUI as Arti-
facts

An important example of artifacts encapsulating I/O functionalities is given
by GUI artifacts, i.e. artifacts functioning as GUI components, enabling
the interaction between human users and agents. Such artifacts allow to
use Swing to define the structure of a GUI; then, they allow for defining –
on the one side – operations corresponding to user actions on the GUI, so
handling specific GUI events. Such operations generates signals or change
some observable events to trigger agents observing the GUI; on the other
side, they provide operations that can be possibly used by agents to change
the GUI.

In the following example, a gui tester agent creates and uses a GUI artifact
to interact with the user.

MAS example07a_gui {

environment:
c4jason.CartagoEnvironment

agents:
gui_tester agentArchClass c4jason.CAgentArch;

classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar";
}

To make it easier GUI artifact development, a
cartago.tools.GUIArtifact base artifact is provided among the CArtAgO
utility tools. The implementation of cartago.tools.GUIArtifact – which
can be checked in CArtAgO source code – exploits await and blocking
commands. The base artifact provides basic functionalities to link GUI
events to the artifact operations.

In the following, MySimpleGUI GUI artifact creates a simple GUI with a
text field and a button. Some GUI events – pressing the button, key stroke
in the text field, closing the window – are linked to some artifact’s internal
operations, which in turn generate observable events to agents.

public class MySimpleGUI extends GUIArtifact {

private MyFrame frame;

public void setup() {
frame = new MyFrame();

32

linkActionEventToOp(frame.okButton,"ok");
linkKeyStrokeToOp(frame.text,"ENTER","updateText");
linkWindowClosingEventToOp(frame, "closed");

defineObsProperty("value",getValue());
frame.setVisible(true);

}

@INTERNAL_OPERATION void ok(ActionEvent ev){
signal("ok");

}

@INTERNAL_OPERATION void closed(WindowEvent ev){
signal("closed");

}

@INTERNAL_OPERATION void updateText(ActionEvent ev){
getObsProperty("value").updateValue(getValue());

}

@OPERATION void setValue(int value){
frame.setText(""+value);
getObsProperty("value").updateValue(getValue());

}

private int getValue(){
return Integer.parseInt(frame.getText());

}

class MyFrame extends JFrame {

private JButton okButton;
private JTextField text;

public MyFrame(){
setTitle("Simple GUI ");
setSize(200,100);
JPanel panel = new JPanel();
setContentPane(panel);
okButton = new JButton("ok");
okButton.setSize(80,50);
text = new JTextField(10);
text.setText("0");
text.setEditable(true);

33

panel.add(text);
panel.add(okButton);

}

public String getText(){
return text.getText();

}

public void setText(String s){
text.setText(s);

}
}

}

Highlights:

• Designing GUI artifacts – a GUI artifact is defined by extending
GUIArtifact, wrapping the definition and creation of the structure
of the GUI – using the Swing API – and then linking/mapping Swing
events into artifact’s internal operations by using linkXXXtoYYY prim-
itives.

The agent creates an instance of the artifact and reacts to user actions on
the GUI:

!test_gui.

+!test_gui
<- makeArtifact("gui","c4jexamples.MySimpleGUI",[],Id);

focus(Id).

+value(V)
<- println("Value updated: ",V).

+ok : value(V)
<- setValue(V+1).

+closed
<- .my_name(Me);

.kill_agent(Me).

In particular, the agent reacts to the pressing of the button by setting a new
value in the GUI; it prints a message on the console as soon as a new value
is observed; it shutdown as soon as the window is closed.

34

2.11 Example 08 - Linkability

Linkability is the mechanism that makes it possible to create interactions
among artifacts, i.e. execute inter-artifacts operations. Besides the usage
interface, an artifact can expose operations – to be tagged with @LINK. These
operations are meant to be called by other artifacts. In order to allow an
artifact A to execute operations over an artifact B, two options are provided:

• the artifact A must be explicitly linked to the artifact B by an agent,
executing linkArtifacts action, specifying the name of an output port
that the artifact A must expose. Then, operations of artifact A can
execute operations of the linked artifact B by using the execLinkedOp

primitive, specifying the output port where the linked artifact has been
linked.

• without linking the two artifacts, an artifact A can execute operations
over the artifact B by specifying in execLinkedOp the target identifier
of the artifact B

In the following example, an agent creates and links together two artifacts.
Then, it executes some operations of one artifact, the linking one, which in
turns executes operations over the second one, the linked one:

MAS example08_linkability {

environment:
c4jason.CartagoEnvironment

agents:
linkability_tester agentArchClass c4jason.CAgentArch;

classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar";
}

Source code of the linkable artifact:

public class LinkableArtifact extends Artifact {

int count;

void init(){
count = 0;

}

35

@LINK void inc(){
log("inc invoked.");
count++;

}

@LINK void getValue(OpFeedbackParam<Integer> v){
log("getValue invoked");
v.set(count);

}
}

Highlights:

• @LINK operations – the semantics of linked operations is the same of
normal operation.

• Output parameters – linked operations can contain also output param-
eters, as normal operations.

Source code of the linking artifact:

@ARTIFACT_INFO(
outports = {
@OUTPORT(name = "out-1")

}
) public class LinkingArtifact extends Artifact {

@OPERATION void test(){
log("executing test.");
try {
execLinkedOp("out-1","inc");

} catch (Exception ex){
ex.printStackTrace();

}
}

@OPERATION void test2(OpFeedbackParam<Integer> v){
log("executing test2.");
try {
execLinkedOp("out-1","getValue", v);
log("back: "+v.get());

} catch (Exception ex){
ex.printStackTrace();

}

36

}

@OPERATION void test3(){
log("executing test3.");
try {
ArtifactId id = makeArtifact("new_linked",

"c4jexamples.LinkableArtifact", ArtifactConfig.DEFAULT_CONFIG);
execLinkedOp(id,"inc");

} catch (Exception ex){
ex.printStackTrace();

}
}

}

The test and test2 operations executes respectively the inc and getValue

operation over the artifact linked to the out-1 port. The operation test3

instead creates an artifact and executes a linked operation directly using
artifact identifier. Highlights:

• Output ports – output ports are declared in the @ARTIFACT INFO anno-
tation of the artifact class, outports attribute;

• Linked operation execution – the execution semantics is the same of
normal operations. The execOpLinked primitive suspend the opera-
tion execution until the operation execution on the linked artifact has
completed.

Finally, the agent source code:

!test_link.

+!test_link
<- makeArtifact("myArtifact","c4jexamples.LinkingArtifact",[],Id1);

makeArtifact("count","c4jexamples.LinkableArtifact",[],Id2);
linkArtifacts(Id1,"out-1",Id2);
println("artifacts linked: going to test");
test;
test2(V);
println("value ",V);
test3.

Highlights:

• Linking artifacts – linkArtifacts’s parameters include the identifier of
the linking artifact, its outport and the identifier of the linked artifact.

37

2.12 Example 09 - Java data-binding

Since CArtAgO data model is based on Java object (POJO), a set of internal
actions is provided on the agent side to create/manipulate Java objects. In
particular:

• cartago.new obj(ClassName,ParamList,?ObjRef) – instantiate a new
object of the specified class, retrieving its reference

• cartago.invoke objObjRef,MethodName{(Params)},RetValue – call a
method, possibly getting the return value

• cartago.invoke objClassName,MethodName{(Params)},RetValue – call a
static method, possibly getting the return value

It follows a simple example:

MAS example09_java_data_binding {

environment:
c4jason.CartagoEnvironment

agents:
java_data_binding_tester agentArchClass c4jason.CAgentArch;

classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar";
}

The agent source code:

!test_java_api.

+!test_java_api
<- cartago.new_obj("c4jexamples.FlatCountObject",[10],Id);

cartago.invoke_obj(Id,inc);
cartago.invoke_obj(Id,getValue,Res);
println(Res);
cartago.invoke_obj("java.lang.System",currentTimeMillis,T);
println(T);
cartago.invoke_obj("java.lang.Class",

forName("c4jexamples.FlatCountObject"),Class);
println(Class).

where the class FlatCountObject is defined as follows:

38

package c4jexamples;

public class FlatCountObject {

private int count;

public FlatCountObject(int v){
count = v;

}

public FlatCountObject(){
count = 0;

}

public void inc(){
count++;

}

public void inc(int dv){
count+=dv;

}

public int getValue(){
return count;

}

}

Highlights:

• No sharing – Java objects are not meant to be shared, each agent has
its own Java library, managing its own Java objects

• Object references – Object references are kept track by means of atoms
with a specific signature. When used outside the Java related internal
actions, they are treated as normal atoms. When used in Java related
internal actions, they refer to objects.

• Null value – Underscore () is used to represent the null value.

39

2.13 Example 10 - Working with Multiple
Workspaces

In the following example, creates two workspaces, joins both and prints
messages using different console artifacts, and then uses internal actions to
set the current workspace.

MAS example10_workspaces {

environment:
c4jason.CartagoEnvironment

agents:
wsp_tester agentArchClass c4jason.CAgentArch;

classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar";
}

The agent source code:

!test_wsp.

+!test_wsp
<- ?current_wsp(Id0,Name,NodeId);

println("current workspace ",Name," ",NodeId);
println("creating new workspaces...");
createWorkspace("myNewWorkspace1");
createWorkspace("myNewWorkspace2");
joinWorkspace("myNewWorkspace1",WspID1);
?current_wsp(_,Name1,_);
println("hello in ",Name1);
makeArtifact("myCount","c4jexamples.Counter",[],ArtId);
joinWorkspace("myNewWorkspace2",WspID2);
?current_wsp(_,Name2,_);
println("hello in ",Name2);
println("using the artifact of another wsp...");
inc [artifact_id(ArtId)];
cartago.set_current_wsp(WspID1);
println("hello again in ",WspID1);
println("quit..");
quitWorkspace;
?current_wsp(_,Name3,_);
println("back in ",Name3);
quitWorkspace;
cartago.set_current_wsp(Id0);

40

?current_wsp(_,Name4,_);
println("...and finallly in ",Name4," again.").

Highlights:

• Working with mutiple workspaces – Agents can create, join and work
in multiple workspace at a time. However there is always a current
workspace, to which are routed actions with no artifact id or workspace
id specified. Current workspace info are automatically tracked by the
current wsp(WspId,Name,NodeId belief.

• Setting the current workspace – The cartago.set current wsp(WspID)

internal action makes it possible to set the current workspace, speci-
fying its id.

• Actions on workspaces – Actions on workspaces include
createWorkspace – to create a new workspace in current node,
provided by the NodeArtifact, joinWorkspace – to join a workspace
on the node, provided by the NodeArtifact, quitWorkspace to quit the
workspace, provided by the WorkspaceArtifact.

41

2.14 Example 11 - Working in Remote
Workspaces

Agents can join workspaces that are hosted on remote nodes, by means of a
joinRemoteWorkspace action (provided by the NodeArtifact. As soon as the
join succeed, the interaction within remote workspaces is the same as local
workspace.

In the following example, a Jason agent joins the default workspace of a
CArtAgO node running on localhost. The following Java program installs a
CArtAgO node on localhost, to make it reachable (also) by remote agents:
package examples;

import cartago.*;
import cartago.util.BasicLogger;

public class Ex00a_HelloRemoteWorld {

public static void main(String[] args) throws Exception {
CartagoService.startNode();
CartagoService.installInfrastructureLayer("default");
CartagoService.startInfrastructureService("default");
CartagoService.registerLogger("default",new BasicLogger());
System.out.println("CArtAgO Node Ready.");

}
}

Highlights:

• Starting a CArtAgO Node – to execute CArtAgO artifact-based envi-
ronment, first of all a CArtAgO node must be started. This is done by
the startNode service of CartagoService. The node functions as vir-
tual machine for running workspaces and artifacts, it does not include
any infrastructural (network) support.

• Installing infrastructure layers – in order to allow agents working in
the local node to interact also with remote nodes – or to allow linking
with remote artifacts – a proper infrastructural layer must be installed
by means of installInfrastructureLayer, specifying the protocol(s) to
be used (default means the default protocol of the platform, which is
RMI in the case of Java SE desktop environments).

• Intalling infrastructure services – in order to make the node reachable
from remote agents, then infrastructure services must be started by
means of startInfrastructureService, again specifying the protocol.

42

Then, it follows the Jason program which creates a standalone CArtAgO
node with a single agent:

MAS example11_remote {

environment:
c4jason.CartagoEnvironment

agents:
voyager agentArchClass c4jason.CAgentArch;

classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar";
}

The voyager agent boots in the standalone node, then it joins a remote
workspace, where he creates and uses an artifact.

!test_remote.

+!test_remote
<- ?current_wsp(Id,_,_);

+default_wsp(Id);
println("testing remote..");
joinRemoteWorkspace("default","localhost",WspID2);
?current_wsp(_,WName,_);
println("hello there ",WName);
!use_remote;
quitWorkspace.

+!use_remote
<- makeArtifact("c0","examples.Counter",[],Id);

focus(Id);
inc;
inc.

+count(V)
<- ?default_wsp(Id);

println("count changed: ",V)[wsp_id(Id)].

-!use_remote [makeArtifactFailure("artifact_already_present",_)]
<- ?default_wsp(WId);

println("artifact already created ")[wsp_id(WId)];
lookupArtifact("c0",Id);
focus(Id);
inc.

Highlights:

43

• Infrastructure options – By default, Jason programs using CArtAgO
environment create a standalone CArtAgO node, i.e. not accessible
through the network, and install the default infrastructure layer (RMI)
for joining remote workspaces. Besides the default CArtAgO installa-
tion, Jason programs have the possibility to work with CArtAgO envi-
ronment technology in four different ways specifying a set of param-
eters in the c4jason.CartagoEnvironment definition inside the Jason
mas2j file:

– c4jason.CartagoEnvironment("standalone"{,
protocol(ProtName), ...})

analogous to the default installation except for the decla-
ration of one (or more) infrastructure layers that specify
the protocols used for working with remote workspaces (ex:
c4jason.CartagoEnvironment(”standalone”,protocol(lipermi)).

– c4jason.CartagoEnvironment("infrastructure"{,
protocol(ProtName), ..., service(ServName)})

installs a CArtAgO node accessible through the network.
The default service protocol supported by the node is RMI,
other service protocols can be installed specifying one or
more service attributes. RMI is installed as the de-
fault protocol for joining remote workspaces but other pro-
tocols can be installed as well using the protocol at-
tribute (ex: c4jason.CartagoEnvironment(”infrastructure”, ser-
vice(”lipermi”), protocol(”lipermi”))).

– c4jason.CartagoEnvironment("remote"{,
WspName, WspAddress, protocol(ProtName, Address), ...})

does not install any node – agents directly join the specified
remote workspace. As usual RMI is installed by default and fur-
ther protocols can be specified using the protocol attribute (ex:
c4jason.CartagoEnvironment(”remote”, ”myWsp”, ”localhost”,
protocol(”lipermi”))).

– c4jason.CartagoEnvironment("local"{,WspName})
does not install any node – agents directly join the specified local
workspace (or the default workspace if no workspace name is spec-
ified) (ex: c4jason.CartagoEnvironment(”local”, ”WspName”)).

44

TODO:

• example on RBAC security model

45

