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ﬂ Context
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lllustration: Goals and Scenario

Goals

@ Test decentralized coordination strategies for vehicles
seeking parking spots in an urban area

@ Validate the strategies by adding physically controlled
traffic lights in a hardware/software simulation

Scenario

@ Vehicles move around a spatial environment (road
network) where free spots appear dynamically

@ The vehicles cooperate in a decentralized way, to
optimize their research time

@ There are physically controlled signal lights along with
sensors that evaluate traffic flows
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Simulators

Movsim areiver et al., 20100; MiCcroscopic traffic simulator, is used to
process physical movement of vehicles

MASH wermontetal. 2000 sOffware/hardware simulator. MASH
integrates real signal lights into the soffware simulation.

MasUPark zasayeunaetal. 2016: multi-agent based simulator. It helps
implement decentralized coordination models.

MASUPark- |

MOVSIM
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ﬂ Context

@ Definition and Interest
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Coupling simulations

is the joint execution of independently developed
simulations, exchanging data in order to achieve a set of
defined goals (vimez, 2004; Tolk et al., 2003)

related notions

Type Model
cardinality

Parallelism 1

Distributed 1

Repliquated 1

Strong / several
weak coupling

NDIAYE

Connectivity

Sole computer with concurrent
processors

Several computers exchanging over a
network : peer to peer, middleware,...

Several independent computers

Code integration / interoperation

Simulation coupling 7/30



Interest

Interest of coupling simulations

@ reuse of already built simulations

@ bring fogether diverse expertises

@ set up parallel and multi-level simulations

@ facilitate the simulation of complex systems
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ﬂ Context

@ Coupling typologies
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Coupling typologies

Integrability

is the merging of simulators” code so that every relevant
functionality is reproduced under a single simulator

Interoperability

is the ability of two or more simulators to exchange and use
information:

@ process oriented: orchestrated with simulators
cooperating by the mean of defined protocols

@ data oriented: achieved with synchronization solely on
exchanged data

Composability
is aiming at conceptual models’ interoperation and
alignment independently from their fechnical
implementation
NDIAYE Simulation coupling 10/30




e Challenges
@ Interoperability
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Interoperability challenges

Data distribution

@ How fo wire data from one simulation fo another in a
technical point of view (communication protocols) wiey
et al., 2004)

@ How fo interface simulators that use diverse data formats
(syntax)

Data alignment

@ How to achieve knowledge alignment ok et ar. 2005 oN the
shared data (semantic)

@ How to adapt shared informations to make them
consumable by the simulators with different data models,
manage differences in scales (spatial and temporal)

NDIAYE Simulation coupling 12/30



lllustration of intferoperability challenges

lllustration of interoperability challenges:
MASH = {light, sensor}, MasUPark = {assistant},
Movsim = {vehicle}

: receiving assistant | vehicle | light | sensor
sharing
assistant X spot X X
vehicle position X X | speed
light X status X X
sensor X X flow X

@ The simulations need to agree beforehand on how and
what they are exchanging with precise syntaxing

@ Shared data as parking spots from MasUPark , have no
representation in their receiving simulation (Movsim)

@ Other data like position have different representations
whether in MasUPark or Movsim for instance
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e Challenges

@ Synchronization
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Synchronization challenges
Causality principal

Events occurring within simulations must be processed with
respect to their timestamps order ujmoto, 2001

Synchronization in time
How to handle a consistent evolution of the simulations in

time with respect to the casualty principal ?
There are two time synchronization approaches ujmoto, 1999):

@ conservative: wait until events are safe to process

@ optimistic: allow local causality violations, but detect
them and recover using rollback mechanism
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Synchronization challenges (bis)

Shared entities

are concepts in the system that are represented at least in
two different simulations, and on which we may have
concurrent access.

Example: the environment in multi agent based simulations

Synchronization on shared entities

@ Shared entities constraint that their state is common
among the simulations that represent them

@ How to handle constraints induced by the existence of
shared entities across the simulations ?
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lllustration of synchonization challenges

lllustration of synchronization challenges:

@ MASH, MasUPark and Movsim each have their own time
scale and clock. How do we ensure the causality
principle ?

@ MasUPark agents decide on chosen spots depending on
the position of other agents in the environment. The
positions being processed by Movsim vehicles, there
must be a consistent view of the environment state in
both simulations
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e Solutions
@ Selected coupling solutions
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High Level Architecture

Principles (US, 1998; Fujimoto, 1998).

@ Type : process oriented interoperability

@ Architecture: Federate, Federation, RTl

@ Runtime infrastructure: data sharing model (OMT),
temporal synchronization

@ Conception rules

Federation

Federate Federate Federate I
(simulation) (simulation) (viewer)
FOM

| RunTime Infrastructure

Advantages:
@ High level abstraction : simulator independent and
longuage free

@ |EEE supported standard
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lllustration

MasUPark

Movsim

T,

NDIAYE

while
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sin

envState
for iin [1,

end

Data:
while /simEnd do

end
advanceTime(t + At) ;

simEnd do

wiffle = new Shuffle();
n = MasUPark ;

nchDataFromRTInull) ; <—1

m.agents.length] do
rgent.get (shuffle(i)) ;

State = schedule(envState,ag) ;
sendDataToRTI() ; ——————————»

RTI
shuffle function, time t
schuffle = new Shuffle();
sim = Movsim ;
envState = schedule(synchDataFromRTnull) ; <——|

m.agents.length] do
nt.get (shuffle(i)) ;
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Figure: sequential scheduling
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Environnement Interface Standard

Principles @eenrens et al, 2011
@ Type : data oriented interoperability
@ Agent / Environment separation
@ Shared environment model for agent platforms
@ Standardization for platform/environment exchanges

Agent platform

Agent 1

Agent n

Entity 1
Entity 2

Environment

Interface

Entity n

|2pOLU JU3LUOIAU

Agent 1

Agent m

Agent platform

Advantages:

@ Portability, genericity, heterogeneity
@ Spatial synchronization by environment sharing
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lllustration

Movsim ‘

Lan: ng |

Environment Model

IntelligentDriverModel

1

TrafficModel

EnvEntity [5— 1 Lane

MasUPark

RoadSegment

Figure: Environment model with EIS
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MECSYCO

Principles camus et al., 2016
@ Type : Composability of models
@ Assumptions on simulated models
@ "Agents & Artifact" paradigm
@ Coordination by conservative synchronization
@ Proposed coupling methodology

Post output
data Model
Artifact

Coupling
Model Artefact 1

Artifact

Model Model 2

Model 1 Agent 2

Manage model

Coupling
Artefact 2

Read input
data

Advantages:

@ agent paradigm
@ decentralized synchronization
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e Solutions

@ Addressed challenges
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Adressed challenges

Table: solutions and adressed challenges

HLA

EIS

MECSYCO

Data distribution

Runtime Infrastructure

Controllable entities

Peer to peer

Data alignment

Federate Object

Interface Immediate

ad-hoc functions

Model Language (artifacts)
Time synch Chandy/Misra none ,?/;issfr”obwed Chandy/
Shared entities sync none Environment none
Interface

Limits

@ Sustained integration efforts
@ Uncertainty in the validation of the coupling
@ No spatial synchronization (but EIS)
@ No active scheduling control

@ Strong assumptions on simulations
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Further issues

Further issues

@ Existing coupling solutions don’t allow to independently
model the coupling problem from it’s implementation.
Thus, bias can be induced and validation becomes tricky

@ To guarantee a coherent coupling approach,
themathicians should clearly express the coupling
requirements that undermine their problem, separately
from how it's executed.
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Coupling behaviors (Movsim-MasUPark)

MasUPark { Movsim \
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Source system :
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Further issues

@ Framework to describe coupling requirements
@ Coupling behaviors with a middleware platform:

e Agent Representation Interface for interoperability issues
e Multi-agent organization for synchronization issues

Architecture

Platform

scheduler

MetaAgent =........= L %MetaAgent

Agent Agent Agent
ARI ARI ARI

SimEnv ] [ SimEnv

Agent
ARI

Simulation Simulation
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