
Cooperative Agents Through Bidding

Dehu Qi
Lamar University

Computer Science Department
PO Box 10056

Beaumont, Texas, USA
dqi@cs.lamar.edu

Ron Sun
Rensselaer Polytechnic Institute
Cognitive Science Department

110 Eighth Street, Carnegie 302A
Troy, New York 12180

rsun@rpi.edu

Abstract

One of the main research topics in Multi-Agent Systems
is learning cooperation among agents. This paper presents
a multi-agent reinforcement learning approach with bid-
ding. Self-interested agents cooperate with each other
through bidding and evolutionary computation. We tested
the approach to the TSP problem. The experimental results
show our approach can achieve a certain level of perfor-
mance in problem solving.

1 Introduction

In the multi-agent systems, an individual agent has the
power to act and usually has its own interest. The envi-
ronment usually contains other agents. When building a
multi-agent system, it is a key issue to develop agents that
cooperate with each other to accomplish a complex task.
However, multi-agent cooperation and co-learning is a diffi-
cult task. We are interested in how agents learn to cooperate
with each others, and the role of cooperation and negotia-
tion in a multi-agent system.

In this paper, we will look into a bidding approach
for multi-agent reinforcement learning that learns complex
tasks [11]. Section 2 details our approach for multi-agent
systems. Section 3 presents and discusses experimental re-
sults and section 4 concludes.

2 Our Approach

In our approach, a multi-agent system (team) takes ac-
tions based on environment information received. Each

1Appeared in the proceedings of the 2004 IEEE International Confer-
ence on Information Reuse and Integration (IRI-2004), p444-449, Las Ve-
gas, NV, 2004

team is composed of several member agents. Each mem-
ber receives all environment information and can take ac-
tion based on it. In any given state, only one member of the
team is in control. The action of the whole team is chosen
by the member-in-control. In the next state, the member-in-
control will decide to continue to control or relinquish con-
trol. If the member-in-control decides to give up control, the
new member-in-control will be chosen from all other mem-
bers in that team through the bidding process. The member
who has the highest bid will be the new member-in-control.
In other words, the member which will more likely benefit
the whole team will have more chances to be chosen as the
member-in-control.

The member agent learns to deal with its environment
through reinforcement learning. The member-in-control re-
ceives a reward from the environment based on its actions.
During the control exchange process, the current member-
in-control receives the reward from the next member-in-
control. This is also a form of communication among mem-
bers.

The type of our system is a homogeneous communicat-
ing system since all members have the same structure and
have the same ability to receive the environmental informa-
tion. Furthermore, the method of distributed control in our
system is competitive since we use the bidding algorithm in
our system.

2.1 Details of the Reinforcement Learning

Each member in each team is a reinforcement learning
agent, which is implemented by the modified version of
Q-learning algorithm [12]. In our approach, each mem-
ber(agent) in the team has two modules: the Q module and
the CQ module. In our experiments, both modules are im-
plemented by the back-propagation neural networks. Each
member can select an action to be performed at each step,
which is done by the Q module in the agent. For each mem-
ber, there is also a controller CQ, which determines at each



step whether the agent should continue or relinquish con-
trol. Once a member relinquishes its control, to select the
next agent, it conducts a bidding process among members
(with regard to the current state). Based on the bids, it de-
cides which member should take over from the current point
on (as a ”subcontractor”), and take the bid as its own reward.

In any given state, a member (i.e., a pair of Q and CQ)
is in control. When the CQ module in the member selects
”continue”, the corresponding Q module will select an ac-
tion with regard to the current state that will affect the en-
vironment and thus generate rewards from the environment
and incur costs in the environment. When the CQ selects
”end”, the control is relinquished by the member. A bid-
ding process ensures which proceeds immediately to select
another member (a pair of CQ and Q) to take over. This
cycle then repeats itself.

Each member decides on its best actions based on the to-
tal reinforcement that it expects to receive. Each member’s
CQ module tries to determine whether it is more advanta-
geous to give up or to continue, in terms of maximizing the
total reinforcement that it will receive. (When it gives up,
it receives a bid as its reinforcement, which represents an
estimate of future reinforcement by subcontractors.) Like-
wise, each member (its Q module) tries to determine which
action to take at each step (when it decides to continue),
based on total reinforcement that it expects to receive. So,
together, each member decides both types of actions based
on reinforcement. Furthermore, cooperation among mem-
bers is formed through the afore-described mutual sharing
of reinforcement: members utilize each other when such
utilization leads to higher reinforcement.

Let states denote the actual observation by a member at
a particular moment. Assume reinforcements and costs are
associated with current state,g(s). In each member, there
are the following two modules:

• Individual action module Q: each Q module performs
actions and learns through Q-learning. Each Q mod-
ule tries to receive as much reward and incur as little
cost as possible before it is forced to give up (including
whatever it receives at the last step).

• Individual controller CQ: Each CQ module learns
when the member should continue and when the mem-
ber should give up. The learning is accomplished
through (separate) Q-learning. Each CQ tries to de-
termine whether it is more advantageous to terminate
the member or to let it continue, in terms of maximiz-
ing its future reinforcement, which is also the overall
(discounted) reinforcement.

The overall algorithm is as follows:

1. Observe the current states.

2. The currently active Q/CQ pair (member agent) takes
charge. If there is no active pair when the system first
starts, go to step 5.

3. The active CQ selects and performs a control action
based onCQ(s, ca) for differentca. If the action cho-
sen by CQ isend, go to step 5. Otherwise, the active
Q selects and performs an action based onQ(s, a) for
differenta.

4. The active Q and CQ perform learning based on the
reinforcement received (see the learning rules later).
Go to step 1.

5. The bidding process determines the next pair of Q/CQ
(member) to be in control. The member that relin-
quished control performs learning based on the win-
ning bid (see the learning rules later).

6. Go to step 1.

When a member gives up control, bidding goes as fol-
lows: each member submits its bid, and the member with
the highest bid value wins. However, during learning, for
the sake of exploration, a random selection of bids is con-
ducted based on the Boltzmann distribution:

prob(k) =
ebidk/τ

∑
l e

bidl/τ

whereτ is the temperature that determines the degree of
randomness in bid selection. That is, the higher a bid, the
more likely the bidder will win. The winner will then sub-
contract from the current member and the current member
takes the chosen bid as its own reward.

We dictate that the bid a member submits must be its best
Q value (for the current state); in other words, each mem-
ber is not free to choose its own bids. A bid is fully deter-
mined by a member’s experience with regard to the current
state: how much reinforcement (reward and cost) the mem-
ber will accrue from this point on if it does its best. We
call this an ”open-book” bidding process, in which there is
no possibility of intentional over-bidding or under-bidding.
(However, on the other hand, due to lack of sufficient ex-
perience, a member may have a Q value that is higher or
lower than the correct Q value, in which case over-bidding
or under-bidding can occur). A bid submitted by a mem-
ber in this way represents the expected (discounted) total
reinforcement from the current point on, which is the to-
tal reward minus the total cost (including possibly its own
profit as part of the cost). Note that this total represents not
only what will be done by this member but also what will be
done by subsequent members (subcontractors) later, due to
the subsequent bidding processes (the learning process that
takes this into account will be explained next). So, a mem-
ber, in submitting a bid, takes into account both its own



reinforcement and gains from subsequent subcontracting to
other members, on the basis of its own experience thus far.

The learning rules can be specified as follows.

• For the activeQk, the learning rule when neither the
current action nor the next action by the corresponding
CQk is end is the usual Q-learning rule:

∆Qk(s, a) = α(g(s) + γ max
a′

Qk(s′, a′)−Qk(s, a))

wheres′ is the new state resulting from actiona in
states. When the next action byCQk is end, theQk

module receives as reward the value ofCQk (which
represents the expected value of the chosen bid at this
point):

∆Qk(s, a) = α(g(s) + γCQk(s′, end)−Qk(s, a))

where s′ is the new state (resulting from actiona
in states) in which control is relinquished byCQk.
CQk(s′, end) represents the expected value of the bid
that the member will accept (from subcontractors), if it
gives up control at this point, the value of which is the
expected (discounted) total of reinforcement that will
be received from that point on by the whole system.
This value is given to the Q module so that it can take
it into account when deciding on its courses of action
(e.g., whether to reach one giving-up point or another).

• For the correspondingCQk, there are also two sepa-
rate learning rules, for the two different actions. When
the current action byCQk is continue, the learning
rule is the usual Q-learning rule:

∆CQk(s, continue) =

α(g(s) + γ max
ca′

CQk(s′, ca′)− CQk(s, continue))

where s′ is the new state resulting from action
continue in states and ca′ is any control action by
CQ. That is , whenCQk decides to continue, it accu-
mulates reinforcement generated by the actions of the
correspondingQk. When the current action byCQk is
end, the learning rule is:

∆CQk(s, end) = α(max
a

Ql(s, a)− CQk(s, end))

whereQl is the Q module of the next member in con-
trol (the chosen bidderl) andmaxa Ql(s, a) is the cho-
sen bid. That is, when a CQ ends, it takes the chosen
bid as its reward, which gives it incentive to take higher
bids. It learns the expected value of bids, which is
the expected (discounted) total reinforcement that will
be accumulated by the whole system from the current
state on. So in effect, CQ makes its continue/end de-
cisions based on comparing whether giving up control
or continuing control will lead to more reinforcement.
Thus members are rational in this regard.

Thus, overall, the members interact and cooperate with
each other through bidding as well as individual reinforce-
ment learning. With thisdual process, the whole multi-
agent system learns to form action sequences to facilitate
learning. Cooperation among members is forged through
bidding and subsequent sharing of reinforcement: a mem-
ber calls upon another member when such an action leads
to higher reinforcement.

2.2 The Multi-Team system

In our experiments, we implemented two algorithms: the
multi-team algorithm and the single-team algorithm.

The Multi-Team Algorithm
In the multi-team system, we randomly generate a set

of teams and train them for a number of training episodes.
In the training process, the team learns by playing against
itself. The performance of the Q and CQ module, is im-
proved by the reinforcement learning. In the crossover and
mutation steps, teams exchange useful information to im-
prove their performance. Only the best teams are chosen
for crossover and mutation in the hope that the offspring are
better than the parents. The detail of crossover and mutation
operator will be discussed later. Teams are chosen by using
tournament selection, which will be discussed shortly. The
detail of the multi-team algorithm is as follows:

1. Randomly generate a set of teams. (The number of teams is
n.)

2. Train each team for a number of episodes.

3. Perform crossover and mutation to generate new teams:

(a) Selectm best teams by using tournament selection.

(b) Generaten-mnew teams by crossover. The crossover
rate (the percentage of the weights that have been ex-
changed between two members) isα.

i. γ percent of crossover is based on the weight ex-
change at the corresponding position.

ii. 100-γ percent of crossover is based on the weight
exchange at two random positions.

(c) Apply mutation on these newly generated teams by
randomly mutating selected teams. The mutation rate
(the percentage of the weights that have been mutated
in a member) isβ.

4. Replace the population with the selected teams and the newly
generated teams.

5. Go to step 2.

Tournament Selection
We use the tournament selection algorithm, as following,

to select the best teams:

1. Randomly divide all teams into several groups.

2. In each group, evaluate each group member’s fitness value.



3. Select the best performer in each group to form a new set.

4. Repeat step 1 untilmremain, where m is the number of mem-
bers we need.

In our experiments, the fitness value is the winning per-
centage when a member plays against the benchmark agent.
In the tournament selection, the higher the fitness value of
a member, the higher the chance for that member to be se-
lected. However, this algorithm is not simply selecting the
bestm members. For example, if the best two members
are assigned into the same group, the second best mem-
ber won’t be chosen. Members ranked underm still have
a chance to be selected.

The Single-Team Algorithm
The single-team algorithm is a variant to the multi-team

algorithm. In the multi-team algorithm, because the muta-
tion and crossover are done randomly, in some cases, the
performance of a newly generated team is worse than that
of an old team. In the single-team algorithm, crossover and
mutation are only applied in one and only one team. If the
new team is worse than the old team, the new team is dis-
carded and the old team is restored. The detail of the single-
team algorithm is as follows:

1. Randomly generate a team.

2. Train the team for a number of episodes.

3. Evaluate the team by comparing it with the old team. If the
team’s performance is worse than that of the old team, restore
the old team.

4. Randomly exchange weights between members. The
crossover rate (the percentage of the weights that have been
exchanged between two members) isα.

(a) γ percent of crossover is based on the weight exchange
at the corresponding position.

(b) 100-γ percent of crossover is based on the weight ex-
change at two random positions.

5. Randomly mutate selected members. The mutation rate (the
percentage of the weights that have been mutated in a mem-
ber) isβ.

6. Replace the team with the newly generated team.

7. Go to step 3.

3 Experimental Results

3.1 Experiment Setup

The TSP problem is a well-known NP problem. Given a
set of n cities, the TSP problem can be stated as the problem
of finding a minimal length closed tour that visits each city
once and only once. Supposedij is the distance of the path
between city i and j.dij will be equal to Euclidean distance
between city i and j In our experiments.

dij =
√

(xi − xj)2 + (yi − yj)2

We choose Eilon50 [5] and KroA100 [9] problems for
our experiments. The shortest known distance for Eilon50
is 425 and for KroA100 is 21282 [9].

The BP network is used to implement the reinforcement
learning algorithm. The encoding method is as follows: 3
units are assigned to represent each city. The first unit is
used to encode if the city is the start city, the second unit is
used to encode if the city is the current city, and the third
unit is used to encode if the city has been visited. For the
Eilon50 problem, a total of 150 units is used to encode the
cities’ information. The number of hidden units is 100. For
the KroA100 problem, a total of 300 units is used to encode
the cities’ information. The number of hidden units is 200.

The initial parameter settings are as follows: the Q value
discount rate is 0.95, the learning rate is 0.5 and the temper-
ature is 0.50. The mutation rate is 0.05 and the crossover
rate is 0.20. 80 percentage of crossover is the weights ex-
change at the corresponding position and 20 percentage of
crossover is the weights exchange at the random position.

The player will receive reward after it generates a tour.
The reward is set as follows:

reward = [Optimal/Ci]2

whereCi is the current distance computed at iteration i
and Optimal is the shortest distance we known.

3.2 Experiment Results

For the Eilon50 problem, we tested 3 different algo-
rithms: the single agent, the single-team algorithm, and the
multi-agent algorithm. The single agent uses the Q-learning
algorithm without GAs and biding.

In the single-team algorithm, the team is formed by se-
lecting the best 5 single agents after 1000 episodes. In the
multi-team algorithm, 15 teams are randomly generated at
the beginning. After 200 iteration training, 5 teams are se-
lected for next generation. 10 new teams are generated by
applying mutation and crossover to these chosen 5 teams.
The weights are crossed over in two ways: between the cor-
responding positions and between random positions. Two
teams are randomly chosen and one member is chosen from
each team. The experiment results of 2,000 iterations for
Eilon50 problem are in the Figure 1.

For the KroA100 problem, we tested 2 different algo-
rithms: the single agent and the multi-team algorithm. The
experiment results for 200,000 iterations of KroA100 prob-
lem are in Figure 2.

The experiment shows again that our multi-agent sys-
tem approach outperforms the single agent. For Eilon50
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Figure 1. Experiment results for Eilon50 prob-
lem: (a)single agent (b)single-team algorithm
(c)multi-team algorithm

problem, the shortest distance of the multi-agent systems is
721.4. It is much shorter than that of single agent (1031.2).
And it is also shorter than that of single agent with GA
(841.2). As for KroA100 Problem, the shortest distance of
the multi-agent systems is 23987.6, while the shortest dis-
tance of the single agent is 43819.7.

3.3 Comparison with other genetic methods

There are a lot of heuristics algorithms [10] for solving
the TSP problem, such as the nearest neighbor algorithm,
the insertion algorithm, the spanning tree algorithm, the 2-
OPT exchange algorithm, and the 3-OPT exchange algo-
rithm. The simulated annealing algorithm, genetic algo-
rithms, the tabu search algorithm, and neural networks are
also used to solve the TSP problem.
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Figure 2. Experiment results for KroA100
problem: (a)single agent (b)multi-agent sys-
tems

Whitley et al [14] used the genetic edge recombination
operator to solve the TSP problem. They developed an edge
map to construct an offspring that inherits as much informa-
tion as possible from the parent structures. The edge map
stores all the connections from two parents that lead into
and out of a city.

Lin et al [7] incorporated genetic algorithms into the
simulated annealing algorithm to solve the TSP problem.
This approach is a simulated annealing algorithm with
the population-based state transition and genetic-operator-
based control.

Fogel [6] used a new genetic operator in genetic algo-
rithms. The mutation operator will choose one part of cities
and reverse the order of cities.

Ant Colony System(ACS) [4][3] is very effective in solv-
ing the TSP problem. In ACS, a set of cooperating agents
cooperates to find the best solution to a problem. Agents
used an indirect form of communication mediated by a
pheromone they deposited.

The comparison of our system with other genetic algo-
rithms is in the Table 1. Results using ACS are from [4],
and results using EP are from [6]. We implemented the EP
approach, but can not get the result as good as in [6]. Our
results are shown as EP-1. For results using GA, results of
Eilon50 are from [13] and KroA100 are from [2].

The ACS has the fastest speed among above methods.
Our systems need to train two reinforcement learning al-
gorithms (Q and CQ modules), while ACS only has one
learning module similar to the reinforcement learning algo-
rithm. Using neural networks to implement the reinforce-
ment learning algorithm may be another reason for slower



Algorithm Eilon50 KroA100
Single Team 425

[139,500]
21282
[2,925,000]

Multi-Team 425
[160,500]

21282
[4,125,000]

ACS 425
[1,830]

21282
[4,820]

GA 428
[25,000]

N/A
[103,000)]

EP 426
[100,000]

N/A

EP-1 426
[350,000]

N/A

Optimum 425 21282

Table 1. Comparison of our system with other
algorithms. The number in brackets is the
number of tours searched.

learning speed of our system compared to that of ACS.

3.4 Discussions

Our approach extends existing work, in that it is not lim-
ited to bidding alone. For example, it is not just using bid-
ding alone to form coalitions or bidding alone as the sole
means for learning [1], and it is not a model of pure rein-
forcement learning [8]. Furthermore, it is not a pure evo-
lutionary system [15]. It is the combination of the three
aspects: reinforcement learning, evolution and bidding.

Although our program did not achieve the same level as
ACS, it achieves a certain level starting from scratch. The
cooperation among agents (through bidding) helps to sim-
plify the learning process.

The agent in this learning system has two roles: teacher
and student. The teacher’s goal is to correct the student’s
mistakes, while the student’s goal is to satisfy the teacher
and to avoid correction. Each agent can be either teacher
or student, which depends on its performance in the current
stage. The self-learning and self-teaching among agents fa-
cilitate the learning in our approach.

4 Conclusions

In sum, in this work, we developed a bidding ap-
proach for establishing cooperation among a group of self-
interested agents. The experiment shows our approach can
achieve a certain level of performance in problem solving.
The result of the experiments suggests that the bidding sys-
tem may work well in general complex problems and do-
mains.
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