
Multi-Agent Oriented Programming
The JaCaMo Platform

O. Boissier1 R.H. Bordini2 J.F. Hübner3 A. Ricci4

1. Mines Saint-Etienne (ENSMSE), Saint Etienne, France

2 Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

3. Federal University of Santa Catarina (UFSC), Florianópolis, Brazil

4. University of Bologna (UNIBO), Bologna, Italy

November 2017

http://www.emse.fr/~boissier/
https://www.inf.pucrs.br/r.bordini/Rafael_Bordini/Welcome.html
http://www.das.ufsc.br/~jomi
https://apice.unibo.it/xwiki/bin/view/AlessandroRicci/

Tutorial Organisation

I Introduction to Multi-Agent Oriented Programming
I Programming Agents
I Programming Agents’ Environment
I Programming Agents’ Interaction
I Programming Agents’ Organisations
I Programming Applications
I Conclusion & Perspectives

2

Multi-Agent Oriented Programming
Programming Agents’ Organisations

Outline

Programming Agents’ Organisations
Fundamentals
Existing approaches
Moise Modeling Language (OML)
Moise Management Infrastructure (OMI)
Moise and Environment (O-E)
Moise and Agents (O-A)
Conclusions and wrap-up

4

Intuitive notions of organisation

I Organisations are structured, patterned systems of activity, knowledge,
culture, memory, history, and capabilities that are distinct from any
single agent [Gasser, 2001]
; Organisations are supra-individual phenomena

I A decision and communication schema which is applied to a set of actors
that together fulfill a set of tasks in order to satisfy goals while
guarantying a global coherent state [Malone, 1999]
; definition by the designer, or by actors, to achieve a purpose

I An organisation is characterized by : a division of tasks, a distribution of
roles, authority systems, communication systems,
contribution-retribution systems [Bernoux, 1985]
; pattern of predefined cooperation

I An arrangement of relationships between components, which results into
an entity, a system, that has unknown skills at the level of the
individuals [Morin, 1977]
; pattern of emergent cooperation

5

Organisation in MAS

Definition
Purposive supra-agent pattern of emergent or (pre)defined agents
cooperation, that could be defined by the designer or by the agents
themselves.

I Pattern of emergent/potential cooperation
I called organisation entity, institution, social relations, commitments

I Pattern of (pre)defined cooperation
I called organisation specification, structure, norms, ...

6

Perspective on organisations from EASSS’05 Tutorial (Sichman, Boissier)

Agents know
about organisation

Agents don’t know
about organisation

Local Representation Organisation Specification
Observed Organisation

Designer / Observer
Bottom-up Top-down Organisation Entity

Agent Centred

Organisation Centred

7

Perspective on organisations from EASSS’05 Tutorial (Sichman, Boissier)

Agents know
about organisation

Agents don’t know
about organisation

Agent Centred
Swarms, AMAS, SASO
Self-organisations …

Organisation is observed.
Implicitly programmed
in Agents, Interactions,
Environment.

Social Reasoning
Coalition formation
Contract Net Protocol …
Organisation is observed.
Coalition formation
mechanisms programmed
in Agents.

AOSE
MASE, GAIA, MESSAGE, …

Organisation is
a design model.
It is hard-coded
in Agents

TAEMS, STEAM, AGR
MOISE+, OPERA, …

Organisation-Oriented
Programming of MAS

Organisation Centred
Local Representation Organisation Specification
Observed Organisation

Designer / Observer
Bottom-up Top-down Organisation Entity

8

Perspective on Org.-Oriented Programming of MAS

From organisations as
I an explicit description of the structure of the agents in the MAS in

order to help them to interact

To organisations as
I the declarative and explicit definition of the coordination scheme

aiming at “controlling/coordinating” the global reasoning of the
MAS

; Normative Organisations

9

Norms

Norm
Norms are rules that a society has in order to influence the behaviour of
agents.

Norm mechanisms

I Regimentation: norm violation by the agents is prevented
e.g. the access to computers requires an user name
e.g. messages that do not follow the protocol are discarded

I Enforcement: norm violation by the agents is made possible but it
is monitored and subject to incentives
e.g. a master thesis should be written in two years

; Detection of violations, decision about ways of enforcing the
norms (e.g. sanctions)

10

Normative Multi-Agent Organisation

Normative Multi-Agent System [Boella et al., 2008]
A MAS composed of mechanisms to represent, communicate,
distribute, detect, create, modify, and enforce norms, and mechanisms
to deliberate about norms and detect norm violation and fulfillment.

Normative Multi-Agent Organisation [?]
I Norms are expressed in the organisation specification to clearly

define the coordination of the MAS:
I anchored/situated in the organisation
I i.e. norms refer to organisational concepts (roles, groups, etc.)

I Norms are interpreted and considered in the context of the
organisation entity

I Organisation management mechanisms are complemented with
norms management mechanisms (enforcement, regimentation, ...)

11

Challenges: Normative Organisation vs Autonomy

P E 

Environment 

B 

O 

Agents’ desired behavior:

 P ∩ E ∩ O not too big
•  increases performance
•  constrains agents’ autonomy

 P ∩ E ∩ O not too small
•  increases adaptation
•  keeps agents’ autonomy

I B: agents’ possible behaviors
I P: agents’ behaviors that lead to global purpose
I E: agents’ possible behaviors constrained by the environment
I O: agents’ possible/permitted/obliged behaviors constrained by the

normative organisation

12

Organisation Oriented Programming (OOP)

Organisation as a first class entity in the multi-agent eco-system
I Clear distinction between description of the organisation wrt

agents, wrt environment
I Different representations of the organisation:

I Organisation specification
I partially/totally accessible to the agents, to the environment, to the

organisation
I Organisation entity

I Local representation in the mental state of the agents
; possibly inconsistant with the other agents’ representations

I Global/local representation in the MAS
; difficulty to manage and build such a representation in a
distributed and decentralized setting

I Different sources of actions on (resp. of) the organisation by (resp.
on) agents / environment / organisation

13

Organisation Oriented Programming (OOP)

Organisation
Entity

Organisation
Specification

Agent

Agent

Agent

I Using organisational
concepts

I To define a cooperative
pattern

I Programmed outside of the
agents and outside of the
environment

I Program = Specification
I By changing the

organisation, we can
change the MAS overall
behaviour

14

Organisation Oriented Programming (OOP)

Organisation
Entity

Organisation
Specification

Agent

Agent

Agent First approach
I Agents read the program

and follow it

14

Organisation Oriented Programming (OOP)

Organisation
Entity

Organisation
Specification

Agent

Agent

Agent

First approach
I Agents read the program

and follow it

Second approach
I regimentation

I Agents are forced to
follow the program

I enforcement
I Agents are rewarded if
they follow the program

I Agents are sanctioned in
the other case

14

Organisation Oriented Programming (OOP)

Organisation
Entity

Organisation
Specification

Agent

Agent

Agent

First approach
I Agents read the program

and follow it

Second approach
I regimentation

I Agents are forced to
follow the program

I enforcement
I Agents are rewarded if
they follow the program

I Agents are sanctioned in
the other case

14

Organisation Oriented Programming (OOP)

Organisation
Entity

Organisation
Specification

Agent

Agent

Agent

Components
I Programming Language

(Org. Modeling Lang. –
OML)

I Management Infrastructure
(Org. Mngt Inf. – OMI)

I Integration to Agent
architectures and to
Environment

14

Components of OOP:
Organisation Modelling Language (OML)

I Declarative specification of the organisation(s)
I Specific constraints, norms and cooperation patterns imposed on

the agents
e.g. AGR [Ferber and Gutknecht, 1998],

TeamCore [Tambe, 1997],
Islander [Esteva et al., 2001],
Moise+ [Hübner et al., 2002], ...

I Specific anchors for situating organisations within the environment
e.g. embodied organisations [Piunti et al., 2009]

15

Components of OOP:
Organisation Management Infrastructure (OMI)

I Coordination mechanisms, i.e. support infrastructure
e.g. MadKit [Gutknecht and Ferber, 2000],

karma [Pynadath and Tambe, 2003],
...

I Regulation mechanisms, i.e. governance infrastructure
e.g. Ameli [Esteva et al., 2004],

S-Moise+ [Hübner et al., 2006],
ORA4MAS [Hübner et al., 2009],
...

I Adaptation mechanisms, i.e. reorganisation infrastructure

16

Components of OOP:
Integration mechanisms

I Agent integration mechanisms allow agents to be aware of and to
deliberate on:

I entering/exiting the organisation
I modification of the organisation
I obedience/violation of norms
I sanctioning/rewarding other agents

e.g. J -Moise+ [Hübner et al., 2007], Autonomy based
reasoning [Carabelea, 2007], ProsA2 Agent-based reasoning on
norms [Ossowski, 1999], ...

I Environment integration mechanisms
transform organisation into embodied organisation so that:

I organisation may act on the environment (e.g. enact rules,
regimentation)

I environment may act on the organisation (e.g. count-as rules)

e.g [de Brito et al., 2012], [?], [Okuyama et al., 2008]

17

Motivations for OOP:
Applications point of view

I Current applications show an increase in
I Number of agents
I Duration and repetitiveness of agent activities
I Heterogeneity of the agents, Number of designers of agents
I Agent ability to act, to decide,
I Action domains of agents, ...
I Openness, scalability, dynamicity, ...

I More and more applications require the integration of human
communities and technological communities (ubiquitous and
pervasive computing), building connected communities (ICities) in
which agents act on behalf of users

I Trust, security, ..., flexibility, adaptation

18

Motivations for OOP:
Constitutive point of view

I Organisation helps the agents to cooperate with the other agents
by defining common cooperation schemes

I global tasks
I protocols
I groups, responsibilities

e.g. ‘to bid’ for a product on eBay is an institutional action only
possible because eBay defines the rules for that very action

I the bid protocol is a constraint but it also creates the action

e.g. when a soccer team plays a match, the organisation helps the
members of the team to synchronise actions, to share information,
etc

19

Motivations for OOP:
Normative point of view

I MAS have two properties which seem contradictory:
I a global purpose
I autonomous agents

; While the autonomy of the agents is essential, it may cause loss in
the global coherence of the system and achievement of the global
purpose

I Embedding norms within the organisation of a MAS is a way to
constrain the agents’ behaviour towards the global purposes of the
organisation, while explicitly addressing the autonomy of the agents
within the organisation
; Normative organisation

e.g. when an agent adopts a role, it adopts a set of behavioural
constraints that support the global purpose of the organisation.
It may decide to obey or disobey these constraints

20

Motivations for OOP:
Agents point of view

An organisational specification is required to enable agents to “reason”
about the organisation:
I to decide to enter into/leave from the organisation during

execution
; Organisation is no more closed

I to change/adapt the current organisation
; Organisation is no more static

I to obey/disobey the organisation
; Organisation is no more a regimentation

21

Motivations for OOP:
Organisation point of view

An organisational specification is required to enable the organisation to
“reason” about itself and about the agents in order to ensure the
achievement of its global purpose:
I to decide to let agents enter into/leave from the organisation

during execution
; Organisation is no more closed

I to decide to let agents change/adapt the current organisation
; Organisation is no more static and blind

I to govern agents behaviour in the organisation (i.e. monitor,
enforce, regiment)
; Organisation is no more a regimentation

22

Outline

Programming Agents’ Organisations
Fundamentals
Existing approaches
Moise Modeling Language (OML)
Moise Management Infrastructure (OMI)
Moise and Environment (O-E)
Moise and Agents (O-A)
Conclusions and wrap-up

23

AGR [Ferber and Gutknecht, 1998]

I Agent Group Role, previously known as AALAADIN
I Agent: Active entity that plays roles within groups. An agent may
have several roles and may belong to several groups.

I Group: set of agents sharing common characteristics, i.e. context
for a set of activities. Two agents can’t communicate with each
other if they don’t belong to the same group.

I Role: Abstract representation of the status, position, function of an
agent within a group.

I OMI: the Madkit platform

24

AGR OML

Interaction
protocol

Group structure Role 1..*
1

contains

source

participant

1

*

1..*

* Role dependency Role properties
*

1

1 1

target

Agent

Group

*

1..*

*

1..*

is member of

plays

1

described by
1 1

initiator 1

Agent
level

Organization
level

25

AGR OML Modelling Dimensions

P
E

Environment

B

B: agents’ possible behaviors
P: agents’ behaviors that lead to global purpose
E: agents’ possible behaviors constrained by the environment
OS: agents’ possible behaviors structurally constrained by the organization

OS

Structural
Specification

26

AGR OMI: Madkit

Multi-Agent Development Kit
www.madkit.org

27

STEAM [Tambe, 1997]

I Shell for TEAMwork is a general framework to enable agents to
participate in teamwork.

I Different applications: Attack, Transport, Robocup soccer
I Based on an enhanced SOAR architecture and 300 domain
independent SOAR rules

I Principles:
I Team synchronization: Establish joint intentions, Monitor team
progress and repair, Individual may fail or succeed in own role

I Reorganise if there is a critical role failure
I Reassign critical roles based on joint intentions
I Decision theoretic communication

I Supported by the TEAMCORE OMI.

28

STEAM OML [Tambe, 1997]

TASK FORCE

ORDERS
OBTAINER

SAFETY INFO
OBTAINER

FLIGHT
TEAM

ROUTE
PLANNER

ESCORT TRANSPORT

HELO1 HELO2 HELO1 HELO2

Organization: hierarchy of roles that
may be filled by agents or groups of
agents.

[TASK FORCE]

[TASK FORCE] [TASK FORCE]
[TASK FORCE]

[ORDERS
OBTAINER]

[TASK FORCE] [ESCORT] [TRANSPORT]

[TASK FORCE]

EVACUATE

PROCESS
ORDERS

EXECUTE
MISSION

LANDING
ZONE
MANEUVERS

OBTAIN
ORDERS

FLY-FLIGHT
PLAN

MASK
OBSERVE PICKUP

FLY-CONTROL
ROUTE

Team Plan:
•  initial conditions,
•  term. cond. : achievability, irrelevance,
unachievability
•  team-level actions.

29

STEAM OML Modelling Dimensions

E

Environment

P

Structural
Specification

OF Functional
Specification

OS

B

B: agents’ possible behaviors
P: agents’ behaviors that lead to global purpose
E: agents’ possible behaviors constrained by the environment
OS: agents’ possible behaviors structurally constrained by the organization
OF: agents’ possible behaviors functionally constrained by the organization

30

STEAM OMI: TEAMCORE [Pynadath and Tambe, 2003]

Team Oriented
Programming
Interface

Team-Oriented Program
(team plans and organization)

execute the team
plans of the team-
oriented program.

TEAMCORE
Wrapper

TEAMCORE
Wrapper

TEAMCORE
Broadcast net

TEAMCORE
Wrapper

TEAMCORE
Wrapper

Middle
agents

Domain
Agent

Agent
Naming
Service

KARMA

Registration

Registration Human

Domain
Agent

Domain
Agent

Human
Beings

requirements for roles
searches for agents with relevant expertise
assists in assigning agents to organizational roles.

31

ISLANDER

I Based on different influences: economics, norms, dialogues,
coordination

; electronic institutions
I Combining different alternative views: dialogical, normative,

coordination
I Institution Description Language:

I Performative structure (Network of protocols),
I Scene (multi-agent protocol),
I Roles,
I Norms

I Ameli as OMI

32

ISLANDER OML: IDL [Esteva et al., 2001]

Performative Structure

(define-institution
 soccer-server as
 dialogic-framework = soccer-df
 performative-structure = soccer-pf
 norms = (free-kick coach-messages …)

)

33

ISLANDER OML Modelling Dimensions

E

Environment

P

B

B: agents’ possible behaviors
P: agents’ behaviors that lead to global purpose
E: agents’ possible behaviors constrained by the environment
OS: agents’ possible/permitted/obliged behaviors structurally constrained by the organisation
OI: agents’ possible/permitted/obliged behaviors interactionally constrained by the organisation

OI Structural
Specification

OS

Dialogical
Specification

34

ISLANDER OMI: AMELI [Esteva et al., 2004]

Communication Layer

S M 1
...

 ...

AMELI

Agents Layer

Institution
Specification

(XML
format)

-

 ...

 ...

S M m I M T M 1 T M k

G 1 G n

 ...

G i

A i A 1 A n

-

P
ub

lic

P
riv

at
e

INSTITUTION
MANAGER

SCENE
MANAGERS

TRANSITION
MANAGERS

GOVERNORS

From [Noriega 04]

35

2OPL slides from Dastani

The aim is to design and develop a programming language to support
the implementation of coordination mechanisms in terms of normative
concepts.

An organisation
I determines effect of external actions
I normatively assesses effect of agents’ actions (monitoring)
I sanctions agents’ wrongdoings (enforcement)
I prevents ending up in really bad states (regimentation)

36

Programming Language for Organisations

Example (Train Station)

Facts:
{ -at_platform , -in_train , -ticket }

Effects:
{ -at_platform } enter { at_platform },
{ -ticket } buy_ticket { ticket },
{ at_platform , -in_train }

embark
{ -at_platform, in_train }

Counts_as rules:
{ at_platform , -ticket } => { viol_ticket },
{ in_train , -ticket } => { viol_|_ }

Sanction_rules:
{ viol_ticket } => { fined_10 }

37

2OPL Modelling Dimension

38

Summary

I Several models
I Several dimensions on modelling organisation

I Structural (roles, groups, ...)
I Functional (global plans,)
I Dialogical (scenes, protocols, ...)
I Normative (norms)

I Several ways of managing organization within the MAS
I Several ways of addressing the autonomy of the agents

39

Moise
(let’s go programming those nice concepts)

Moise Framework

I OML (language)
I Tag-based language
(issued fromMoise [Hannoun et al., 2000],
Moise+ [Hübner et al., 2002],MoiseInst [Gâteau et al., 2005])

I OMI (infrastructure)
I developed as an artifact-based working environment
(ORA4MAS [Hübner et al., 2009] based on CArtAgO nodes,
refactoring of S-Moise+ [Hübner et al., 2006] and
Synai [Gâteau et al., 2005])

I Integrations
I Agents and Environment (c4Jason, c4Jadex [Ricci et al., 2009])
I Environment and Organisation ([Piunti et al., 2009])
I Agents and Organisation (J -Moise+ [Hübner et al., 2007])

41

Moise in JaCaMo Metamodel

Artifact

Operation Agent

Workspace

Environment

Manual

has

use

generateupdate

create
dispose

link, unlink

consult

create
join
quit

Belief

Goal

Plan

External Action Internal Action

create
delete

adopt
leave

create
delete

commit
leave

focus,
unfocus

primitive operationscomposition
association dependencyconcept mapping

Trigger event
Observable Property

dimension border

Action

Observable Event

achieve

Environment
Dimension

Agent
Dimension

Organisation
Dimension

Cardinalities are not represented

Content

Message

SpeechAct

Interaction
Dimension

send
receive

focus,
unfocus

MissionRole

Group Social Scheme

Norm
GoalLink

Organisation

42

Moise Framework in JaCaMo

Applicative WorkspaceApplicative Workspace

CArtAgO, Jason, NOPL Engines
Platform

level
Jade, Janus, Java Platforms

Execution
 level

mas-grp@emse.frmas-grp@ufsc.br

Workspace ora4mas

Org.
Spec.
NOPL

op
link op

Portal
Board

\\\

op
link op

Portal
Board

\\\

op
link op

Scheme
Board

\\\

op
link op

Scheme
Board

\\\

op
link op

Scheme
Board

\\\

op
link op

Group
Board

\\\

op
link op

Group
Board

\\\

op
link op

Group
Board

\\\

op
link op

Workspace
Artifact

\\\

op
link op

Org
Board

\\\op
link op

Workspace
Artifact

\\\

op
link op

Node
Artifact

\\\

op
link op

Node
Artifact

\\\

op
link op

Workspace
Artifact

\\\
op
link op

Applicative
Artifact

\\\

op
link op

Applicative
Artifact

\\\

op
link op

Applicative
Artifact

\\\

op
link op

Applicative
Artifact

\\\

op
link op

Applicative
Artifact

\\\

op
link op

Applicative
Artifact

\\\

op
link op

Applicative
Artifact

\\\

op
link op

Applicative
Artifact

\\\

43

Moise Modelling Dimensions

E

Environment

P

OF Functional
Specification

Global goals, plans,
Missions, schemas,
preferences

B
Structural
Specification

Groups, links, roles
Compatibilities, multiplicities
inheritance

OS

Normative Specification
Permissions, Obligations
Allows agents autonomy!

44

Outline

Programming Agents’ Organisations
Fundamentals
Existing approaches
Moise Modeling Language (OML)
Moise Management Infrastructure (OMI)
Moise and Environment (O-E)
Moise and Agents (O-A)
Conclusions and wrap-up

45

Moise OML

I OML for defining organisation specification and organisation entity
I Three independent dimensions [Hübner et al., 2007]

(; well adapted for the reorganisation concerns):
I Structural: Roles, Groups
I Functional: Goals, Missions, Schemes
I Normative: Norms (obligations, permissions, interdictions)

I Abstract description of the organisation for
I the designers
I the agents

; J -Moise [Hübner et al., 2007]
I the Organisation Management Infrastructure

; ORA4MAS [Hübner et al., 2009]

46

Moise OML meta-model (partial & simplified view)

Agent Goal

create
delete

adopt
leave

create
delete commit

leave

achieve

Organisation
Dimension

MissionRole

Group Social Scheme

Norm
GoalLink

Organisation

primitive operationscomposition
association dependencyconcept mapping

dimension border
Cardinalities are not represented

structural spec. functional spec. normative spec.

47

Moise OML global picture

Agent

Organisation
Specification

MissionRole

Group Social Scheme

Norm
GoalLink

Organisation

primitive operationscomposition
association dependencyconcept mapping

dimension border
Cardinalities are not represented

structural spec. functional spec. normative spec.

Group Instance

Role Player

Scheme Instance

Mission Player

Organisation
Entity

48

Structural Specification

I Specifies the structure of an MAS along three levels:
I Individual with Role
I Social with Link
I Collective with Group

I Components:
I Role: label used to assign constraints on the behavior of agents
playing it

I Link: relation between roles that directly constrains the agents in
their interaction with the other agents playing the corresponding
roles

I Group: set of links, roles, compatibility relations used to define a
shared context for agents playing roles in it

49

Structural specification
I Defined with the tag structural-specification in the context of an

organisational-specification
I One section for definition of all the roles participating to the

structure of the organisation (role-definitions tag)
I Specification of the group including all subgroup specifications

(group-specification tag)

Example

<organisational-specification
<structural-specification>

<role-definitions> ... </role-definitions>
<group-specification id="xxx">
...

</group-specification>
</structural-specification>
...

</organisational-specification>

50

Role specification

I Role definition(role tag) in role-definitions section, is composed of:
I identifier of the role (id attribute of role tag)
I inherited roles (extends tag) - by default, all roles inherit of the soc
role -

Example

<role-definitions>
<role id="player" />
<role id="coach" />
<role id="middle"> <extends role="player"/> </role>
<role id="leader"> <extends role="player"/> </role>
<role id="r1>
<extends role="r2" />
<extends role="r3" />

</role>
...

</role-definitions>

51

Group specification
I Group definition (group-specification tag) is composed of:

I group identifier (id attribute of group-specification tag)
I roles participating to this group and their cardinality (roles tag and
id, min, max), i.e. min. and max. number of agents that should
adopt the role in the group (default is 0 and unlimited)

I links between roles of the group (link tag)
I subgroups and their cardinality (subgroups tag)
I formation constraints on the components of the group
(formation-constraints)

Example

<group-specification id="team">
<roles>

<role id="coach" min="1" max="2"/> ...
</roles>
<links> ... </links>
<subgroups> ... </subgroups>
<formation-constraints> ... </formation-constraints>

</group-specification>

52

extends-subgroups, scope

extends-subgroups

I Used for links or formation constraints
I if extends-subgroups== true, the link/constraint is also valid in all

subgroups
I else it is valid only in the group where it is defined
I Default is false

scope

I Used for links or formation constraints
I if scope==inter-group: link or constraint exists for source or target

belonging to different instances of the group
I if scope==intra-group: link or constraint exists for source or target

belonging to the same instance of the group

53

Link specification

I Link definition (link tag) included in the group definition is
composed of:

I role identifiers (from, to)
I type (type) with one of the following values: authority,
communication, acquaintance

I a scope (scope)
I and validity to subgroups (extends-subgroups)

Example

<link from="coach"
to="player"
type="authority"
scope="inter-group"
extends-subgroups="true" />

54

Formation constraint specification

I Formation constraints definition (formation-constraints tag) in a
group definition is composed of:

I compatiblity constraints (compatibility tag) between roles (from,
to), with a scope, extends-subgroups and directions (bi-dir)

Example

<formation-constraints>
<compatibility from="middle"

to="leader"
scope="intra-group"
extends-subgroups="false"
bi-dir="true"/>

...
</formation-constraints>

55

Structural specification example (1)

Graphical representation of structural specification of Joj Team

56

Structural specification example (2)

Graphical representation of structural specification of 3-5-2 Joj Team

57

Functional Specification

I Specifies the expected behaviour of an MAS in terms of goals along
two levels:

I Collective with Scheme
I Individual with Mission

I Components:
I Goals:

I Performance goal (default type). Goals of this type should be
declared as done by the agents committed to them, when realized

I Achievement goal. Goals of this type should be declared as satisfied
by the agents committed to them, when realized

I Maintenance goal. Goals of this type are not realized at a precise
moment but are pursued while the scheme is running.
The agents committed to them do not need to declare that they are
satisfied

I Scheme: global goal decomposition tree assigned to a group
I Any scheme has a root goal that is decomposed into subgoals

I Missions: set of coherent goals assigned to roles within norms

58

Functional specification

I Defined with the tag functional-specification in the context of an
organisational-specification

I Specification in sequence of the different schemes participating to
the expected behaviour of the organisation

Example

<functional-specification>
<scheme id="sideAttack" >

<goal id="dogoal" > ... </goal>
<mission id="m1" min="1" max="5">

...
</mission>
...

</scheme>
...

</functional-specification>

59

Scheme specification

I Scheme definition (scheme tag) is composed of:
I identifier of the scheme (id attribute of scheme tag)
I the root goal of the scheme with the plan aiming at achieving it
(goal tag)

I the set of missions structuring the scheme (mission tag)
I Goal definition within a scheme (goal tag) is composed of:

I an idenfier (id attribute of goal tag)
I a type (performance default, achievement or maintenance)
I min. number of agents that must satisfy it (min) (default is “all”)
I optionally, an argument (argument tag) that must be assigned to a
value when the scheme is created

I optionally a plan
I Plan definition attached to a goal (plan tag) is composed of

I one and only one operator (operator attribute of plan tag) with
sequence, choice, parallel as possible values

I set of goal definitions (goal tag) concerned by the operator

60

Goal States from the Organization Point of View

waiting

satisfiedimpossible

enabled

waiting initial state

enabled goal pre-conditions are satisfied &
scheme is well-formed

satisfied agents committed to the goal have achieved it

impossible the goal is impossible to be satisfied

Note: goal state from the Organization point of view may be different
of the goal state from the Agent point of view

61

Scheme specification example

<scheme id="sideAttack">
<goal id="scoreGoal" min="1" >
<plan operator="sequence">
<goal id="g1" min="1" ds="get the ball" />
<goal id="g2" min="3" ds="to be well placed">
<plan operator="parallel">
<goal id="g7" min="1" ds="go toward the opponent’s field" />
<goal id="g8" min="1" ds="be placed in the middle field" />
<goal id="g9" min="1" ds="be placed in the opponent’s goal area" />

</plan>
</goal>
<goal id="g3" min="1" ds="kick the ball to the m2Ag" >

<argument id="M2Ag" />
</goal>
<goal id="g4" min="1" ds="go to the opponent’s back line" />
<goal id="g5" min="1" ds="kick the ball to the goal area" />
<goal id="g6" min="1" ds="shot at the opponent’s goal" />

</plan>
</goal>
...

62

Mission specification
I Mission definition (mission tag) in the context of a scheme

definition, is composed of:
I identifier of the mission (id attribute of mission tag)
I cardinality of the mission min (0 is default), max (unlimited is
default) specifying the number of agents that can be committed to
the mission

I the set of goal identifiers (goal tag) that belong to the mission

Example

<scheme id="sideAttack">
... the goals ...
<mission id="m1" min="1" max="1">

<goal id="scoreGoal" /> <goal id="g1" />
<goal id="g3" /> ...

</mission>
...

</scheme>

63

Functional specification example (1)

Graphical representation of social scheme for joj team

64

Functional specification example (2)

score a goal

m1

go towards the opponent field

m1, m2, m3

get the ball

be placed in the middle field

be placed in the opponent goal area
kick the ball to (agent committed to m2)

go to the opponent back line

kick the ball to the goal area

shot at the opponent’s goal

m1

m1

m2 m2

m2

m3

m3

Key

goal
missions

success rate parallelismchoicesequence

Scheme

Organizational Entity

Lucio

Cafu

Rivaldo

m1

m2

m3

Graphical representation of social scheme “side_attack” for joj team

65

Normative Specification

I Explicit relation between the functional and structural specifications
I Permissions and obligations to commit to missions in the context

of a role
I The normative specification makes explicit the normative dimension

of a role

66

Normative specification
I Defined in-between the tag normative-specification in the context

of an organisational-specification
I Definition in sequence of the different norms participating to the

governance of the organisation
I Definition of programs written in Normative Programming

Language (NPL)

Example

<normative-specification>
<norm id="n1" ... />
...
<norm id="..." ... />
<npl-norms>
...
</npl-norms>

</normative-specification>

67

Norm Definition

I Norm definition with norm tag, in the context of a
normative-specification definition, with attributes:

I the identifier of the norm (id)
I the type of the norm (type) with obligation, permission as possible
values

I a condition of activation (condition) – optional – checking:
I properties of the organisation (e.g. #role_compatibility,

#mission_cardinality, #role_cardinality, #goal_non_compliance)
; unregimentation of organisation properties !!!
I (un)fulfillment of an obligation stated in a particular norm

(unfulfilled, fulfilled)
I the role identifier (role) on which the norm is applied
I the mission identifier (mission) object of the norm
I a time constraint (time-constraint) – optional –

68

Norm Definition – example
I Any agent playing back is obliged to commit to mission m1 and

achieve its goals within 1 minute

<norm id = "n1" type="obligation"
role="back" mission="m1" time-constraint="1 minute"/>

I Any agent playing left is obliged to commit to mission m2 and
achieve its goals within 1 day

<norm id = "n2" type="obligation"
role="left" mission="m2" time-constraint="1 day"/>

I Any agent playing coach is obliged to commit to mission ms and
achieve its goals within 3 hour in case obligation of norm n2 has
not been fulfilled

<norm id = "n4" type="obligation"
condition="unfulfilled(obligation(_,n2,_,_))"
role="coach" mission="ms" time-constraint="3 hour"/>

69

Normative Programming Language (NPL)
Norms written in NPL have:
I an activation condition
I a consequence

Two kinds of consequences are considered
I regimentations (fail)
I obligations (obligation)

I terms starting with an upper case letter are variables

Example (Norm)

norm n1: plays(A,writer,G) -> fail.

or

norm n1: plays(A,writer,G)
-> obligation(A,n1,plays(A,editor,G),

‘now + 3 min‘).

70

Normative Programming Language (NPL)

Example (NPL Program)

<npl-norms>
a :- t & k.
norm npl1: a & v(X) ->

obligation(bob,true,g(X),‘now‘+‘1 day‘).
norm npl2: a & b -> fail(test).

</npl-norms>

71

Obligations life cycle

d > nowactive

fulfilled

unfulfilled

inactive

g

¬ ø

ø

norm n : φ −> obligation(a, r ,g,d)

I φ: activation condition of the norm (e.g. play a role)
I g: the goal of the obligation (e.g. commit to a mission)
I d : the deadline of the obligation

72

Organisation Entity Dynamics

1. Organisation is created (by the agents)
I instances of groups
I instances of schemes

2. Agents enter into groups adopting roles
3. When a group is well formed, it may become responsible for

schemes
I Agents from the group are then obliged to commit to missions in
the scheme

4. Agents commit to missions

5. Agents fulfil mission’s goals

6. Agents leave schemes and groups

7. Schemes and groups instances are destroyed

73

Outline

Programming Agents’ Organisations
Fundamentals
Existing approaches
Moise Modeling Language (OML)
Moise Management Infrastructure (OMI)
Moise and Environment (O-E)
Moise and Agents (O-A)
Conclusions and wrap-up

74

Organisation management infrastructure (OMI)
Responsibility

I Managing – coordination, regulation – the agents’ execution within
organisation defined by an organisational specification

Organisation
Program

OMI

AgentAgentAgentAgent

(e.g. MadKit, AMELI, S-Moise+, ...)

75

ORA4MAS: OMI within JaCaMo
Based on A&A andMoise.
Agents’ working environment is instrumented with Organizational
Artifacts (OA) offering ”organizational” actions
; Distributed management of the organization with a clear separation
of concerns:
I Agents:

I create, handle OAs and act on them
; deploy and manage their OMI

I perceive the organization state and
violations of norms from the OAs

I decide about:
I actions on the organization, on

norms
I sanctions to apply

I OAs are in charge of interpreting
Normative Programs

I to detect and evaluate norms
compliance

I or to regiment norms

Workspace ora4mas

Org.
Spec.
NOPL

agent

op
link op

Scheme
Board

\\\

op
link op

Scheme
Board

\\\

op
link op

Scheme
Board

\\\

op
link op

Group
Board

\\\

op
link op

Group
Board

\\\

op
link op

Group
Board

\\\

op
link op

Workspace
Artifact

\\\

agent

agent

76

ORA4MAS– OrgBoard artifact

Manages all artifacts of an organisation.

I Observable Properties:
I group(group_id,group_type,artid): list of
the group_id of group_type that exist in
the organizational entity

I scheme(scheme_id,scheme_type,artid): list
of the scheme_id of scheme_type that
exist in the organizational entity

I Operations:
I createGroup(group) (resp.
removeGroup(grid)): attempts to create
(resp. remove) group in the organization

I createScheme(scheme) (resp.
removeScheme(schid)): attempts to create
(resp. remove) scheme in the organization

77

ORA4MAS– GroupBoard artifact
Manages the functioning of an instance of group in the organization.

I Observable Properties:
I specification: group spec. in the OS
I player: list of play(agent, role, group)
I schemes: list of scheme identifiers that the
group is responsible for

I subgroups, parentGroup, formationStatus (if
the group is well formed or not)

I Operations:
I adoptRole(role) (resp. leaveRole(role)):
attempts to adopt (resp. leave) role in the
group

I addScheme(schid) (resp.
removeScheme(schid)): attempts to set
(resp. unset) the group responsible for the
scheme managed by the SchemeBoard schId

I setParentGroup(groupid), setOwner(agtid),
destroy

GroupBoard

specification

players

schemes

subgroups

\\\

adoptRole
leaveRole
removeScheme

parentGroup

formationStatus

setParentGroup
setOwner
destroy

addScheme

78

ORA4MAS– SchemeBoard artifact
Manages the functioning of an instance of social scheme in the
organization.

I Observable Properties:
I specification: scheme spec. in the OS
I commitments: list of commitment(agent,
mission, scheme)

I groups: list of groups resp. for the scheme
I goalState: list of goals’ current state
I goalArgument(schemeId,goalId,argId,value):
added only if the argument has a value,
usually defined by the operation
setArgumentValue

I obligations: list of active obligations in the
scheme (obligation(agt,norm,goal,deadline))

I permissions: list of active permissions in the
scheme
(permission(agt,norm,goal,deadline))

I goalArgument: value of goals’ arguments,
defined by the operation setArgumentValue

SchemeBoard

specification

commitments

groups

goalState

\\\

commitMission
leaveMission
goalAchieved

obligations

setArgumentValue
resetGoal
destroy

79

ORA4MAS– SchemeBoard artifact (Contd)

Manages the functioning of an instance of social scheme in the
organization.

I Operations:
I commitMission(mission) (resp.
leaveMission): attempts to “commit” (resp
“leave”) a mission in the scheme

I goalAchieved(goal): declares that goal is
achieved

I setArgumentValue(goal, argument, value):
defines the value of goal’s argument

I resetGoal(goal) (reset the status of a goal),
destroy

SchemeBoard

specification

commitments

groups

goalState

\\\

commitMission
leaveMission
goalAchieved

obligations

setArgumentValue
resetGoal
destroy

80

admCommand in Scheme/Group Boards

// in some plan of some agent
admCommand(setCardinality(role,editor,0,10));
admCommand(setCardinality(role,writer,0,20));

lookupArtifact("s1", SId); // get artifact id of scheme "s1"
admCommand(setCardinality(mission,mColaborator,0,3))[aid(SId)];
admCommand(setCardinality(mission,mManager,0,2))[aid(SId)];

Only the owner of the group/scheme can perform admCommands

81

ORA4MAS– NormativeBoard artifact

I It can be loaded with any NPL program
I is used to manage obligations/permissions defined in the normative

specification
I When a group becomes responsible for a scheme, an instance of

this artifact is created automatically.

I Observable Properties:
I obligation: current active obligations

I Operations:
I load(nplprogram)
I addFact (resp. removeFact)

82

Organisational Artifact Architecture
Org. Artifacts managing groups and social schemes execution:
I interpret programs written in Normative Programming Language

(NPL) [?] coming from the automatic translation ofMoise
programs

I generate signals
I oblCreated(o), oblFulfilled(o), oblUnfulfilled(o)
I oblInactive(o), normFailure(f)
(o = obligation(to whom, reason, what, deadline))

Organizational Artifact

State

 Moise
Spec.

Obligations
State

NOPL Program

NPL Engine

translated

NPL Interpreter\\\

operation
operation
operation

link operation
link operation
link operation

83

Generic control cycle of an Organisational Artifact

// oe: current state of the org. managed by the artifact
// p: current NOPL program
// npi: NPL interpreter
When operation o is triggered by agent a do
oe’ <- oe \\ creates a ‘‘backup’’ of current oe
oe <- executes(o,oe)
f <- a list of predicates representing oe
r <- npi(p,f) \\ runs the interpreter for the new state
If r == fail then
oe <- oe’ \\ restore the state backup
fail operation o

else
update observable properties from obligations state
success operation o

84

Structural Operational Semantics

A normative system configuration is a tuple: 〈F ,N,ns,OS ,t〉
with
I F is a set of facts
I N is a set of norms
I ns is the state of the normative system (sound state > or a failure

state ⊥)
I OS is a set of obligations

each element os ∈OS is 〈o,ost〉
where o obligation and ost its state

I t is the current time

The initial configuration of a NP P is 〈PF ,PN ,>,∅,0〉
I PF and PN are the initial facts and norms defined in the normative

program P

85

Rules for Norm Management

I Failure detection:

n ∈ N F |= nϕ nψ = fail(_)

〈F ,N,>,OS ,t〉 −→ 〈F ,N,⊥,OS ,t〉
(Regim)

when any norm n becomes active (i.e., its condition component holds in the
current state) and its consequence is fail(_), the normative state is no
longer sound but in failure (⊥).

I Roll back from failure:

∀n ∈ N.(F |= nϕ =⇒ nψ 6= fail(_))

〈F ,N,⊥,OS,t〉 −→ 〈F ,N,>,OS,t〉
(Consist)

86

Rules for Norm Management (continued)

I Creation of obligation:

n ∈ N F |= nϕ nψ = o oθd > t

¬∃〈o ′,ost〉 ∈OS . (o ′ obl
= oθ∧ost 6= inactive)

〈F ,N,>,OS ,t〉 −→
〈F ,N,>,OS ∪〈oθ,active〉,t〉

where θ is the m.g.u. such that F |= oθ

(Oblig)

87

Rules for Obligation Management

os ∈OS os = 〈o,active〉
F |= og od ≥ t

〈F ,N,>,OS ,t〉 −→
〈F ,N,>,(OS \{os})∪{〈o, fulfilled〉},t〉

(Fulfil)

os ∈OS os = 〈o,active〉 od < t

〈F ,N,>,OS ,t〉 −→
〈F ,N,>,(OS \{os})∪{〈o,unfulfilled〉},t〉

(Unfulfil)

os ∈OS os = 〈o,active〉 F 6|= or
〈F ,N,>,OS ,t〉 −→

〈F ,N,>,(OS \{os})∪{〈o, inactive〉},t〉

(Inactive)

88

NOPL
Normative Organisation Programming Language

I NOPL is a particular class of NPL: facts, rules and norms are
specific to a OML (eg. Moise NOML):

id condition role type mission TTF

n2 writer obl mCol 1 day
n3 writer obl mBib 1 day
n4 unfulfilled(n2) editor obl ms 3 hours
n5 fulfilled(n3) editor obl mr 3 hours
n6 #gnc editor obl ms 3 hours
n7 #rc editor obl ms 30 minutes
n6 #mc editor obl ms 1 hour
...

#gnc = goal_non_compliance
#rc = role_compatibility
#mc = mission_cardinality

89

OS inMoise OML to NOPL translation

Example (role cardinality norm – regimentation)

group_role(writer,1,5).

norm ncar: group_role(R,_,M) &
rplayers(R,G,V) & V > M

-> fail(role_cardinality(R,G,V,M)).

Example (role cardinality norm – agent decision)

norm ncar: group_role(R,_,M) &
rplayers(R,G,V) & V > M &
plays(E,editor,G)

-> obligation(E,ncar,committed(E,ms,_),
‘now + 1 hour‘).

90

Moise Social scheme — NOPL — Facts

I Static facts:
I scheme_mission(m,max ,min): cardinality of mission m;
I goal(m,g,pre-cond ,‘ttf ‘): mission, preconditions and TTF for goal

g.
I Dynamic facts (provided at run-time by the organisational artifact

in charge of the management of the social scheme instance):
I plays(a,ρ,gr): agent a plays the role ρ in the group instance
identified by gr .

I responsible(gr ,s): the group instance gr is responsible for the
missions of the scheme instance s.

I committed(a,m,s): the agent a is committed to mission m in
scheme s.

I achieved(s,g,a): the goal g has been achieved in the scheme s by
the agent a.

91

Moise Social scheme — NOPL — Rules

I Example of rules used to infer the state of the scheme:
I Number of players of mission M in scheme S:
mplayers(M,S,V) :-

.count(committed(_,M,S),V).
I Wellformedness property of scheme S:
well_formed(S) :-

mplayers(mBib,S,V1) & V1 >= 1 & V1 <= 1 &
mplayers(mCol,S,V2) & V2 >= 1 & V2 <= 5 &
mplayers(mMan,S,V3) & V3 >= 1 & V3 <= 1.

I Readyness of goal G in scheme S (i.e. goal is ready to be achieved):
ready(S,G) :-

goal(_, G, PCG, _) & all_achieved(S,PCG).
all_achieved(_,[]).
all_achieved(S,[G|T]) :-

achieved(S,G,_) & all_achieved(S,T).

92

Moise Social scheme — NOPL — Norms
Norms for goals

I Agents are obliged to achieve their ready goals
norm ngoa:
committed(A,M,S) & goal(M,G,_,D) &
well_formed(S) & ready(S,G)
-> obligation(A,ngoa,achieved(S,G,A),‘now‘ + D).

Norms for properties

I Mission cardinality as regimentation
norm mission_cardinality:
scheme_mission(M,_,MMax) & mplayers(M,S,MP) & MP > MMax
-> fail(mission_cardinality).

I Mission cardinality as obligation
norm mission_cardinality:
scheme_mission(M,_,MMax) & mplayers(M,S,MP) & MP > MMax
responsible(Gr,S) & plays(A,editor,Gr)
-> obligation(A,mission_cardinality,

committed(A,ms,_), ‘now‘+‘1 hour‘).

93

Moise — NOPL — Norms

; Definition of similar kinds of facts, rules and norms for the groups,
roles in the structural specification

I Domain norms:
I Each norm in the normative specification of the OS has a
corresponding norm in the NOP

I Since in the OS, obligations refer to roles and missions, norms in
corresponding NOP identify the agents playing the role in groups
responsible for the scheme and take into account the property
conditions.

norm n2:
plays(A,writer,Gr) & responsible(Gr,S) &
mplayers(mCol,S,V) & V < 5

-> obligation(A,n2,committed(A,mCol,S),‘now‘+‘1 day‘).

94

Partial Synthesis

I NPL, based on obligation and regimentation, formalised using
operational semantics, specialised into NOPL

I Automatic translation of OS written inMoise OML into several
NOPs

I Implementation in ORA4MAS, artifact-based OMI: Organisational
Artifacts act as interpreters of NOPs.

I NOPL (80%): dynamic of obligations (several aspects of the
Moise OS have been translated to norms)

I CArtAgO (10%): interface for agents
I Java (10%): dynamic of organisational state

95

Outline

Programming Agents’ Organisations
Fundamentals
Existing approaches
Moise Modeling Language (OML)
Moise Management Infrastructure (OMI)
Moise and Environment (O-E)
Moise and Agents (O-A)
Conclusions and wrap-up

96

Environment integration

I Organisational Artifacts enable organisation and environment
integration

I Embodied organisation [Piunti et al., 2009]

Env. Artifact Org. Artifact
count-as

enact

count-as

status: ongoing work

97

Constitutive rules

Count-As rule
An event occurring on an artifact, in a particular context, may
“count-as” an institutional event
I transforms the events created in the working environment into

activation of an organisational operation

; indirect automatic updating of the organisation

Enact rule
An event produced on an organisational artifact, in a specific
institutional context, may “enact” change and updating of the working
environment (i.e., to promote equilibrium, avoid undesiderable states)
I Installing automated control on the working environment
I Even without the intervention of organisational/staff agents

(regimenting actions on physical artifacts, enforcing sanctions, ...)

98

Outline

Programming Agents’ Organisations
Fundamentals
Existing approaches
Moise Modeling Language (OML)
Moise Management Infrastructure (OMI)
Moise and Environment (O-E)
Moise and Agents (O-A)
Conclusions and wrap-up

99

Agent integration

I Agents can interact with organisational artifacts as with ordinary
artifacts by perception and action

; Any Agent Programming Language integrated with CArtAgO can
use organisational artifacts

Agent integration provides some “internal” tools for the agents to
simplify their interaction with the organisation:
I maintenance of a local copy of the organisational state
I production of organisational events
I provision of organisational actions

100

J -Moise: Jason +Moise

I Agents are programmed with Jason

; BDI agents (reactive planning) – suitable abstraction level
I The programmer has the possibility to express sophisticated recipes

for adopting roles, committing to missions, fulfilling/violating
norms, ...

I Organisational information is made accessible in the mental state
of the agent as beliefs

I Integration is totally independent of the
distribution/communication layer

101

J -Moise: Jason +Moise– General view

Jason-CArtAgo Agent

Plan
Library

Belief
Base

Organisational Workspace (CArtAgO)

Intentions

J-Moise+
Organisation	 Integration	 mechanism

102

Organisational actions in Jason I
Example (GroupBoard)

...
joinWorkspace("ora4mas",O4MWsp);
makeArtifact(

"auction",
"ora4mas.nopl.GroupBoard",
["auction-os.xml", auctionGroup, false, true],
GrArtId);

adoptRole(auctioneer);
focus(GrArtId);
...

103

Organisational actions in Jason II
Example (SchemeBoard)

...
makeArtifact(

"sch1",
"ora4mas.nopl.SchemeBoard",
["auction-os.xml", doAuction, false, true],
SchArtId);

focus(SchArtId);
addScheme(Sch);
commitMission(mAuctioneer)[artifact_id(SchArtId)];
...

104

Organisational actions in Jason III

I For roles:
I adoptRole
I leaveRole

I For missions:
I commitMission
I leaveMission

I Those actions usually are executed under regimentation (to avoid
an inconsistent organisational state)
e.g. the adoption of role is constrained by

I the cardinality of the role in the group
I the compatibilities of the roles played by the agent

105

Organisational perception

When an agent focus on an Organisational Artifact, the observable
properties (Java objects) are translated to beliefs with the following
predicates:
I specification
I schemeSpecification
I play(agent, role, group)
I commitment(agent, mission, scheme)
I goalState(scheme, goal, list of committed agents, list of agent that

achieved the goal, state of the goal)
I obligation(agent,norm,goal,dead line)
I normFailure(norm)

106

Organisational perception – example

107

Handling organisational events in Jason
Whenever something changes in the organisation, the agent
architecture updates the agent belief base accordingly producing events
(belief update from perception)

Example (new agent entered the group)

+play(Ag,boss,GId) <- .send(Ag,tell,hello).

Example (change in goal state)

+goalState(Scheme,wsecs,_,_,satisfied)
: .my_name(Me) & commitment(Me,mCol,Scheme)

<- leave_mission(mColaborator,Scheme).

Example (signals)

+normFailure(N) <- .print("norm failure event: ", N).
108

Typical plans for obligations

Example

+obligation(Ag,Norm,committed(Ag,Mission,Scheme),DeadLine)
: .my_name(Ag)

<- .print("I am obliged to commit to ",Mission);
commit_mission(Mission,Scheme).

+obligation(Ag,Norm,achieved(Sch,Goal,Ag),DeadLine)
: .my_name(Ag)

<- .print("I am obliged to achieve goal ",Goal);
!Goal[scheme(Sch)];
goal_achieved(Goal,Sch).

+obligation(Ag,Norm,What,DeadLine)
: .my_name(Ag)
<- .print("I am obliged to ",What,

", but I don’t know what to do!").

109

Writing paper example
Organisation Specification

<organisational-specification
<structural-specification>

<role-definitions>
<role id="author" />
<role id="writer"> <extends role="author"/> </role>
<role id="editor"> <extends role="author"/> </role>

</role-definitions>

<group-specification id="wpgroup">
<roles>

<role id="writer" min="1" max="5" />
<role id="editor" min="1" max="1" />

</roles>
...

110

Writing paper sample I
Execution

jaime action: jmoise.create_group(wpgroup)

all perception: group(wpgroup,g1)[owner(jaime)]

jaime action: jmoise.adopt_role(editor,g1)

olivier action: jmoise.adopt_role(writer,g1)

jomi action: jmoise.adopt_role(writer,g1)

all perception:
play(jaime,editor,g1)
play(olivier,writer,g1)
play(jomi,writer,g1)

111

Writing paper sample II
Execution

jaime action: jmoise.create_scheme(writePaperSch, [g1])

all perception: scheme(writePaperSch,s1)[owner(jaime)]

all perception: scheme_group(s1,g1)

jaime perception:
permission(s1,mManager)[role(editor),group(wpgroup)]

jaime action: jmoise.commit_mission(mManager,s1)

olivier perception:
obligation(s1,mColaborator)[role(writer),group(wpgroup),
obligation(s1,mBib)[role(writer),group(wpgroup)

olivier action: jmoise.commit_mission(mColaborator,s1)

olivier action: jmoise.commit_mission(mBib,s1)

jomi perception:
obligation(s1,mColaborator)[role(writer),group(wpgroup),
obligation(s1,mBib)[role(writer),group(wpgroup)]

jomi action: jmoise.commit_mission(mColaborator,s1)

112

Writing paper sample III
Execution

all perception:
commitment(jaime,mManager,s1)
commitment(olivier,mColaborator,s1)
commitment(olivier,mBib,s1)
commitment(jomi,mColaborator,s1)

113

Writing paper sample IV
Execution

all perception: goal_state(s1,*,unsatisfied)

jaime (only wtitle is possible, Jaime should work)
event: +!wtitle
action: jmoise.set_goal_state(s1,wtitle,satisfied)

114

Writing paper sample V
Execution

jaime event: +!wabs
action: jmoise.set_goal_state(s1,wabs,satisfied)

115

Writing paper sample VI
Execution

jaime event: +!wsectitles
action: jmoise.set_goal_state(s1,wsectitles,satisfied)

116

Writing paper sample VII
Execution

olivier, jomi event: +!wsecs
action: jmoise.set_goal_state(s1,wsecs,satisfied)

117

Writing paper sample VIII
Execution

jaime event: +!wcon; ...

olivier event: +!wref; ...

118

Writing paper sample IX
Execution

all action: jmoise.remove_mission(s1)

jaime action: jmoise.jmoise.remove_scheme(s1)

119

Useful tools — Mind inspector

120

Outline

Programming Agents’ Organisations
Fundamentals
Existing approaches
Moise Modeling Language (OML)
Moise Management Infrastructure (OMI)
Moise and Environment (O-E)
Moise and Agents (O-A)
Conclusions and wrap-up

121

Wrap-up
I Model to specify global orchestration

; team strategy defined at a high level
I Ensures that the agents follow some of the constraints specified for

the organisation
I Helps the agents to work together
I The organisation is interpreted at runtime, it is not hardwired in

the agents code
I The agents ‘handle’ the organisation (i.e. their artifacts)
I It is suitable for open systems as no specific agent architecture is

required
I Organization can easily be changed by the developers or by the

agents themselves

I All available as open source at

http://moise.souceforge.net

122

http://moise.souceforge.net

Multi-Agent Oriented Programming
The JaCaMo Platform

O. Boissier1 R.H. Bordini2 J.F. Hübner3 A. Ricci4

1. Mines Saint-Etienne (ENSMSE), Saint Etienne, France

2 Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

3. Federal University of Santa Catarina (UFSC), Florianópolis, Brazil

4. University of Bologna (UNIBO), Bologna, Italy

November 2017

123

http://www.emse.fr/~boissier/
https://www.inf.pucrs.br/r.bordini/Rafael_Bordini/Welcome.html
http://www.das.ufsc.br/~jomi
https://apice.unibo.it/xwiki/bin/view/AlessandroRicci/

Bibliography I

Bernoux, P. (1985).

La sociologie des organisations.

Seuil, 3ème edition.

Boella, G., Torre, L., and Verhagen, H. (2008).

Introduction to the special issue on normative multiagent systems.

Autonomous Agents and Multi-Agent Systems, 17(1):1–10.

Carabelea, C. (2007).

Reasoning about autonomy in open multi-agent systems - an approach based
on the social power theory.

in french, ENS Mines Saint-Etienne.

de Brito, M., Hübner, J. F., and Bordini, R. H. (2012).

Programming institutional facts in multi-agent systems.

In COIN-12, Proceedings.

124

Bibliography II

Esteva, M., Rodriguez-Aguiar, J. A., Sierra, C., Garcia, P., and Arcos, J. L.
(2001).
On the formal specification of electronic institutions.
In Dignum, F. and Sierra, C., editors, Proceedings of the Agent-mediated
Electronic Commerce, LNAI 1191, pages 126–147, Berlin. Springer.

Esteva, M., Rodríguez-Aguilar, J. A., Rosell, B., and Arcos, J. L. (2004).
AMELI: An agent-based middleware for electronic institutions.
In Jennings, N. R., Sierra, C., Sonenberg, L., and Tambe, M., editors,
Proceedings of the Third International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS’2004), pages 236–243, New York. ACM.

Ferber, J. and Gutknecht, O. (1998).
A meta-model for the analysis and design of organizations in multi-agents
systems.
In Demazeau, Y., editor, Proceedings of the 3rd International Conference on
Multi-Agent Systems (ICMAS’98), pages 128–135. IEEE Press.

125

Bibliography III
Gasser, L. (2001).
Organizations in multi-agent systems.
In Pre-Proceeding of the 10th European Worshop on Modeling Autonomous
Agents in a Multi-Agent World (MAAMAW’2001), Annecy.

Gâteau, B., Boissier, O., Khadraoui, D., and Dubois, E. (2005).
Moiseinst: An organizational model for specifying rights and duties of
autonomous agents.
In Third European Workshop on Multi-Agent Systems (EUMAS 2005), pages
484–485, Brussels Belgium.

Gutknecht, O. and Ferber, J. (2000).
The MadKit agent platform architecture.
In Agents Workshop on Infrastructure for Multi-Agent Systems, pages 48–55.

Hannoun, M., Boissier, O., Sichman, J. S., and Sayettat, C. (2000).
Moise: An organizational model for multi-agent systems.
In Monard, M. C. and Sichman, J. S., editors, Proceedings of the International
Joint Conference, 7th Ibero-American Conference on AI, 15th Brazilian
Symposium on AI (IBERAMIA/SBIA’2000), Atibaia, SP, Brazil, November
2000, LNAI 1952, pages 152–161, Berlin. Springer.

126

Bibliography IV

Hübner, J. F., Boissier, O., Kitio, R., and Ricci, A. (2009).
Instrumenting Multi-Agent Organisations with Organisational Artifacts and
Agents.
Journal of Autonomous Agents and Multi-Agent Systems.

Hübner, J. F., Sichman, J. S., and Boissier, O. (2002).
A model for the structural, functional, and deontic specification of
organizations in multiagent systems.
In Bittencourt, G. and Ramalho, G. L., editors, Proceedings of the 16th
Brazilian Symposium on Artificial Intelligence (SBIA’02), volume 2507 of LNAI,
pages 118–128, Berlin. Springer.

Hübner, J. F., Sichman, J. S., and Boissier, O. (2006).
S-MOISE+: A middleware for developing organised multi-agent systems.
In Boissier, O., Dignum, V., Matson, E., and Sichman, J. S., editors,
Coordination, Organizations, Institutions, and Norms in Multi-Agent Systems,
volume 3913 of LNCS, pages 64–78. Springer.

127

Bibliography V

Hübner, J. F., Sichman, J. S., and Boissier, O. (2007).
Developing Organised Multi-Agent Systems Using the MOISE+ Model:
Programming Issues at the System and Agent Levels.
Agent-Oriented Software Engineering, 1(3/4):370–395.

Malone, T. W. (1999).
Tools for inventing organizations: Toward a handbook of organizational process.

Management Science, 45(3):425–443.

Morin, E. (1977).
La méthode (1) : la nature de la nature.
Points Seuil.

Okuyama, F. Y., Bordini, R. H., and da Rocha Costa, A. C. (2008).
A distributed normative infrastructure for situated multi-agent organisations.
In Baldoni, M., Son, T. C., van Riemsdijk, M. B., and Winikoff, M., editors,
DALT, volume 5397 of Lecture Notes in Computer Science, pages 29–46.
Springer.

128

Bibliography VI

Ossowski, S. (1999).
Co-ordination in Artificial Agent Societies: Social Structures and Its
Implications for Autonomous Problem-Solving Agents, volume 1535 of LNAI.
Springer.

Piunti, M., Ricci, A., Boissier, O., and Hubner, J. (2009).
Embodying organisations in multi-agent work environments.
In IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT 2009), Milan, Italy.

Pynadath, D. V. and Tambe, M. (2003).
An automated teamwork infrastructure for heterogeneous software agents and
humans.
Autonomous Agents and Multi-Agent Systems, 7(1-2):71–100.

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009).
Environment programming in CArtAgO.
In Multi-Agent Programming: Languages,Platforms and Applications,Vol.2.
Springer.

129

Bibliography VII

Tambe, M. (1997).

Towards flexible teamwork.

Journal of Artificial Intelligence Research, 7:83–124.

130

	Programming Agents' Organisations
	Fundamentals
	Existing approaches
	Moise Modeling Language (OML)
	Moise Management Infrastructure (OMI)
	Moise and Environment (O-E)
	Moise and Agents (O-A)
	Conclusions and wrap-up

