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ABSTRACT
Online auctions are increasingly being used as a medium to
procure goods and services. As the number of auction sites
increases, however, consumers will inevitably want to track
and bid in multiple auctions (with multiple protocols) in or-
der to get the best deal for their desired goods. To this end,
this paper reports on the development of a heuristic decision
making framework that an autonomous agent can exploit to
tackle the problem of bidding across multiple heterogeneous
auctions. The framework enables the agent to adopt varying
tactics and strategies that attempt to ensure that the user’s
objectives are satisfied. Through empirical evaluation, the
agent’s performance is shown to be effective even when there
are multiple such agents in the environment at the same time
and when the agent cannot accurately determine the type
of environment that it is situated in.
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1. INTRODUCTION
Online auctions are one of the most popular and effective
ways of trading goods over the Internet; indeed there are
more than 2500 sites that operate online auctions1. These
auction houses conduct many different types of auctions ac-
cording to a variety of protocols including English, Dutch,
first-price sealed bid and second-price sealed bid (Vickrey).
Moreover, the auctions operate with varying start and end
times and many of them are likely to be active at any one
moment in time. For these reasons, consumers are faced
with a difficult task when it comes to selecting and bidding
in these auctions. In order to purchase a particular item,
they need to monitor multiple auctions at multiple sites be-
fore selecting the one to participate in. Even after making
this selection, they still have to decide on the amount to bid
in order to get the desired item under conditions that are
consistent with their preferences.

To assist users, many sites now offer simple bidding proxies
that will bid in a stated auction up to some predefined limit
(e.g. eBay and Yahoo!Auction). However, such systems
typically have the problem of only being able to operate

1http://www.internetauctionlist.com

at a single auction site or only with a particular auction
protocol. Users can also utilise the services of auction search
engines (such as BidXS2 and AuctionBeagle3). However,
while these facilities allow users to monitor the progress of
multiple concurrent auctions, all the bidding decisions are
left to the human users.

To address these shortcomings, we believe it is necessary to
develop an autonomous agent that can participate in multi-
ple heterogeneous auctions, that is empowered with trading
capabilities, and that can make purchases autonomously [3,
1]. In more detail, the agent should monitor and collect
information from the ongoing auctions, make decisions on
behalf of the consumer and endeavour to guarantee the de-
livery of the item. The agent must ensure that it never bids
above the private valuation (the maximum amount that the
consumer is willing to pay) and it should try to get the item
in a manner that is consistent with the consumer’s prefer-
ences (e.g. at the earliest time, at the lowest price, or with
maximum chance of succeeding).

To this end, this paper reports on our work in developing
such a bidding agent. The agent has a range of strategies
that it can employ depending on the user’s aims and the
environment in which the agent finds itself. Here, we con-
sider three different types of protocol: English, Dutch and
Vickrey4 The strategies themselves are heuristic in nature
because the multiple heterogeneous auctions environment is
highly complex, dynamic and unpredictable, making it im-
possible to find an optimal strategy that can be used in
practical contexts [5]. Moreover, our early investigations
showed that the effectiveness of the strategies was heavily
influenced by the nature of the environment [3]. For this
reason, we decided to have different strategies for different
circumstances. As the range of potential strategies is huge,
we decided to use a genetic algorithm (GA) to search for
effective strategies for each of the various environments that
we identified [2]. We chose this particular method because
GAs have been shown to perform well in areas where the
search space is large and not well understood [9]. Having
evolved the strategies (offline), the agent adopts the one
that is most appropriate to its prevailing context (online).

2http://www.bidxs.com
3http://www.auctionbeagle.com
4The first-price sealed bid is not considered here because of
its similarities to the Dutch auction [8].



Against this background, this paper advances to the state
of the art in the following ways. Firstly, we extend the
work presented in [2] to evolve the complete set of strate-
gies for our trading scenarios (in [2] we merely described the
method and showed that it was successful in a very limited
range of environments). These strategies consist of multi-
ple evolved sub-behaviours that are appropriate in different
environment settings with different objectives. This collec-
tion of strategies for a single agent is termed the intelligent
bidding strategy in the remainder of this paper. Secondly,
we evaluate the intelligent bidding strategy and show that
it is effective across a broad range of scenarios (including
those where the agent cannot accurately assess the type of
environment it is situated in). Thirdly, given the success
of our bidding strategy, we believe that it may be widely
adopted. Thus, we present results about what happened to
the performance of the buyers and sellers and the market ef-
ficiency when multiple agents adopt this strategy in a given
marketplace.

The remainder of this paper is structured in the following
manner. In the next section, we briefly outline the design
of our intelligent bidding strategy. Section 3 reports on the
evaluation of the strategy in various settings. Section 4 dis-
cusses related work and finally Section 5 concludes.

2. DESIGNING THE BIDDING STRATEGY
Before describing the decision-making framework, it is nec-
essary to detail our assumptions about the environment.
Firstly, we consider three auction protocols: English, Dutch
and Vickrey (three of the most common types). Secondly,
all auctions have a known start time and English and Vick-
rey auctions have a known end time. Thirdly, our bidding
agent is given a hard deadline (tmax) by when it must obtain
the desired item. It is also told the consumer’s private valu-
ation (pr) for this item and the consumer’s intention (either
looking for a bargain, desperate for the item or a combina-
tion of the two). Finally, the agent must not buy more than
one instance of the desired item. We use a simulated elec-
tronic marketplace to evaluate our bidding strategies (see [3,
1] for more details). This marketplace consists of a number
of English, Dutch and Vickrey auctions that run concur-
rently. There are several bidders participating in each auc-
tion. They operate in a single auction, have the intention
of buying the target item and possessing certain behaviour
based on the type of auction that they are participating in.
These bidders’ strategies are based on the dominant strate-
gies of the respective one shot single auctions [8].

2.1 The Bidding Strategy Framework
The agent’s decision making model works in the following
manner (as summarised in Figure 1). The bidder agent
builds an active auction list (auctions that have started but
not reached their end times, denoted L(t)) and gathers rel-
evant information (e.g. start and end times, current bid
values) about them. It then calculates the current maxi-
mum bid it is willing to make at the current time. The
current maximum bid, by definition, will always be less
than or equal to the private valuation. To determine the
current maximum bid, the agent considers several bidding
constraints including the remaining time left, the remaining
auctions left, the user’s desire for a bargain and the user’s
level of desperateness. For each such bidding constraint,

 
while (t ≤ tmax) and (Item_Is_Not_Acquired) 
 Build active auction list; 
 Calculate current maximum bid using the agent’s strategy; 

 Select potential auctions to bid in, from the active auction list; 

 Select target auction as one that maximises agent’s expected utility;

 Bid in the target auction using current maximum bid as reservation 

  price at this time; 

endwhile 

Figure 1: Bidding Agent’s Top-Level Algorithm

there is a corresponding function that suggests the value to
bid based on the constraint at that time. These functions
(based on [6]) are parameterized by two key values: k (range
[0..1]) is a constant that determines the value of the start-
ing bid and β (range [0.005..1000]) defines the shape of the
curve (and so the rate of concession to pr). As an example,
when k ≥ 0.5 and β ≥ 1, the agent demonstrates a rea-
sonable degree of desperateness and starts bidding close to
pr and quickly reaches pr. At the other extreme, the agent
can demonstrate hard bargaining behaviour (k < 0.5 and
β < 1), where it makes a low initial bid and only concedes
in a very slow fashion. All behaviours in between are also
possible by setting the parameters appropriately. At any
given time, the agent may consider any of the bidding con-
straints individually or it may combine them depending on
the situation (what the agent sees as being important at that
time). If the agent combines multiple bidding constraints,
it allocates a weight to each of them to denote their relative
importance. The set of functions is referred to as the tactics
and the combination of these tactics are referred to as the
strategy.

Figures 2 and 3 illustrate how these bidding constraints
can be combined to produce a single bid value for a given
time. In particular, Figure 2 shows the behaviour of each
bidding constraint. This behaviour suggests how the agent
should behave when only a single constraint in considered.
For example, if the agent considers desire for a bargain as
the only bidding constraint, the it should start bidding at
a low bid value and should slowly move toward its private
valuation. On the other hand, if the agent wishes to consider
the remaining time left as the single criterion, then it should
start bidding at a reasonably high value and slowly reach
its private valuation. Figure 3 show various combinations of
the bidding constraints using weighted combinations. In this
case, (0.25, 0.25. 0.25, 0.25) indicates that equal weighting
has been applied to all the bidding constraints, (0.50, 0.00,
0.50, 0.00) indicates that the agent only considers bidding
constraints of the remaining time left and the desire for a
bargain and places equal weight of 0.50 for both bidding
constraints. It can also be seen that by varying the weights
of the bidding constraints, different bidding patterns can
be generated as shown in Figure 3. Based on the value of
the current maximum bid, the agent selects the potential
auctions in which it can bid and calculates what it should
bid at this time in each such auction. The auction and the
corresponding bid with the highest expected utility is then
selected from the potential auctions as the target auction.



20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20
Time

P
ri

ce
Remaining Time Left Remaining Auctions Left
Desire for a Bargain Desperateness

Figure 2: The Bidding Constraints’ Behaviour

Finally the agent bids in the target auction. This process is
repeated until the item is acquired or until the given time is
reached.
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Figure 3: Various Combinations of the Bidding Con-
straints

Our early experiments in this domain led to several conclu-
sions [3]. Firstly, pr is one of the most important factors
that needs to be considered when determining the strategy
that should be employed by the agent. For example if pr

is low, the probability of winning the auction is low and
the agent is unlikely to be able to get a bargain, whereas if
pr is high, the agent has a better chance of obtaining the
item with a bargain. Secondly, the strategies to be used
by the agent need to be tailored to the prevailing context,
since not all strategies work well in all situations. Thus,
a successful strategy in one situation may perform badly
in another. Nevertheless, it was possible to determine that
certain classes of strategy are effective in environments that
have particular characteristics. In this case, the key defin-
ing characteristics of an environment were found to be the
number of auctions that are active before tmax. Given this,
it was decided to evolve strategies that are effective for en-
vironments classified in this way.

2.2 Evolving Strategies
The performance of the bidding agent is heavily influenced
by the strategy employed, which, in turn, relates to the val-
ues of k and β in a given tactic and the weights for each tactic
when they are combined. The number of strategies that can
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STMA STMA STMA
MTLA MTLA MTLA
MTMA MTMA MTMA
LTLA LTLA LTLA
LTMA LTMA LTMA
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MTMA MTMA MTMA
LTLA LTLA LTLA
LTMA LTMA LTMA
STLA STLA STLA
STMA STMA STMA
MTLA MTLA MTLA
MTMA MTMA MTMA
LTLA LTLA LTLA
LTMA LTMA LTMA

RP1: Low Private Valuation STLA: Short Time Less Auctions
RP2: Medium Private Valuation STMA: Short Time Many Auctions
RP3: High Private Valuation MTLA: Medium Time Less Auctions
FE1: Fitness Equation I MTMA: Medium Time Many Auctions
FE2: Fitness Equation II LTLA: Long Time Less Auctions
FE3: Fitness Equation III LTMA: Long Time Many Auctions

RP3

FE1

FE2

FE3

RP2

FE1

FE2

FE3

RP1

FE1

FE2

FE3

Table 1: The Environments

be employed is infinite, so, therefore, is the search space.
Here, we decided to use GAs to search offline for the most
successful strategies in the predefined environments (see [2]
for more details). The individuals in the populations are the
bidding agents and their genes consist of the parameters for
the four different tactics and the relative weight for each of
them. To compute the fitness function, we consider three
plausible alternatives. These are the individual success rate
in obtaining the item (FE1) and two variations based on
the average utility. In the first case (FE2), the agent gets
a utility of 0 it if fails to obtain the item. The final utility
function (FE3) is similar to FE2 but the individual is pe-
nalised if it fails to get the item. FE1 is used if delivery of
the item is of utmost important, FE2 if the agent is looking
for a bargain, and FE3 if delivery of the item and looking
for a bargain are equally important.

In [2] we showed, through empirical evaluation, that suc-
cessful strategies with the obvious behaviours (as dictated
by the various fitness equations), could be evolved for a very
limited set of environments. The next step, and the main
contribution of this paper, is to complete the evolutionary
process for all of the target environments and to show that
the ensuing agent, composed of the evolved sub-behaviours,
would actually perform effectively across a wide range of
environments.

2.3 The Intelligent Bidding Strategy
Having shown that GAs can effectively evolve strategies
for different environments, the final step is to combine this
knowledge into a single intelligent bidding agent. The agent
has at its disposal knowledge about which strategies are ef-
fective in which environments and assuming it can assess
the environment accurately, it simply has to deploy the ap-
propriate strategy.



In more detail, we subdivided our trading environments into
54 categories (shown in Table 1) based on the key determi-
nants that influenced the agent’s bidding decision (namely,
the private valuation, the remaining time left, the remaining
auctions left and the agent’s behaviour (whether looking for
a bargain, desperate or a mixture of both)). This categorisa-
tion of the classes of environment is important because it en-
ables the agent to tune its bidding strategy to its prevailing
circumstances. The agent’s private valuation can be broadly
categorised by its value: low (RP1), medium (RP2) or high
(RP3). These three categories are then refined further into
three sub-categories based on the agent’s behaviour (FE1
is desperate, FE2 is looking for a bargain and FE3 aims
for a balance of both). Finally, each sub-categorisation is
further divided into groupings that consist of environments
in which there are short time less auctions (STLA), short
time many auctions (STMA), medium time less auctions
(MTLA), medium time many auctions (MTMA), long time
less auctions (LTLA) and long time many auctions (LTMA)
(see [3] for more details). As an example, RP1FE2STMA
represents a strategy that was evolved in an environment
with a low private valuation, where the bidding time is short,
where there are many auctions and where the consumer is
interested in a bargain.

The categorisation of the private valuation is made based
on the auction closing price distribution (here, the closing
price mean is 76 and the standard deviation is 5). Thus,
50% of the auctions should be won by bidders with medium
private valuations, 25% by bidders with low private valua-
tions and the remaining 25% by bidders with high private
valuations. In real market settings, the price of each de-
sired item will naturally vary depending on the type of the
item itself (e.g. a diamond ring usually costs more than a
book). However, the value of a given item can be directly
mapped to the reservation price categorisation merely by
obtaining the mean price of the item. This can be achieved
using comparison price data from sites such as PriceSCAN5,
DealTime6, and BottomDollar7. From this, the agent can
calculate the mean price of a given item and regenerate price
ranges for the low, medium and high private valuations. The
subdivisions of the short time, medium time, long time, less
auctions and many auctions can also be carried out in a
similar manner.

We then used the search algorithm defined in Section 2.2 to
evolve the best strategy for each environment. Thus, the
agent gets the user’s private valuation, the item to be pur-
chased, when it is required and the intention of the user
(either looking for a bargain, desperate or some combina-
tion of the two). With this knowledge, the agent enters the
marketplace and determines the number of active auctions
in which it can participate within the given time constraint.
Based on this combination of information, the agent deter-
mines which strategy to use in each auction round. This
decision is captured in a rule base that maps the prevailing
context to the strategy that has been evolved for that situ-
ation. Upon selection of the appropriate strategy the agent
proceeds as defined in Figure 1.

5http://www.pricescan.com/
6http://www.dealtime.com
7http://www.bottomdollar.com/

3. EXPERIMENTAL EVALUATION
Here we are interested in two main types of experimenta-
tion. Firstly to show that our intelligent bidding strategy
performs effectively in a wide range of bidding contexts. Sec-
ondly, given its success, we believe that it will be widely
adopted and thus we want to understand what will happen
when there are multiple such agents in the environment.

In the first set of experiments, the performance of the agent
is measured in terms of success rate and average utility. The
success rate is defined as the number of times, as a percent-
age, the agent is successful in obtaining the item. The utility
of winning in an auction i is computed as Ui(v) = ( pr−v

pr
)+c,

where v is the winning bid and c is an arbitrary constant
0.001 to ensure that the agent receives some value when the
winning bid is equivalent to its private valuation.

In order to assess the robustness of our bidding agent, we
wanted to consider how it would perform if it could not ac-
curately determine the type of environment it is in (e.g. if
the actual environment is RP1FE2STMA, what would hap-
pen if the agent believed it was RP1FE2MTMA and played
the corresponding evolved strategy). This agent we label
as inaccurate (c.f. the accurate agent that correctly deter-
mines its environment). In this particular experiment, the
inaccurate agent always picks a strategy that is very close to
the actual environment based on the bidding time8. As an
example, if the actual environment is RP1FE2STMA, the
inaccurate agent may believe that it is in RP1FE2MTMA
and will use the evolved strategy for RP1FE2MTMA as its
strategy. The mapping from the actual environments to
the inaccurately classified environments is shown in Table 2.
Here, if the actual environment is categorised as a short time
(e.g. RP1FE1STMA), then the inaccurate environment is
mapped to a medium time environment (e.g. RP1FE1MT-
MA).

As a control model, we use agent C that has a single fixed
strategy based on the user’s behaviour. In particular, we
picked the strategy that was evolved for the environments
RP2FE1MTMA, RP2FE2MTMA and RP2FE3MTMA9. Th-
us, C has three different strategies; when a user is interested
in a bargain, C employs a strategy that was evolved for
RP2FE2MTMA, when a user is desperate for the item, C
uses a strategy that was evolved for RP2FE1MTMA and
when a user is looking for a combination of both, it utilises
the strategy evolved based on RP2FE3MTMA.

The agents and the control model were run 1000 times in the
marketplace (independently)10. Analysis of variance (AN-
OVA) was used to test the hypothesis about the differences
of the success rate means (when running the experiment 200,

8It is also possible to select a strategy that is close to its
private valuation or the number of active auctions or some
combinations of the three.
9We chose these environments because the average time to
procure the good in the marketplace is 50, the average to-
tal number of auctions (|L(t)|) is 30 and the average closing
price is 76 and these values fall into the RP2MTMA cate-
gory.

10This means that the intelligent agent and the control mod-
els are not competing against each other. Rather, they are
competing against the simulated auction participants as dec-
sribed in Section 2.
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Environment

Inaccurate 
Prediction

Short Medium
Medium Short 

Long Medium 

Table 2: The Actual Environments’s Mapping to the
Inaccurate Environment

400, 600, 800 and 1000 times) and the procedure revealed
that for all experiments, the differences between means were
not significant (F4,15 = 0.134, p > 0.05) and thus the results
obtained are statistically significant. The user’s requirement
was randomly allocated where the user’s private valuation
ranges from 70 to 82 and the time allocated ranges from
10 to 100. The number of auctions running in the market-
place is between 3 and 60 and there are between 2 and 10
participants in each such auction.

The performance of the intelligent agents (accurate and in-
accurate) and the control model in terms of success rate
is shown in Figure 4. The experiment is divided into four
groups. The first three groups show the detailed perfor-
mance of the agents and the control model based on a sin-
gle behaviour (desperateness, bargain, and both) and the
last group shows the overall performance when all three be-
haviours are considered11. It can be seen that the accurate
agent achieved the highest success rate in all groups. This
shows that by having the ability to change the strategy ac-
cording to the user’s preference and the environment it is
situated in, our agent can maximise its chances of succeed-
ing. This is different from C, in which a fixed strategy is
used and where the agent views the environment and the
user’s preference as static. In this case, C was only suc-
cessful in the environment for which it was evolved. Even
though the inaccurate agent’s success rate is lower than the
success rate achieved by the accurate agent, it is still better
than that of C. This is because the strategy selected by
the inaccurate agent is one that is usually fairly close to the
actual environment and this proximity means the deployed
strategy is likely to be reasonably effective.
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Figure 4: Success Rate Comparisons

11Here, the user intention is generated randomly.

Figure 5 shows the average utility obtained by the intelli-
gent bidding agents and the control model. Again, it can be
seen that the accurate agent performed well compared to the
other two models (except in the case of desperate behaviour
where it obtained a lower average utility than the inaccurate
one). This can be explained by the technique used by the
inaccurate agent when selecting its strategy. As an example,
when the actual environment is RP2FE1STMA, the inaccu-
rate agent uses RP2FE1MTMA which is characterised by a
low initial bid value and slowly reaching its pr. The strat-
egy for RP2FE1STMA is similar, but the rate at which its
reaches pr is faster. As a result, when the inaccurate agent
obtains the item, the price it pays is low and this leads to a
higher utility. Again, the inaccurate agent recorded a higher
average utility than C but lower than the accurate agent.
This indicates that, even when our agent cannot accurately
assess the environment that it is in, by approximating its
environment its performance is still better than an agent
that uses a fixed strategy.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Desperate Bargain Desperate and
Bargain

Overall

A
ve

ra
g

e 
U

ti
lit

y

Accurate Inaccurate C

Figure 5: Average Utility Comparisons

Based on the level of achievement attained by the inaccurate
agent, we conducted another experiment that analyses the
performance of our intelligent bidding agent when it makes
varyingly accurate predictions of the environment that it is
in. This is achieved by gradually increasing the percent-
age of errors that it made when assessing its environment.
Here, the set up of the experiment is as before but this time
we focused on the overall behaviour of the agent. From
Figure 6, it can be seen that as the error’s percentage in-
creases, the success rate and the average utility obtained
by the intelligent agents decreases. With a 50% error rate
the agent’s success rate and average utility performances
decrease by 12% and 13% and with a 100% error, its per-
formance deteriorated by more than 25%. This result shows
that even when our agent makes the wrong assessment half
of the time, it is still able to achieve a reasonable success
rate and a reasonable average utility (it obtained 61% suc-
cess rate and 0.03291 average utility, whereas C obtained
57% success rate and 0.2934 average utility in the previous
experiment).

We now turn to the second set of experiments. The pur-
pose of these is to observe the effect on buyers and sellers
(in terms of market efficiency) of having multiple intelligent
bidding agents in the system. Here, we take a fixed environ-
ment consisting of 30 auctions (10 of each type) with 10 bid-
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Figure 6: Agent’s Performance with Varying Envi-
ronment Prediction Accuracy

ders in each auction. The first group (called the dummy bid-
ders) are those that operate in a single auction and have the
intention of buying the target item and possessing certain
behaviour (bargain seeking, desperate, etc.). They main-
tain information about the target item they wish to pur-
chase, their private valuation of the item, the starting bid
value and their bid increment. These values are generated
randomly from a standard probability distribution. Their
bidding behaviour is determined based on the type of the
auction that they are participating in and are based on the
dominant strategies of the respective one-shot single auc-
tions (as described in Section 2). The second group is made
up of the intelligent agents. These agents have all their indi-
vidual and environmental parameter set in the same way as
the dummy agents. Specifically, Figure 7 shows the supply
and demand curves for the market. The intersection of the
two curves is called the equilibrium price(when the supply
of goods meets the demand), P0, and the quantity traded at
this price is the equilibrium quantity. In this particular ex-
periment, the equilibrium price is at 81 and the equilibrium
quantity is 25.
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To measure the effectiveness of the market, we calculate its
allocative efficiency and the Smith’s Alpha (α) coefficient
[11]. Allocative efficiency is defined as the total actual profit
earned by all the sellers divided by the maximum total profit
that could have been earned in an ideal market (expressed
as a percentage). The Smith’s Alpha coefficient measures

Number of 
Intelligent 

Agents

Average 
Utility

Average 
Number of 
Auctions 

Won 

 Average 
Utility

Average 
Number of 
Auctions 

Won 
0 0.003419 26.85

30 0.007401 5.00 0.002807 20.70
60 0.006836 9.90 0.002593 16.60
90 0.006180 12.20 0.002509 14.65

120 0.004716 13.00 0.002490 11.80
150 0.004584 15.65 0.002254 9.45
180 0.004507 18.50 0.002090 6.50
210 0.004343 19.30 0.001846 4.70
240 0.003819 20.10 0.001410 2.55

Intelligent Agents Dummy Bidders

Table 3: The Bidder’s Average Utility

how close the actual trade prices are to the equilibrium,
α = 100∗σ0/P0, where σ0 is the standard deviation of trade
prices around P0. We initially ran the marketplace with no
intelligent agents and observed the average utility obtained
by the dummy bidders. We then replaced 30 dummy bidders
with 30 intelligent agents and observed the change in aver-
age utilities for both the dummy bidders and the intelligent
agents. To be more precise, at each stage of the experiment,
one dummy bidder in each auction is removed from the mar-
ketplace and is replaced with a single intelligent agent. This
number is gradually increased in increments of 30 until there
are 60 dummy agents and 240 intelligent agents12.

Given this setup, Table 3 shows the average number of auc-
tions won13 and the corresponding average utilities gained
by the dummy bidders and the intelligent bidders for a total
of 20 runs. It can be seen that the dummy bidders achieved
the highest average utility when there were no intelligent
agents (as expected). This value steadily decreases as more
intelligent agents enter the system. The intelligent agents
achieved the highest average utility when there were 30 such
agents participating in the auctions. This is because there
is only a small number of intelligent agents participating in
the marketplace. This situation allows them to be in direct
competition with the dummy bidders. After this point, the
average utility gradually decreases as more intelligent agents
enter the marketplace. These agents also obtain higher suc-
cess rates as their number increases (as reflected in the num-
ber of auctions won by them). This is to be expected since
there are now more intelligent agents dominating the mar-
ketplace leading to a scenario where they are now compet-
ing against each other (rather than competing against the
dummy bidders) to maximise their user’s satisfaction. It is
interesting to note that even when there were 240 intelligent
agents in the marketplace, the average utility obtained by
these agents surpassed the highest average utility recorded
by the dummy bidders. This implies that even when there

12Our auctions require a minimum of 2 agents to be present
before they start and so we cannot move to only intelligent
agents without distorting the experimental setting of run-
ning a constant numbers of agents.

13Not all auctions result in a sale (because of a lack of ap-
propriate bids) and so the number of auctions won does not
always sum to 30.



are many intelligent agents in the marketplace, they will still
be able to achieve higher average utilities than those that
utilised dominant strategies based on one shot auctions.
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Figure 8: Relationship between Number of Intelli-
gent Agents and Allocative Efficiency

The allocative efficiency and Smith’s Alpha coefficient in re-
lation to the number of intelligent agents in the market are
shown in Figures 8 and 9. It can be seen that the allocative
efficiency increases as the number of intelligent agents in the
marketplace increases. We can also observe that the alloca-
tive efficiency rises from 0.79 (when there are no intelligent
agents in the marketplace) to 0.81 (when there are 30 such
agents). This shows that by adding even a small number
of intelligent agents to the marketplace the efficiency can
be improved14. In Figure 9, Smith’s Alpha decreases as the
number of intelligent agent increases. This indicates that
the market is slowly converging to its equilibrium and be-
coming more efficient as more and more intelligent agents
enter the marketplace.
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Figure 9: Relationship between Number of Intelli-
gent Agents and Smith’s Alpha

Finally, the relationship between the sellers’ average utilities
and the number of intelligent agents is shown in Figure 10.

14It should be pointed out here, that there are 240 intelligent
agents in the marketplace and this makes up 80% of the to-
tal bidder population. It is predicted that the allocative
efficiency would be much higher if the marketplace is com-
pletely populated with intelligent agents only. However, as
described earlier, this is not possible because of the auctions’
limitations.

Here, the average utility obtained by the sellers increases as
the number of intelligent agents increases. When there are
between 30 and 120 agents, the increase in average utility
is minimal; but when the number is between 120 and 180,
there is a significant increase in the seller’s average utility.
When there is a small number of intelligent agents (≤ 120),
they compete with the dummy bidders and they gain a high
utility as reflected in Table 3. However, when there are
more than 120 agents in the marketplace, the agents are now
competing amongst themselves resulting in a lower average
utility but a higher gain to the sellers. In this case, it is
more beneficial for the sellers to trade their goods in an
environment where there are many bidders that adopt our
intelligent strategy.
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Figure 10: Relationship between Number of Intelli-
gent Agents and Sellers’ Average Utility

These results confirm our motivating hypothesis that our in-
telligent bidding strategy can perform effectively in a wide
range of environments. It achieved a high success rate and
average utility in almost all the cases considered and per-
formed reasonably well even in cases where it cannot accu-
rately assess the environment. Moreover, the agents achieved
high utility even when there are many of them in the mar-
ketplace. We can also conclude that as the number of intelli-
gent agents increases, the market efficiency increases which,
in turn, leads to an increase in profit to the sellers.

4. RELATED WORK
There have been several attempts to design sophisticated
and efficient bidding strategies for agents participating in
online auctions. To this end, Faratin et al.’s model [6] is
broadly similar to the one defined in this paper. However,
there are several important differences between one-to-one
negotiations and multiple auctions. Chief amongst these are
the type of the tactics that are considered relevant and the
aspects of the domain that need to be reflected in these tac-
tics. An extension to Faratin’s model is given by Matos et
al. [7] who analysed the evolution of negotiation strategies
using GAs, and determined which of them are appropriate
in which situations. This approach is somewhat similar to
our work, but the main difference is in the domain that we
are dealing with (multiple auctions versus bi-lateral negoti-
ations).



Preist et al. [10] proposed an algorithm design for agents
that participate in multiple simultaneous English auctions.
The algorithm proposes a coordination mechanism to be
used in an environment where all the auctions terminate si-
multaneously, and a learning method to tackle auctions that
terminate at different times. Byde [4] also considers this en-
vironment, but utilises stochastic dynamic programming to
derive formal methods for optimal algorithm specification
that can be used by an agent when participating in simul-
taneous auctions for a single private value good. Both of
these works are designed specifically for purchasing items
in multiple English auctions and their algorithms are not
applicable in a heterogeneous protocol context. Byde et al.
[5] presented another decision theoretic framework that an
autonomous agent can use to bid effectively across multi-
ple auctions with various protocols. The framework uses an
approximation function that provides an estimate of the ex-
pected utility of participating in the set of future auctions
and it can be employed to purchase single or multiple items.
However, at this time the evaluation of the algorithm’s oper-
ational effectiveness has not been reported and so we cannot
determine whether it will outperform our heuristic method.

5. CONCLUSIONS AND FUTURE WORK
This paper presented a novel bidding algorithm that can be
used for an agent to participate in multiple online auctions
with varying start and end times and with multiple proto-
cols. We extended the work presented in [2] and [3] and
showed the strategies that were evolved for the complete set
of our trading scenarios. These strategies were then codi-
fied into the agent’s reasoning behaviour so that it can select
the most appropriate strategy to employ in its prevailing cir-
cumstances. Through empirical evaluation we showed that
our intelligent bidding strategy is effective in a wide range
of environments. Moreover, this holds true even when there
are many such agents in the system at the same time and
when the agent cannot be completely accurate about the
type of environment it is situated in. Also, as more of our
agents entered the marketplace, the overall system becomes
more competitive and efficient leading to an increase in the
sellers’ profit.

There are a number of areas of further investigation. We
need to develop methods such that an agent can quickly
and accurately determine the type of trading environment
in which it is situated. While this is reasonably easy to do
in our simulated environment, we believe it will be signifi-
cantly more difficult in real world scenarios. Thus, although
our method is robust to inaccurate environment assessment,
it is better if this can be minimised. We would also like
to compare our heuristic method with the more principled
decision theoretic approach of [5] to determine the relative
strengths and weaknesses of the two methods.

6. REFERENCES
[1] P. Anthony. Bidding Agents for Multiple

Heterogeneous Online Auctions. PhD thesis,
University of Southampton, UK, 2003.

[2] P. Anthony and N. R. Jennings. Evolving bidding
strategies for multiple auctions. In Proceedings of the
15th European Conference on Artificial Intelligence,
pages 178–182, 2002.

[3] P. Anthony and N. R. Jennings. Developing a bidding
agent for multiple heterogeneous auctions. ACM
Transaction on Internet Technology, 3(3), 2003.

[4] A. Byde. Programming model for algorithm design in
simultaneous auctions. In Proceedings of the 2nd
International Workshop on Electronic Commerce,
pages 152–163, New York, USA, 2001. ACM Press.

[5] A. Byde, C. Preist, and N. R. Jennings. Decision
procedures for multiple auctions. In Proceedings of the
1st International Joint Conference on Autonomous
Agents and MultiAgent Systems, pages 613–620, New
York, USA, 2002. ACM Press.

[6] P. Faratin, C. Sierra, and N. R. Jennings. Negotiation
decision functions for autonomous agents.
International Journal of Robotics and Autonomous
Systems, 24(3-4):159–182, 1998.

[7] N. Matos, C. Sierra, and N. R. Jennings. Successful
negotiation strategies: An evolutionary approach. In
Proceedings of the 3rd International Conference on
Multi Agent Systems, pages 182–189, Paris, France,
2001. IEEE Press.

[8] R. P. McAfee and J. McMillan. Auctions and bidding.
Journal of Economic Literature, 25:639–738, 1987.

[9] M. Mitchell. An introduction to genetic algorithms.
MIT Press, Cambridge, Mass., 1996.

[10] C. Preist, C. Bartolini, and I. Phillips. Algorithm
design for agents which participate in multiple
simultaneous auctions. In Agent Mediated Electronic
Commerce III, LNAI, pages 139–154, Berlin, German,
2001. Springer.

[11] V. L. Smith. Papers in Experimental Economics.
University Press, Cambridge, MA, 1992.


