
Conditional, Probabilistic Planning: A Unifying Algorithm andE�ective Search Control MechanismsNilufer OnderDepartment of Computer ScienceUniversity of PittsburghPittsburgh, PA 15260nilufer@cs.pitt.edu Martha E. PollackDepartment of Computer Scienceand Intelligent Systems ProgramUniversity of PittsburghPittsburgh, PA 15260pollack@cs.pitt.eduAbstractSeveral recent papers describe algorithms for gener-ating conditional and/or probabilistic plans. In thispaper, we synthesize this work, and present a unify-ing algorithm that incorporates and clari�es the maintechniques that have been developed in the previousliterature. Our algorithm decouples the search-controlstrategy for conditional and/or probabilistic planningfrom the underlying plan-re�nement process. A sim-ilar decoupling has proven to be very useful in theanalysis of classical planning algorithms, and we showthat it can be at least as useful here, where the search-control decisions are even more crucial. Previous prob-abilistic/conditional planners have been severely lim-ited by the fact that they do not know how to handlefailure points to advantage. We show how a principledselection of failure points can be performed within theframework our algorithm. We also describe and showthe e�ectiveness of additional heuristics. We describeour implemented system called Mahinur and experi-mentally demonstrate that our methods produce e�-ciency improvements of several orders of magnitude.IntroductionSeveral recent papers describe algorithms for gener-ating conditional and/or probabilistic plans. Unfortu-nately, these techniques have not been synthesized intoa clear algorithm. In this paper, we present a unify-ing algorithm that incorporates and clari�es the maintechniques that have been developed.Our algorithm has three useful features. First,it decouples the search-control strategy for condi-tional probabilistic planning from the underlying plan-re�nement process. A similar decoupling has proven tobe very useful in the analysis of classical planning al-gorithms (Weld 1994), and we show that it can be atleast as useful here, where search-control decisions areeven more crucial. We achieve the decoupling by treat-ing the possible failure points in a plan as aws. Bya failure point, we mean a part of the plan that (a)involves a branching action, i.e., one whose outcomeis uncertain, and (b) relies on a particular outcome of

that action. Where classical planning algorithms con-sider open conditions and threats to be aws, we addpossible failure points into this set. Decisions aboutwhether and when to handle each failure point canthen be encoded as part of the search-control strategy.Second, we repair plan failures in a direct way, usingthree logically distinct techniques: (1) corrective re-pair, originally introduced in the work on conditionalplanning, which involves reasoning about what to do ifthe desired outcome of a branching action does not oc-cur; (2) preventive repair, originally introduced in thework on probabilistic planning, which involves reason-ing about how to help ensure that the desired outcomeof a branching action will occur; and (3) replacement,implemented by backtracking in the planning litera-ture, which involves removing the branching action andreplacing it with an alternative.Finally, our planner can generate conditional planswith merged branches: if two branches involve di�erentsteps at the beginning but the �nal steps are the same,the �nal part can be shared. This way the cost ofgenerating the same part twice can be avoided.Previous probabilistic/conditional planners havebeen severely limited by the fact that they do not knowhow to handle failure points to advantage. For all butvery small domains, the search space explodes quicklyif plan failures are considered indiscriminantly. Weshow how a principled selection of failure points canbe performed within the framework our algorithm. Wealso describe and show the e�ectiveness of a few addi-tional heuristics. We describe our implemented sys-tem, called Mahinur, and experimentally demonstratethat our methods produce e�ciency improvements ofseveral orders of magnitude.Background and Related ResearchWhen a planning agent does not have complete knowl-edge of the environment in which its plans will beexecuted, it may have to create a conditional plan,which includes observation steps to ascertain the un-

known conditions. Using an example from (Dearden &Boutilier 1997), imagine a robot whose goal is to de-liver co�ee without getting wet; imagine further thatthe robot does not know whether it is raining out-side. A reasonable plan is to go to the window, observewhether it is dry, and if so, go to the cafe. Conditionalplanning systems (Warren 1976; Peot & Smith 1992;Etzioni et al. 1992; Goldman & Boddy 1994a; Pryor &Collins 1996) generate plans that have branching ac-tions, i.e., actions with multiple possible outcomes.1When a branching action is initially inserted into aplan, one of its outcomes (the desired outcome) willbe linked to a later step on the path to the goal, whilethe other(s) (the undesired outcomes) will not. We willalso refer to an unlinked outcome as a dangling edge.In the co�ee example, the knowledge that it is dry out-side is the desired outcome, while knowledge that it israining outside is the undesired outcome. The plan isguaranteed to succeed if the desired outcomes of all itsobservation actions occur; there is no such guaranteeotherwise.Intuitively, one way to improve such a plan is to�gure out what to do if some step has an undesiredoutcome. We will call this a corrective repair, sinceit involves �guring out actions that can be taken tocorrect the situation that results after the undesiredoutcome occurs. For the above example, one correc-tive repair might be to pick up an umbrella if it israining. In practice, conditional planners implementcorrective repairs by duplicating the goal state, andattempting to �nd a plan that will achieve the (du-plicated) goal state without relying on the assumptionthat the branching actions in the original plan havetheir desired outcomes.A di�erent approach is taken in probabilistic plan-ners. Where conditional planners assume that agentshave no information about the probability of alter-native action outcomes but will be able to observetheir environments during plan execution, probabilis-tic planners such as Buridan (Kushmerick, Hanks, &Weld 1995) make just the opposite assumption. Theyassume that planning agents have knowledge of theprobabilities that their actions will have particular out-comes but that they will be unable to observe theirenvironment. Typically, probabilistic planners modelactions with a �nite set of tuples< ti; pi;j ; ei;j >, wherethe ti are a set of exhaustive and mutually exclusivetriggers, and pi;j represents the probability that theaction will have e�ect ei;j if ti is true at the time ofthe action's execution. The triggers serve the role of1To simplify presentation, we will focus here on actionswith two possible outcomes; generalization to a larger num-ber of outcomes is straightforward.

DRY

0.4

0.6

{ hand-dry }

{ }

hand-dry

{ holding-cup }0.8

{ }0.2

{ }

PICK-UP

~hand-dryFigure 1: Plan for picking up a part.preconditions in standard causal-link planners. Sup-pose that the robot's hand might get wet while closingthe umbrella before entering the shop, and the co�eecup might slip if its hand is wet. In the example planfragment shown in Fig. 1, the PICK-UP step has beeninserted to achieve the goal of holding the cup. Thetrigger for holding-cup is hand-dry, and a DRY step hasbeen inserted to probabilistically make that true.As can be seen, this plan is not guaranteed to suc-ceed. If the hand is not dry, the step will not achievethe desired outcome of holding the cup. To help pre-vent this undesired outcome, a planner may increasethe probability that the hand is dry. One way to dothis would be to add a second DRY step prior to thePICK-UP. We can call this a preventive repair, since itinvolves adding actions that help prevent the undesiredoutcome.It is only natural to combine the ideas of conditionaland probabilistic planning. The �rst combined condi-tional, probabilistic planning system was C-Buridan(Draper, Hanks, & Weld 1994). Interestingly, whileC-Buridan uses preventive repair to increase the prob-ability of success, it does not use corrective repair togenerate conditional branches. Its branches are formedin a somewhat indirect fashion: in performing a pre-ventive repair, it may add to the plan a step that con-icts with some other step already in the plan. Toresolve this conict, C-Buridan will split the plan intotwo branches, putting the conicting steps on di�erentbranches. In e�ect, C-Buridan identi�es a new branchonly after it has been formed. Generating plans in thisway has been shown to be very ine�cient, involvinga rapid explosion of the search space as branches arediscovered haphazardly (Onder & Pollack 1997).A more recent system that combines conditionaland probabilistic planning is Weaver (Blythe & Veloso1997) Weaver was built on top of a bidirectional plan-ner (Prodigy 4.0), and therefore uses a di�erent set ofbasic plan generation operations than those describedin this paper. However, as in our approach, Weaver�rst reasons about which actions to choose in order tomost quickly improve the likelihood of success (Blythe1995) and then uses both preventive and corrective re-pair. Unlike most of the other planners, it also includesexplicit mechanisms for dealing with external events.

The Plinth conditional-planning system was also ex-panded to perform probabilistic reasoning (Goldman& Boddy 1994b). The focus of the Plinth project wason using a belief network to reason about correlatedprobabilities in the plan.A di�erent approach to planning under uncertaintyis called conformant planning, and involves generatingplans that achieve the goals in all the possible caseswithout using observation actions(Goldman & Boddy1996). The work on Markov Decision Process (MDP)based planners focuses on �nding \policies," which arefunctions from states to actions. To do this in ane�cient way, MDP-based planners rely on dynamicprogramming and abstraction techniques(Dearden &Boutilier 1997). The DRIPS system (Haddawy, Doan,& Goodwin 1995) interleaves plan expansion and deci-sion theoretic assessment but uses a previously formedplan tree (HTN-style) rather than generating plans us-ing operator descriptions. Recent work by Weld etal. extends Graphplan to handle uncertainty (1998).The Just-In-Case scheduling algorithm (Drummond,Bresina, & Swanson 1994) involves creating an ini-tial schedule and building contingent schedules for thepoints that are most likely to fail.AlgorithmOur algorithm (Fig. 2) rests on the observation thatconditional, probabilistic planning involves repairingplan aws (closing an open precondition or resolving athreat) and repairing dangling edges (corrective repairor preventive repair). The input is a set of initial condi-tions, a set of goal conditions, and a time limit T . Theoutput is a set of plans. The algorithm is a plan-spacesearch, where, as usual, the nodes in the search spacerepresent partial plans. We assume that actions areencoded using the probabilistic action representationdescribed in the previous section.Normal aws|threats and open conditions|are re-paired in the usual way. To achieve an open condi-tion c, the planner will �nd an action that includesa branch < ti; pi;j ; ei;j >, such that one of the ele-ments of ei;j uni�es with c. The relevant trigger ti willthen become a new open condition. Note that a condi-tion c remains \open" only so long as it has no incom-ing causal link; once an action � has been inserted to(probabilistically) produce c, it is no longer open, evenif � has only a small chance of actually achieving c.2 Athreat is resolved by step ordering (demote, promote),committing to desired outcomes (confront), or sepa-rating the steps into branches (constrain-to-branch).For \dangling-edge aws", we assume that preventive2A sensible heuristic is to select actions where the rele-vant pi;j is as high as possible.

PLAN (init, goal, T)plans f make-init-plan (init, goal) gwhile plan-time < T and plans is not empty doCHOOSE (and remove) a plan P from plansSELECT a flaw f from P.add all refinements of P to plans:plans plans [new-step(P; f) [step-reuse(P; f)if f is an open condition,plans plans [demote(P; f) [promote(P; f) [confront(P; f) [constrain-to-branch(P; f)if f is a threat.plans plans [corrective-repair(P; f) [preventive-repair (P; f)if f is a dangling-edge.return (plans)preventive-repair (plan, f)open-conditions-of-plan open-conditions-of-plan [triggers for the desired outcomes of theaction in f.return (plan)corrective-repair (plan, f)top-level-goal-nodes-of-plan top-level-goal-nodes-of-plan[new-top-level-goal-node labeled not to dependon the desired outcomes of the action in f.return (plan)Figure 2: Conditional probabilistic planning algo-rithm.repair is achieved by reintroducing the triggers for de-sired e�ects into the set of open conditions, as donein Buridan; we assume corrective repair is achievedby adding new, labeled copies of the goal node as inCNLP. Corrective repairs form new branches in theplan that indicate alternative responses to di�erent ob-servational results. Preventive repairs do not introducenew branches.Consistent with the prior literature, we use SELECTto denote a non-deterministic choice that is not a back-track point, and CHOOSE for a backtrack point. Asusual, node selection, but not aw selection, is subjectto backtracking.It is important to note that in prior algorithms suchas CNLP and C-Buridan, observation actions do notdi�erentiate between the conditions that are true in theworld (state conditions) and the conditions that repre-sent the agent's state of knowledge (information condi-tions). In CNLP, the outcomes of an observation actionare state conditions, thus observation actions are in-serted through standard backchaining. In C-Buridan,the outcomes of actions are information conditions. C-Buridan has no concept of corrective repair; instead itinserts observation actions only during threat resolu-tion, when conicting actions are constrained to be indi�erent branches. During this process, C-Buridan will

Subject
(not meant to be achieved)

p=0.1p=0.9

Action name

Outcome probabilities

\RAIN\

May have triggers

/ ~ RAIN/ /RAIN/ /RAIN/

Outcomes

Report

OBSERVE-WEATHER

\~ RAIN\

Figure 3: Observing whether it is raining.consider every possible observation action. It is thuscomplete in the sense that it will �nd a relevant obser-vation action whenever one exists, even if the correla-tion between the observation and the condition in ques-tion has not been made explicit. However, C-Buridan'sindirect method of inserting observation actions is veryine�cient: it has no notion of the source and potentialimpact of any plan failure, and thus cannot prioritizethe failures it chooses to work on (Onder & Pollack1997).For the sake of practicality, we have taken a middleroad. We require that the connection be made ex-plicit between an observation action and any informa-tion and state conditions it a�ects. Fig. 3 illustratesthe act of directly observing whether it is raining out-side. The observation may be inaccurate: with 0.10probability, it will provide a false negative. The con-nection between the belief that it is not raining (the\report") and the fact of the matter of rain (the \sub-ject") is explicit in the representation.Consequently, our algorithm does need to insert ob-servation actions by backchaining or for threat resolu-tion. Instead, we can directly reason about which stepS will have the greatest impact if it fails|i.e., does notachieve desired outcome c. Corrective repair can thenbe performed, directly inserting after S an observationaction that reports on c, along with a subject link fromS to the new observation action. The trade-o� is thatthe algorithm is less complete than C-Buridan, becauseit will not discover observation actions whose connec-tion to some condition are not explicitly encoded. Be-cause the in-principle complete algorithms are too in-e�cient to be in-practice complete, we are willing tomake this trade-o�, and rely on the operator designerto encode explicitly the connections between informa-tion conditions and state conditions.We implemented this algorithm in a planning systemcalled Mahinur. In re�ning a plan, Mahinur �rst re-pairs the normal aws until the plan is complete, i.e.,has no open conditions or threats. It then selects adangling edge and then works only on normal awsuntil the plan is once again complete. This strategyreduces the amount of bookkeeping required to keep

track of nested contexts when multiple corrective re-pairs are being performed. It also allows Mahinur toreadily produce intermediate solutions throughout theplanning process, because complete plans are potentialsolutions to the planning problem.We assume that the top-level goals have additivescalar values assigned to them. Thus, the expectedvalue of a plan is the sum of the products of the �nalprobability of each top-level goal and its scalar value.We approximate the �nal probability of any goal by aprocess of simulation, in which we start with an initialstate distribution, and simulate the execution of eachstep in the plan, updating the state distribution ac-cordingly. We refer to the state distribution after theexecution of step i as sdi. Because the focus of ourwork is on search control, we �nesse the issue of e�-cient plan assessment (i.e., calculation of the expectedvalue) and use a random total ordering of the steps.E�cient Corrective RepairWhile the algorithm above captures the ideas inher-ent in the prior work on both conditional and theprobabilistic planning, it also inherits a major prob-lem: if applied without strong heuristics, it can beextremely ine�cient. In particular, the time requiredto generate a plan with two branches can be expo-nentially greater than the sum of the times requiredto generate two separate plans, each identical to oneof the branches. We illustrate this with the run-ning example. If we ignore the possibility of rain,a simple solution is a plan with four steps, GO-CAFE;BUY-COFFEE; GO-OFFICE; DELIVER-COFFEE, which can begenerated by Mahinur in 0.24 CPU seconds using40 plan nodes. When we re-introduce the possi-bility of rain, the solution has two branches be-cause if is is raining, the robot needs to get an um-brella: SEE-IF-RAINING; if raining (GET-UMBRELLA;GO-CAFE; BUY-COFFEE; GO-OFFICE; DELIVER-COFFEE);if not raining (GO-CAFE; BUY-COFFEE; GO-OFFICE;DELIVER-COFFEE). The two branches are similar to oneanother, but it takes Mahinur 27.66 CPU seconds and6902 plan nodes to generate the branching plan.3The problem results from the backwards-chainingapproach taken by Mahinur and other planning sys-tems. When a new step is inserted into the plan, itis not part of any branch; it is put into a branch (bythe constrain-to-branch procedure in Mahinur) only af-ter a threat is detected between two steps that should3Unfortunately, benchmark problems and implementedsystems for comparison of probabilistic conditional plan-ners are not available. However, the examples given inthe literature suggest that other conditional planners suf-fer from similar exponential explosion of the search space.

Run time (sec.) Plans createdProblem with without with withoutco�ee 1.35 27.66 105 6902co�ee,cream 1.81 687.13 178 57912co�ee,cream,sugar 2.73 | 398 >350000Figure 4: E�ects of the threat resolution heuristic.be in separate branches. However, in addition to con-straining, the planner needs to consider several othermethods of threat resolution, resulting in exponentialexplosion of the search space. The intuitive solutionis to prefer constraining a new step to be in a newbranch when a conditional branch is being formed, i.e.,corrective repairs are being performed. This can beimplemented easily as a heuristic in the framework ofour algorithm: while generating a new branch follow-ing observe step I, if a newly inserted step threatens astep in the �rst branch, prefer to resolve the threat byplacing the new step into the new branch of I if it isconsistent to do so.We illustrate the proportionality of our heuristic's ef-fect on variations of the BUY COFFEE problem. The �rstproblem is the basic problem, including the possibilityof rain; there are �ve steps in the new branch. In thesecond problem, we added a new step (GET-CREAM) tothe problem, increasing the number of the steps in thenew branch to 6. In the third problem, we also addedthe GET-SUGAR step. In Fig. 4, we tabulate the run timeand the number of plans created while generating con-ditional plans with and without the threat resolutionheuristic. (We terminated the experiment marked with\|" after 24 hours and 350000 plan nodes.) As ex-pected, the search space is reduced signi�cantly whenthe heuristic is used to control the search, and the re-duction is proportional to the number of steps in thenew branch. This heuristic proved to be very e�ectiveenabling us to generate plans with tens of steps andconditional branches in just a few seconds.Selecting ContingenciesA plan is composed of many steps that establish con-ditions to support the goals and subgoals, but repairsfor the failure of conditions are usually not expectedto have equal contributions to the overall success ofthe plan. With the notable exception of (Feldman &Sproul 1977), the decision theoretic prioritization of re-pair points has not been a focus of recent systems. Toidentify the best repair points, we focus on two facts:�rst, contingencies in a plan may have unequal proba-bility of occurrence; second, a plan may have multiplegoals, each of which has some associated value. Let usleave the probability of failure aside for a moment, and

consider the robot in the the previous examples and aplan involving two goals: mailing a document at thepost o�ce and delivering co�ee to the user. The valueof achieving the former goal may be signi�cantly higherthan the latter. Consequently, the conditions that sup-port only the former goal (e.g., having envelopes) con-tribute more to the overall success of the plan thanthe conditions that support only the latter (e.g., hav-ing sugar). Conditions that support both goals (e.g.,keeping the robot dry) will have the greatest impor-tance. This suggests that it may be most importantto have a contingency plan to handle the possibility ofrain; almost as important to have a contingency planin case there are no envelopes in the o�ce; and lessimportant to have a contingency plan in case there isno sugar. While performing this reasoning, we can foldthe probability of failure back in as a weighing factor.Of course, in reality the importance of having con-tingency plans will also depend on the likely di�cultyof replanning \on-the-y" for particular contingencies;it may be worth reasoning in advance about contin-gencies that are di�cult to plan for. Another factorinuencing the choice of a contingency is the di�cultyof executing a contingent plan if not considered in ad-vance. These types of information concern the planthat has not yet been generated, which suggests thatthey might have to be coded as part of the domaininformation, based on past experience.Even if this type of domain information is not avail-able, we can use the upper bound of the expected valueof repairing a failure point as a good estimate for se-lecting contingencies. Suppose that a step Si is usedto establish a condition c, and the probability of thatc will be false right after Si is executed is p > 0. Then,the best the planner can do is to add a new branch thatwill make the top-level goals true even when c is nottrue. What is the value of adding such a branch? Incomputing this, we need to consider only the probabil-ity that immediately after executing Si, both c and thetop-level goals will be false: if a top-level goal is trueanyway after executing Si, then there is no bene�t toestablishing it. We also need to factor in the probabil-ity that Si will be executed in the �rst place. (If it isdownstream from another branch point, it may neverbe executed.) The upper bound on the expected valueof performing a corrective repair on Si in the case inwhich desired outcome c may fail is de�ned as follows:EV CR(Si; c) =Pg2G P [f~c;~gg [SCijsd0; < S1; : : : ; Si >]� V (G);where P [fx1; : : : ; xngjsd0; < S1; : : : ; Si >] denotes theprobability that fx1; : : : ; xng all hold in the state dis-tribution resulting from the execution of the steps

through Si starting with the initial state distributionsd0. SCi is the context of the step, i.e., the conditionsunder which the step will be executed.4 That is, foreach top-level goal g in G, we compute the probabil-ity that immediately after performing step Si, c andg will both fail to hold while all the e�ects of Si ex-cept c hold. We then weight the value of G (V (G))by this probability, and �nally sum all the weightedvalues. As noted, this is an upper bound; the actualvalue of corrective repair of si might be less if the re-pair only probabilistically establishes G, or if there areother steps in the original plan that achieve G withoutusing c in sdi. Our strategy for selecting contingen-cies is to use the formula above to compute EV CR foreach failure point and then to select the one with thehighest value.In order to illustrate the importance of this process,we have designed a synthetic domain with several top-level goals all of which have unit value (Fig. 5). Wethen ran experiments in which we started with an ini-tial plan where each goal is achieved by a single stepthat has no preconditions, and achieves the goal withsome probability (Fig 5a). In addition to the opera-tors in the initial plan, we designed a set of alternativeoperators each of which achieves a goal with certainty.(Imagine that the probabilistic operator in the initialplan is cheaper to execute, and it is preferable to try it�rst and use the alternative only if it fails). In order toestablish a baseline case, we designed the alternativeoperators to have the minimal planning e�ort, i.e., per-forming a corrective repair involves forming a branchwith one step to establish the goal. This also madethe corrective repair e�ort to be uniform for each fail-ure point: each can be repaired by generating a one-step plan. We implemented our strategy for selectingcontingencies and ran several experiments by increas-ing the user-speci�ed expected value threshold. In onecondition|ordered selection|we selected the contin-gency with the highest expected value for correctiverepairs; and in another condition|random selection|we selected a contingency randomly (ordered selectionalways selects steps A1, B1 . . . I1). In Fig. 6, we plotthe time required to meet the threshold with and with-out ordering contingencies. As expected, by orderingcontingencies, the planner can produce better plans inshorter time. Note that, the two lines converge to thesame point because once all the failures are repaired,the total expected value of the plan is the same and4Actually, the probability of SCi should be computedfor the state that obtains just prior to the execution of Si.However, for simplicity in the formula we compute it in thestate that obtains after Si is executed; this does not a�ectthe result because a step cannot change its own context.

0.1 0.9

AA

0.9 0.1

I I

GOALS: A B C D E F G H I

(a) (b)

STEP-I1 STEP-I2

INITIAL PLAN: Alternative actions:

STEP-A1 STEP-A2

Figure 5: A synthetic domain for experiments.

0

20

40

60

80

100

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
un

 ti
m

e
(s

ec
on

ds
)

Threshold

Ordered contingency selection
Random contingency selection

Figure 6: Time required to generate a plan that meetsthe threshold.the total cost of repairing all the failures is the same.A similar strategy can be used for estimating theexpected value of performing preventive repairs, butwe omit discussion due to space limitations.Generating Plans with Joined BranchesThe e�ciency of performing corrective repairs can befurther improved by sharing the �nal parts of twobranches if they are the same. CNLP-style conditionalplanners cannot generate plans with joined branchesbecause they duplicate the top-level goals and re-generate every step even if they are the same as theexisting branch. However, branches can be joined bynondeterministically choosing and duplicating a sub-goal rather than a top-level goal. Suppose that the de-livery robot has a detailed plan to go back to the o�ceafter picking up the co�ee, and is generating contin-gency plans for the possible failures regarding co�eepick up. In such a situation, it might be more e�cientto focus on the subgoal of getting co�ee rather thanrevising the whole plan.We have implemented this method in Mahinur in the

i

/i/ /~i/

do nothing

GOAL

STEP-I

OBSERVE-I

S-ALTERN

i

Branch join pointSTEP-J

j

STEP-K

k

k

STEP-G

t ~t

~i

~j

i

j

Figure 7: Corrective repairs with branch joining.following way: consider the plan in Fig. 7 and supposethat STEP-I can fail to establish i for STEP-J and thisfailure point has been selected for corrective repairs.Then, rather than duplicating the top level goal, theplanner duplicates just STEP-J's triggers|i|and triesto �nd a conditional branch that establishes i with-out using support from STEP-I. The remainder of theplan (STEP-J and STEP-K) remains the same, and doesnot have to be regenerated. If the planner fails to �nda plan for i, it backtracks and tries to duplicate thetriggers of the next step that is connected by a causallink to the step it has just tried|the next step in thecausal link path is STEP-K in this example. Imaginethat the planner �rst tries to �nd alternative ways ofgetting co�ee and then tries another beverage if thisfails. Backtracking stops when a top-level goal needsto be duplicated. Note that our work focuses on gener-ating plans with joined branches rather than mergingalready formed branches.The step whose triggers are duplicated is called abranch join point (e.g., STEP-J in Fig. 7). No stepsare necessary if STEP-I succeeds, and alternative step(S-ALTERN) will be executed if STEP-I fails. The remain-der of the plan is shared by the two branches.We conducted a set of experiments to show thepossible bene�ts of branch joining. In these experi-ments, we used a set of co�ee domain problems analo-gous to the ship-reject problem in C-Buridan (Draper,Hanks, & Weld 1994). In these problems, the robotasks whether deca�einated co�ee is available and getsit. If not available, it gets regular co�ee. Both

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1 2 3 4 5 6 7 8 9 10

R
un

 ti
m

e
(s

ec
on

ds
)

Experiment

With branch joining
Without branch joining

Figure 8: The CPU time required with and withoutbranch joining to solve planning problems of increasingcomplexity.have the same price, so the steps to pay for theco�ee and to go back to the o�ce can be shared.Without branch joining, the solution conditional planis: ASK; if available (GET-DECAF; PAY; GO-OFFICE;DELIVER-COFFEE); if not available (GET-REGULAR;PAY; GO-OFFICE; DELIVER-COFFEE). If branch joining isperformed during corrective repairs, the last threesteps of each branch can be shared.If branch joining is used, the planner saves some ofthe e�ort of generating the sequence of steps after thebranch join point. In order to demonstrate this, wedesigned a set of 9 problems based on the above prob-lem. We made the plan generation process harder byputting more alternative steps into the domain descrip-tion: In the �rst problem, there are no alternatives tothe �nal three steps; in the second problem, each canbe performed in two ways; and in the ninth problem,each can be performed in nine ways. For each prob-lem, we plotted the CPU time required to generate theconditional branch with and without branch joining inFig. 8. As expected, the planning e�ort does not in-crease when branch joining is used because the planafter the branch join point is reused while forming thenew branch. When branch joining is not used, it takesthe planner longer to generate the same plan becausethe part after the branch join point needs to be gener-ated from scratch.On the other hand, the planner needs to backtrackif it cannot �nd a plan with joined branches. In ourimplementation, when branch joining is enabled, theplanner �rst duplicates the triggers of the �rst actionthat is supported by the condition which may fail. Ifno plan is found, it tries the next step in the pathof causal links and continues until a top-level goal is

reached. (We do not consider re-opening every set ofpossible subgoals because once the top-level goals arere-opened, an entirely new plan can be found). Ob-viously, if the planner spends too much time tryingto �nd a plan with joined branches when none exists,its performance will be worse than directly duplicat-ing the top-level goals. As a result, domain-dependenttuning may be required to determine whether branchjoining will be attempted and to select the step to beused as a branch join point. Nonetheless, the resultsare promising and we are optimistic about the e�ec-tiveness of our method because the savings obtainedby branch joining can be signi�cant and a strategy forbranch joining can be determined by compiling typicalproblem instances in a domain. Branch joining is use-ful because it lets the planner focus on the steps thatare in the vicinity of the possible failure rather thanthe top-level goals. ConclusionIn real-world environments, planners must deal withthe fact that actions do not always have certain out-comes, and that the state of the world will not alwaysbe completely known. Good plans can nonetheless beformed if the agent has knowledge of the probabilitiesof action outcomes and/or can observe the world. In-tuitively, if an agent does not know what the world willbe like at some point in its plan, there are two things itcan do: (i) it can take steps to increase the likelihoodthat the world will be a certain way, and (ii) it can planto observe the world, and then take corrective action ifthings are not the way the should be. These basic ideashave been included, in di�erent ways, in the prior lit-erature on conditional and probabilistic planning. Thefocus of this paper has been to synthesize this priorwork in a unifying algorithm that cleanly separates thecontrol process from the plan re�nement process. Us-ing our framework, contingencies can be handled selec-tively and heuristics that depend on the type of repairbeing performed can be used. This control is an im-portant condition for applying conditional probabilis-tic planning to real world problems. We have obtainedpromising early results in a realistic domain(Desimone& Agosta 1994), and we will make the Mahinur systemand the domain encoding publicly available.AcknowledgmentsThis work has been supported by a scholarship fromthe Scienti�c and Technical Research Council ofTurkey, by the Air Force O�ce of Scienti�c Research(F49620-98-1-0436), and by the National Science Foun-dation (IRI-9619579). We thank the anonymous re-viewers for their comments.

ReferencesBlythe, J., and Veloso, M. 1997. Analogical replay fore�cient conditional planning. In Proc. 15th Nat. Conf.on AI, 668{673.Blythe, J. 1995. The footprint principle for heuristics forprobabilistic planners. In Proc. European Workshop onPlanning.Dearden, R., and Boutilier, C. 1997. Abstraction andapproximate decision theoretic planning. Arti�cial Intel-ligence 89(1):219{283.Desimone, R. V., and Agosta, J. M. 1994. Spill responsesystem con�guration study|�nal report. Technical Re-port ITAD-4368-FR-94-236, SRI International.Draper, D.; Hanks, S.; and Weld, D. 1994. Probabilisticplanning with information gathering and contingent exe-cution. In Proc. 2nd Int. Conf. on AI Planning Systems,31{36.Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-in-case scheduling. In Proc. 12th Nat. Conf. on AI.Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.;and Williamson, M. 1992. An approach to planning withincomplete information. In Proc. 3rd Int. Conf. on Prin-ciples of Knowledge Repr. and Reasoning, 115{125.Feldman, J. A., and Sproul, R. F. 1977. Decision theoryand AI II: The hungry monkey. Cognitive Science 1:158{192.Goldman, R. P., and Boddy, M. S. 1994a. Conditionallinear planning. In Proc. 2nd Int. Conf. on AI PlanningSystems, 80{85.Goldman, R. P., and Boddy, M. S. 1994b. Epsilon-safeplanning. In Proc. 10th Conf. on Uncertainty in AI, 253{261.Goldman, R. P., and Boddy, M. S. 1996. Expressiveplanning and explicit knowledge. In Proc. 3rd Int. Conf.on AI Planning Systems, 110{117.Haddawy, P.; Doan, A.; and Goodwin, R. 1995. E�-cient decision-theoretic planning: Techniques and empiri-cal analysis. In Proc. 11th Conf. on Uncertainty in AI.Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. Analgorithm for probabilistic planning. Arti�cial Intelligence76:239{286.Onder, N., and Pollack, M. E. 1997. Contingency selectionin plan generation. In Proc. European Conf. on Planning,364{376.Peot, M. A., and Smith, D. E. 1992. Conditional nonlinearplanning. In Proc. 1st Int. Conf. on AI Planning Systems,189{197.Pryor, L., and Collins, G. 1996. Planning for contingen-cies: A decision based approach. Journal of AI Research4:287{339.Warren, D. H. 1976. Generating conditional plans andprograms. In Proc. AISB Summer Conference, 344{354.Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998.Extending graphplan to handle uncertainty and sensingactions. In Proc. 16th Nat. Conf. on AI, 897{904.Weld, D. S. 1994. An introduction to least commitmentplanning. AI Magazine 15(4):27{61.

