Conditional, Probabilistic Planning: A Unifying Algorithm and
Effective Search Control Mechanisms

Nilufer Onder
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260
nilufer@cs.pitt.edu

Abstract

Several recent papers describe algorithms for gener-
ating conditional and/or probabilistic plans. In this
paper, we synthesize this work, and present a unify-
ing algorithm that incorporates and clarifies the main
techniques that have been developed in the previous
literature. Our algorithm decouples the search-control
strategy for conditional and/or probabilistic planning
from the underlying plan-refinement process. A sim-
ilar decoupling has proven to be very useful in the
analysis of classical planning algorithms, and we show
that it can be at least as useful here, where the search-
control decisions are even more crucial. Previous prob-
abilistic/conditional planners have been severely lim-
ited by the fact that they do not know how to handle
failure points to advantage. We show how a principled
selection of failure points can be performed within the
framework our algorithm. We also describe and show
the effectiveness of additional heuristics. We describe
our implemented system called Mahinur and experi-
mentally demonstrate that our methods produce effi-
ciency improvements of several orders of magnitude.

Introduction

Several recent papers describe algorithms for gener-
ating conditional and/or probabilistic plans. Unfortu-
nately, these techniques have not been synthesized into
a clear algorithm. In this paper, we present a unify-
ing algorithm that incorporates and clarifies the main
techniques that have been developed.

Our algorithm has three useful features. First,
it decouples the search-control strategy for condi-
tional probabilistic planning from the underlying plan-
refinement process. A similar decoupling has proven to
be very useful in the analysis of classical planning al-
gorithms (Weld 1994), and we show that it can be at
least as useful here, where search-control decisions are
even more crucial. We achieve the decoupling by treat-
ing the possible failure points in a plan as flaws. By
a failure point, we mean a part of the plan that (a)
involves a branching action, i.e., one whose outcome
is uncertain, and (b) relies on a particular outcome of

Martha E. Pollack
Department of Computer Science
and Intelligent Systems Program

University of Pittsburgh

Pittsburgh, PA 15260
pollack@cs.pitt.edu

that action. Where classical planning algorithms con-
sider open conditions and threats to be flaws, we add
possible failure points into this set. Decisions about
whether and when to handle each failure point can
then be encoded as part of the search-control strategy.

Second, we repair plan failures in a direct way, using
three logically distinct techniques: (1) corrective re-
pair, originally introduced in the work on conditional
planning, which involves reasoning about what to do if
the desired outcome of a branching action does not oc-
cur; (2) preventive repair, originally introduced in the
work on probabilistic planning, which involves reason-
ing about how to help ensure that the desired outcome
of a branching action will occur; and (3) replacement,
implemented by backtracking in the planning litera-
ture, which involves removing the branching action and
replacing it with an alternative.

Finally, our planner can generate conditional plans
with merged branches: if two branches involve different
steps at the beginning but the final steps are the same,
the final part can be shared. This way the cost of
generating the same part twice can be avoided.

Previous probabilistic/conditional planners have
been severely limited by the fact that they do not know
how to handle failure points to advantage. For all but
very small domains, the search space explodes quickly
if plan failures are considered indiscriminantly. We
show how a principled selection of failure points can
be performed within the framework our algorithm. We
also describe and show the effectiveness of a few addi-
tional heuristics. We describe our implemented sys-
tem, called Mahinur, and experimentally demonstrate
that our methods produce efficiency improvements of
several orders of magnitude.

Background and Related Research

When a planning agent does not have complete knowl-
edge of the environment in which its plans will be
executed, it may have to create a conditional plan,
which includes observation steps to ascertain the un-

known conditions. Using an example from (Dearden &
Boutilier 1997), imagine a robot whose goal is to de-
liver coffee without getting wet; imagine further that
the robot does not know whether it is raining out-
side. A reasonable plan is to go to the window, observe
whether it is dry, and if so, go to the cafe. Conditional
planning systems (Warren 1976; Peot & Smith 1992;
Etzioni et al. 1992; Goldman & Boddy 1994a; Pryor &
Collins 1996) generate plans that have branching ac-
tions, i.e., actions with multiple possible outcomes.!
When a branching action is initially inserted into a
plan, one of its outcomes (the desired outcome) will
be linked to a later step on the path to the goal, while
the other(s) (the undesired outcomes) will not. We will
also refer to an unlinked outcome as a dangling edge.
In the coffee example, the knowledge that it is dry out-
side is the desired outcome, while knowledge that it is
raining outside is the undesired outcome. The plan is
guaranteed to succeed if the desired outcomes of all its
observation actions occur; there is no such guarantee
otherwise.

Intuitively, one way to improve such a plan is to
figure out what to do if some step has an undesired
outcome. We will call this a corrective repair, since
it involves figuring out actions that can be taken to
correct the situation that results after the undesired
outcome occurs. For the above example, one correc-
tive repair might be to pick up an umbrella if it is
raining. In practice, conditional planners implement
corrective repairs by duplicating the goal state, and
attempting to find a plan that will achieve the (du-
plicated) goal state without relying on the assumption
that the branching actions in the original plan have
their desired outcomes.

A different approach is taken in probabilistic plan-
ners. Where conditional planners assume that agents
have no information about the probability of alter-
native action outcomes but will be able to observe
their environments during plan execution, probabilis-
tic planners such as Buridan (Kushmerick, Hanks, &
Weld 1995) make just the opposite assumption. They
assume that planning agents have knowledge of the
probabilities that their actions will have particular out-
comes but that they will be unable to observe their
environment. Typically, probabilistic planners model
actions with a finite set of tuples < #;, p; ;,e; ; >, where
the t; are a set of exhaustive and mutually exclusive
triggers, and p; ; represents the probability that the
action will have effect e; ; if ¢; is true at the time of
the action’s execution. The triggers serve the role of

'To simplify presentation, we will focus here on actions
with two possible outcomes; generalization to a larger num-
ber of outcomes is straightforward.

{ holding-cup }

{}

06 1y

Figure 1: Plan for picking up a part.

preconditions in standard causal-link planners. Sup-
pose that the robot’s hand might get wet while closing
the umbrella before entering the shop, and the coffee
cup might slip if its hand is wet. In the example plan
fragment shown in Fig. 1, the PICK-UP step has been
inserted to achieve the goal of holding the cup. The
trigger for holding-cup is hand-dry, and a DRY step has
been inserted to probabilistically make that true.

As can be seen, this plan is not guaranteed to suc-
ceed. If the hand is not dry, the step will not achieve
the desired outcome of holding the cup. To help pre-
vent this undesired outcome, a planner may increase
the probability that the hand is dry. One way to do
this would be to add a second DRY step prior to the
PICK-UP. We can call this a preventive repair, since it
involves adding actions that help prevent the undesired
outcome.

It is only natural to combine the ideas of conditional
and probabilistic planning. The first combined condi-
tional, probabilistic planning system was C-Buridan
(Draper, Hanks, & Weld 1994). Interestingly, while
C-Buridan uses preventive repair to increase the prob-
ability of success, it does not use corrective repair to
generate conditional branches. Its branches are formed
in a somewhat indirect fashion: in performing a pre-
ventive repair, it may add to the plan a step that con-
flicts with some other step already in the plan. To
resolve this conflict, C-Buridan will split the plan into
two branches, putting the conflicting steps on different
branches. In effect, C-Buridan identifies a new branch
only after it has been formed. Generating plans in this
way has been shown to be very inefficient, involving
a rapid explosion of the search space as branches are
discovered haphazardly (Onder & Pollack 1997).

A more recent system that combines conditional
and probabilistic planning is Weaver (Blythe & Veloso
1997) Weaver was built on top of a bidirectional plan-
ner (Prodigy 4.0), and therefore uses a different set of
basic plan generation operations than those described
in this paper. However, as in our approach, Weaver
first reasons about which actions to choose in order to
most quickly improve the likelihood of success (Blythe
1995) and then uses both preventive and corrective re-
pair. Unlike most of the other planners, it also includes
explicit mechanisms for dealing with external events.

The Plinth conditional-planning system was also ex-
panded to perform probabilistic reasoning (Goldman
& Boddy 1994b). The focus of the Plinth project was
on using a belief network to reason about correlated
probabilities in the plan.

A different approach to planning under uncertainty
is called conformant planning, and involves generating
plans that achieve the goals in all the possible cases
without using observation actions(Goldman & Boddy
1996). The work on Markov Decision Process (MDP)
based planners focuses on finding “policies,” which are
functions from states to actions. To do this in an
efficient way, MDP-based planners rely on dynamic
programming and abstraction techniques(Dearden &
Boutilier 1997). The DRIPS system (Haddawy, Doan,
& Goodwin 1995) interleaves plan expansion and deci-
sion theoretic assessment but uses a previously formed
plan tree (HTN-style) rather than generating plans us-
ing operator descriptions. Recent work by Weld et
al. extends Graphplan to handle uncertainty (1998).
The Just-In-Case scheduling algorithm (Drummond,
Bresina, & Swanson 1994) involves creating an ini-
tial schedule and building contingent schedules for the
points that are most likely to fail.

Algorithm

Our algorithm (Fig. 2) rests on the observation that
conditional, probabilistic planning involves repairing
plan flaws (closing an open precondition or resolving a
threat) and repairing dangling edges (corrective repair
or preventive repair). The input is a set of initial condi-
tions, a set of goal conditions, and a time limit 7. The
output is a set of plans. The algorithm is a plan-space
search, where, as usual, the nodes in the search space
represent partial plans. We assume that actions are
encoded using the probabilistic action representation
described in the previous section.

Normal flaws—threats and open conditions—are re-
paired in the usual way. To achieve an open condi-
tion ¢, the planner will find an action that includes
a branch < t;,p;j,e;; >, such that one of the ele-
ments of e; ; unifies with c. The relevant trigger ¢; will
then become a new open condition. Note that a condi-
tion ¢ remains “open” only so long as it has no incom-
ing causal link; once an action «a has been inserted to
(probabilistically) produce ¢, it is no longer open, even
if o has only a small chance of actually achieving c.?2 A
threat is resolved by step ordering (demote, promote),
committing to desired outcomes (confront), or sepa-
rating the steps into branches (constrain-to-branch).
For “dangling-edge flaws”, we assume that preventive

2A sensible heuristic is to select actions where the rele-
vant p; ; is as high as possible.

PLAN (init, goal, T)
plans < { make-init-plan (init, goal) }
while plan-time < T and plans is not empty do
CHOOSE (and remove) a plan P from plans
SELECT a flaw f from P.
add all refinements of P to plans:
plans < plans U new-step(P, f) U
step-reuse (P, f)
if f is an open condition,
plans < plans U demote(P, f) U promote(P, f) U
confront (P, f) U constrain-to-branch(P, f)
if f is a threat.
plans < plans U corrective-repair (P, f) U
preventive-repair (P, f)
if f is a dangling-edge.
return (plans)
preventive-repair (plan, f)
open-conditions-of-plan < open-conditions-of-plan U
triggers for the desired outcomes of the
action in f.
return (plan)
corrective-repair (plan, f)
top-level-goal-nodes-of-plan < top-level-goal-nodes-of-plan
U new-top-level-goal-node labeled not to depend
on the desired outcomes of the action in f.
return (plan)

Figure 2: Conditional probabilistic planning algo-
rithm.

repair is achieved by reintroducing the triggers for de-
sired effects into the set of open conditions, as done
in Buridan; we assume corrective repair is achieved
by adding new, labeled copies of the goal node as in
CNLP. Corrective repairs form new branches in the
plan that indicate alternative responses to different ob-
servational results. Preventive repairs do not introduce
new branches.

Consistent with the prior literature, we use SELECT
to denote a non-deterministic choice that is not a back-
track point, and CHOOSE for a backtrack point. As
usual, node selection, but not flaw selection, is subject
to backtracking.

It is important to note that in prior algorithms such
as CNLP and C-Buridan, observation actions do not
differentiate between the conditions that are true in the
world (state conditions) and the conditions that repre-
sent the agent’s state of knowledge (information condi-
tions). In CNLP, the outcomes of an observation action
are state conditions, thus observation actions are in-
serted through standard backchaining. In C-Buridan,
the outcomes of actions are information conditions. C-
Buridan has no concept of corrective repair; instead it
inserts observation actions only during threat resolu-
tion, when conflicting actions are constrained to be in
different branches. During this process, C-Buridan will

OBSERVE-WEATHER

\~ RAIN\

<= Actionname

< Subject
(notJ meant to be achieved)
<—— May havetriggers

~=— Outcome probabilities

\RAIN\

p=0.9 p=0.1

‘ ~=—— Outcomes

/~RAIN/ /RAIN/ /RAIN/ < Report

Figure 3: Observing whether it is raining.

consider every possible observation action. It is thus
complete in the sense that it will find a relevant obser-
vation action whenever one exists, even if the correla-
tion between the observation and the condition in ques-
tion has not been made explicit. However, C-Buridan’s
indirect method of inserting observation actions is very
inefficient: it has no notion of the source and potential
impact of any plan failure, and thus cannot prioritize
the failures it chooses to work on (Onder & Pollack
1997).

For the sake of practicality, we have taken a middle
road. We require that the connection be made ex-
plicit between an observation action and any informa-
tion and state conditions it affects. Fig. 3 illustrates
the act of directly observing whether it is raining out-
side. The observation may be inaccurate: with 0.10
probability, it will provide a false negative. The con-
nection between the belief that it is not raining (the
“report”) and the fact of the matter of rain (the “sub-
ject”) is explicit in the representation.

Consequently, our algorithm does need to insert ob-
servation actions by backchaining or for threat resolu-
tion. Instead, we can directly reason about which step
S will have the greatest impact if it fails i.e., does not
achieve desired outcome c. Corrective repair can then
be performed, directly inserting after S an observation
action that reports on ¢, along with a subject link from
S to the new observation action. The trade-off is that
the algorithm is less complete than C-Buridan, because
it will not discover observation actions whose connec-
tion to some condition are not explicitly encoded. Be-
cause the in-principle complete algorithms are too in-
efficient to be in-practice complete, we are willing to
make this trade-off, and rely on the operator designer
to encode explicitly the connections between informa-
tion conditions and state conditions.

We implemented this algorithm in a planning system
called Mahinur. In refining a plan, Mahinur first re-
pairs the normal flaws until the plan is complete, i.e.,
has no open conditions or threats. It then selects a
dangling edge and then works only on normal flaws
until the plan is once again complete. This strategy
reduces the amount of bookkeeping required to keep

track of nested contexts when multiple corrective re-
pairs are being performed. It also allows Mahinur to
readily produce intermediate solutions throughout the
planning process, because complete plans are potential
solutions to the planning problem.

We assume that the top-level goals have additive
scalar values assigned to them. Thus, the expected
value of a plan is the sum of the products of the final
probability of each top-level goal and its scalar value.
We approximate the final probability of any goal by a
process of simulation, in which we start with an initial
state distribution, and simulate the execution of each
step in the plan, updating the state distribution ac-
cordingly. We refer to the state distribution after the
execution of step ¢ as sd;. Because the focus of our
work is on search control, we finesse the issue of effi-
cient plan assessment (i.e., calculation of the expected
value) and use a random total ordering of the steps.

Efficient Corrective Repair

While the algorithm above captures the ideas inher-
ent in the prior work on both conditional and the
probabilistic planning, it also inherits a major prob-
lem: if applied without strong heuristics, it can be
extremely inefficient. In particular, the time required
to generate a plan with two branches can be expo-
nentially greater than the sum of the times required
to generate two separate plans, each identical to one
of the branches. We illustrate this with the run-
ning example. If we ignore the possibility of rain,
a simple solution is a plan with four steps, GO-CAFE;
BUY-COFFEE; GO-OFFICE; DELIVER-COFFEE, which can be
generated by Mahinur in 0.24 CPU seconds using
40 plan nodes. When we re-introduce the possi-
bility of rain, the solution has two branches be-
cause if is is raining, the robot needs to get an um-
brella: ~ SEE-IF-RAINING; if raining (GET-UMBRELLA;
GO-CAFE; BUY-COFFEE; GO-OFFICE; DELIVER-COFFEE);
if not raining (GO-CAFE; BUY-COFFEE; GO-OFFICE;
DELIVER-COFFEE). The two branches are similar to one
another, but it takes Mahinur 27.66 CPU seconds and
6902 plan nodes to generate the branching plan.?

The problem results from the backwards-chaining
approach taken by Mahinur and other planning sys-
tems. When a new step is inserted into the plan, it
is not part of any branch; it is put into a branch (by
the constrain-to-branch procedure in Mahinur) only af-
ter a threat is detected between two steps that should

3Unfortunately, benchmark problems and implemented
systems for comparison of probabilistic conditional plan-
ners are not available. However, the examples given in
the literature suggest that other conditional planners suf-
fer from similar exponential explosion of the search space.

Run time (sec.) Plans created
Problem with | without | with without
coffee 1.35 27.66 105 6902
coffee,cream 1.81 687.13 178 57912
coffee,cream sugar | 2.73 — 398 | >350000

Figure 4: Effects of the threat resolution heuristic.

be in separate branches. However, in addition to con-
straining, the planner needs to consider several other
methods of threat resolution, resulting in exponential
explosion of the search space. The intuitive solution
is to prefer constraining a new step to be in a new
branch when a conditional branch is being formed, i.e.,
corrective repairs are being performed. This can be
implemented easily as a heuristic in the framework of
our algorithm: while generating a new branch follow-
ing observe step I, if a newly inserted step threatens a
step in the first branch, prefer to resolve the threat by
placing the new step into the new branch of I if it is
consistent to do so.

We illustrate the proportionality of our heuristic’s ef-
fect on variations of the BUY COFFEE problem. The first
problem is the basic problem, including the possibility
of rain; there are five steps in the new branch. In the
second problem, we added a new step (GET-CREAM) to
the problem, increasing the number of the steps in the
new branch to 6. In the third problem, we also added
the GET-SUGAR step. In Fig. 4, we tabulate the run time
and the number of plans created while generating con-
ditional plans with and without the threat resolution
heuristic. (We terminated the experiment marked with
“—> after 24 hours and 350000 plan nodes.) As ex-
pected, the search space is reduced significantly when
the heuristic is used to control the search, and the re-
duction is proportional to the number of steps in the
new branch. This heuristic proved to be very effective
enabling us to generate plans with tens of steps and
conditional branches in just a few seconds.

Selecting Contingencies

A plan is composed of many steps that establish con-
ditions to support the goals and subgoals, but repairs
for the failure of conditions are usually not expected
to have equal contributions to the overall success of
the plan. With the notable exception of (Feldman &
Sproul 1977), the decision theoretic prioritization of re-
pair points has not been a focus of recent systems. To
identify the best repair points, we focus on two facts:
first, contingencies in a plan may have unequal proba-
bility of occurrence; second, a plan may have multiple
goals, each of which has some associated value. Let us
leave the probability of failure aside for a moment, and

consider the robot in the the previous examples and a
plan involving two goals: mailing a document at the
post office and delivering coffee to the user. The value
of achieving the former goal may be significantly higher
than the latter. Consequently, the conditions that sup-
port only the former goal (e.g., having envelopes) con-
tribute more to the overall success of the plan than
the conditions that support only the latter (e.g., hav-
ing sugar). Conditions that support both goals (e.g.,
keeping the robot dry) will have the greatest impor-
tance. This suggests that it may be most important
to have a contingency plan to handle the possibility of
rain; almost as important to have a contingency plan
in case there are no envelopes in the office; and less
important to have a contingency plan in case there is
no sugar. While performing this reasoning, we can fold
the probability of failure back in as a weighing factor.

Of course, in reality the importance of having con-
tingency plans will also depend on the likely difficulty
of replanning “on-the-fly” for particular contingencies;
it may be worth reasoning in advance about contin-
gencies that are difficult to plan for. Another factor
influencing the choice of a contingency is the difficulty
of executing a contingent plan if not considered in ad-
vance. These types of information concern the plan
that has not yet been generated, which suggests that
they might have to be coded as part of the domain
information, based on past experience.

Even if this type of domain information is not avail-
able, we can use the upper bound of the expected value
of repairing a failure point as a good estimate for se-
lecting contingencies. Suppose that a step S; is used
to establish a condition ¢, and the probability of that
c will be false right after S; is executed is p > 0. Then,
the best the planner can do is to add a new branch that
will make the top-level goals true even when ¢ is not
true. What is the value of adding such a branch? In
computing this, we need to consider only the probabil-
ity that immediately after executing S;, both ¢ and the
top-level goals will be false: if a top-level goal is true
anyway after executing S;, then there is no benefit to
establishing it. We also need to factor in the probabil-
ity that S; will be executed in the first place. (If it is
downstream from another branch point, it may never
be executed.) The upper bound on the expected value
of performing a corrective repair on S; in the case in
which desired outcome ¢ may fail is defined as follows:

> gec Pl{e g} U Sci

where P[{z1,...,2,}|sdo, < Si,...,S; >] denotes the
probability that {z1,...,z,} all hold in the state dis-
tribution resulting from the execution of the steps

sdg, < S1,...,8i >] x V(G),

through S; starting with the initial state distribution
sdy. Sc; is the context of the step, i.e., the conditions
under which the step will be executed.* That is, for
each top-level goal g in G, we compute the probabil-
ity that immediately after performing step S;, ¢ and
g will both fail to hold while all the effects of S; ex-
cept ¢ hold. We then weight the value of G (V(G))
by this probability, and finally sum all the weighted
values. As noted, this is an upper bound; the actual
value of corrective repair of s; might be less if the re-
pair only probabilistically establishes G, or if there are
other steps in the original plan that achieve G without
using ¢ in sd;. Our strategy for selecting contingen-
cies is to use the formula above to compute EV CR for
each failure point and then to select the one with the
highest value.

In order to illustrate the importance of this process,
we have designed a synthetic domain with several top-
level goals all of which have unit value (Fig. 5). We
then ran experiments in which we started with an ini-
tial plan where each goal is achieved by a single step
that has no preconditions, and achieves the goal with
some probability (Fig 5a). In addition to the opera-
tors in the initial plan, we designed a set of alternative
operators each of which achieves a goal with certainty.
(Imagine that the probabilistic operator in the initial
plan is cheaper to execute, and it is preferable to try it
first and use the alternative only if it fails). In order to
establish a baseline case, we designed the alternative
operators to have the minimal planning effort, i.e., per-
forming a corrective repair involves forming a branch
with one step to establish the goal. This also made
the corrective repair effort to be uniform for each fail-
ure point: each can be repaired by generating a one-
step plan. We implemented our strategy for selecting
contingencies and ran several experiments by increas-
ing the user-specified expected value threshold. In one
condition—ordered selection—we selected the contin-
gency with the highest expected value for corrective
repairs; and in another condition random selection
we selected a contingency randomly (ordered selection
always selects steps A1, B1 ...11). In Fig. 6, we plot
the time required to meet the threshold with and with-
out ordering contingencies. As expected, by ordering
contingencies, the planner can produce better plans in
shorter time. Note that, the two lines converge to the
same point because once all the failures are repaired,
the total expected value of the plan is the same and

4Actually, the probability of Sc; should be computed
for the state that obtains just prior to the execution of S;.
However, for simplicity in the formula we compute it in the
state that obtains after S; is executed; this does not affect
the result because a step cannot change its own context.

INITIAL PLAN:

STEP-A1

Alternative actions:

[

GOALSABCDEFGH I
@ (b)

Figure 5: A synthetic domain for experiments.

160 T T T T

Ordered contingency selection ——
Random contingency selection ----- T
140 | 4

120 | 1
100 |- «

sof / R

Run time (seconds)

60 1
40 4

20 4

0 L L L L L L L L L
] 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1

0.5
Threshold

Figure 6: Time required to generate a plan that meets
the threshold.

the total cost of repairing all the failures is the same.

A similar strategy can be used for estimating the
expected value of performing preventive repairs, but
we omit discussion due to space limitations.

Generating Plans with Joined Branches

The efficiency of performing corrective repairs can be
further improved by sharing the final parts of two
branches if they are the same. CNLP-style conditional
planners cannot generate plans with joined branches
because they duplicate the top-level goals and re-
generate every step even if they are the same as the
existing branch. However, branches can be joined by
nondeterministically choosing and duplicating a sub-
goal rather than a top-level goal. Suppose that the de-
livery robot has a detailed plan to go back to the office
after picking up the coffee, and is generating contin-
gency plans for the possible failures regarding coffee
pick up. In such a situation, it might be more efficient
to focus on the subgoal of getting coffee rather than
revising the whole plan.

We have implemented this method in Mahinur in the

1]

T il .

ﬁ,é:i,,,,\
_donothing

N

Figure 7: Corrective repairs with branch joining.

following way: consider the plan in Fig. 7 and suppose
that STEP-I can fail to establish ¢ for STEP-J and this
failure point has been selected for corrective repairs.
Then, rather than duplicating the top level goal, the
planner duplicates just STEP-J’s triggers—i—and tries
to find a conditional branch that establishes i with-
out using support from STEP-I. The remainder of the
plan (STEP-J and STEP-K) remains the same, and does
not have to be regenerated. If the planner fails to find
a plan for 4, it backtracks and tries to duplicate the
triggers of the next step that is connected by a causal
link to the step it has just tried the next step in the
causal link path is STEP-X in this example. Imagine
that the planner first tries to find alternative ways of
getting coffee and then tries another beverage if this
fails. Backtracking stops when a top-level goal needs
to be duplicated. Note that our work focuses on gener-
ating plans with joined branches rather than merging
already formed branches.

The step whose triggers are duplicated is called a
branch join point (e.g., STEP-J in Fig. 7). No steps
are necessary if STEP-I succeeds, and alternative step
(S-ALTERN) will be executed if STEP-I fails. The remain-
der of the plan is shared by the two branches.

We conducted a set of experiments to show the
possible benefits of branch joining. In these experi-
ments, we used a set of coffee domain problems analo-
gous to the ship-reject problem in C-Buridan (Draper,
Hanks, & Weld 1994). In these problems, the robot
asks whether decaffeinated coffee is available and gets
it. If not available, it gets regular coffee. Both

2.4

22 | -]

2+ With branch joining — 4
Without branch joining -----
18 | 4

16 b

14 | B

Run time (seconds)

12 1

08| I 1

A 0 s

5
Experiment

Figure 8: The CPU time required with and without
branch joining to solve planning problems of increasing
complexity.

have the same price, so the steps to pay for the
coffee and to go back to the office can be shared.
Without branch joining, the solution conditional plan
is: ASK; if available (GET-DECAF; PAY; GO-OFFICE;
DELIVER-COFFEE); if not available (GET-REGULAR;
PAY; GO-OFFICE; DELIVER-COFFEE). If branch joining is
performed during corrective repairs, the last three
steps of each branch can be shared.

If branch joining is used, the planner saves some of
the effort of generating the sequence of steps after the
branch join point. In order to demonstrate this, we
designed a set of 9 problems based on the above prob-
lem. We made the plan generation process harder by
putting more alternative steps into the domain descrip-
tion: In the first problem, there are no alternatives to
the final three steps; in the second problem, each can
be performed in two ways; and in the ninth problem,
each can be performed in nine ways. For each prob-
lem, we plotted the CPU time required to generate the
conditional branch with and without branch joining in
Fig. 8. As expected, the planning effort does not in-
crease when branch joining is used because the plan
after the branch join point is reused while forming the
new branch. When branch joining is not used, it takes
the planner longer to generate the same plan because
the part after the branch join point needs to be gener-
ated from scratch.

On the other hand, the planner needs to backtrack
if it cannot find a plan with joined branches. In our
implementation, when branch joining is enabled, the
planner first duplicates the triggers of the first action
that is supported by the condition which may fail. If
no plan is found, it tries the next step in the path
of causal links and continues until a top-level goal is

reached. (We do not consider re-opening every set of
possible subgoals because once the top-level goals are
re-opened, an entirely new plan can be found). Ob-
viously, if the planner spends too much time trying
to find a plan with joined branches when none exists,
its performance will be worse than directly duplicat-
ing the top-level goals. As a result, domain-dependent
tuning may be required to determine whether branch
joining will be attempted and to select the step to be
used as a branch join point. Nonetheless, the results
are promising and we are optimistic about the effec-
tiveness of our method because the savings obtained
by branch joining can be significant and a strategy for
branch joining can be determined by compiling typical
problem instances in a domain. Branch joining is use-
ful because it lets the planner focus on the steps that
are in the vicinity of the possible failure rather than
the top-level goals.

Conclusion

In real-world environments, planners must deal with
the fact that actions do not always have certain out-
comes, and that the state of the world will not always
be completely known. Good plans can nonetheless be
formed if the agent has knowledge of the probabilities
of action outcomes and/or can observe the world. In-
tuitively, if an agent does not know what the world will
be like at some point in its plan, there are two things it
can do: (i) it can take steps to increase the likelihood
that the world will be a certain way, and (ii) it can plan
to observe the world, and then take corrective action if
things are not the way the should be. These basic ideas
have been included, in different ways, in the prior lit-
erature on conditional and probabilistic planning. The
focus of this paper has been to synthesize this prior
work in a unifying algorithm that cleanly separates the
control process from the plan refinement process. Us-
ing our framework, contingencies can be handled selec-
tively and heuristics that depend on the type of repair
being performed can be used. This control is an im-
portant condition for applying conditional probabilis-
tic planning to real world problems. We have obtained
promising early results in a realistic domain(Desimone
& Agosta 1994), and we will make the Mahinur system
and the domain encoding publicly available.

Acknowledgments

This work has been supported by a scholarship from
the Scientific and Technical Research Council of
Turkey, by the Air Force Office of Scientific Research
(F49620-98-1-0436), and by the National Science Foun-
dation (IRI-9619579). We thank the anonymous re-

viewers for their comments.

References

Blythe, J., and Veloso, M. 1997. Analogical replay for
efficient conditional planning. In Proc. 15th Nat. Conf.
on AI 668 673.

Blythe, J. 1995. The footprint principle for heuristics for
probabilistic planners. In Proc. European Workshop on
Planning.

Dearden, R., and Boutilier, C. 1997. Abstraction and
approximate decision theoretic planning. Artificial Intel-
ligence 89(1):219-283.

Desimone, R. V., and Agosta, J. M. 1994. Spill response
system configuration study final report. Technical Re-
port ITAD-4368-FR-94-236, SRI International.

Draper, D.; Hanks, S.; and Weld, D. 1994. Probabilistic
planning with information gathering and contingent exe-
cution. In Proc. 2nd Int. Conf. on AI Planning Systems,
31-36.

Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-
in-case scheduling. In Proc. 12th Nat. Conf. on AL

Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.;
and Williamson, M. 1992. An approach to planning with
incomplete information. In Proc. 3rd Int. Conf. on Prin-
ciples of Knowledge Repr. and Reasoning, 115-125.

Feldman, J. A.; and Sproul, R. F. 1977. Decision theory
and AI II: The hungry monkey. Cognitive Science 1:158—
192.

Goldman, R. P.; and Boddy, M. S. 1994a. Conditional
linear planning. In Proc. 2nd Int. Conf. on AI Planning
Systems, 80 85.

Goldman, R. P., and Boddy, M. S. 1994b. Epsilon-safe

planning. In Proc. 10th Conf. on Uncertainty in Al 253—
261.

Goldman; R. P., and Boddy, M. S. 1996. Expressive
planning and explicit knowledge. In Proc. 3rd Int. Conf.
on AI Planning Systems, 110-117.

Haddawy, P.; Doan, A.; and Goodwin, R. 1995. Effi-
cient decision-theoretic planning: Techniques and empiri-
cal analysis. In Proc. 11th Conf. on Uncertainty in AL
Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning. Artificial Intelligence
76:239 286.

Onder, N., and Pollack, M. E. 1997. Contingency selection
in plan generation. In Proc. European Conf. on Planning,
364 376.

Peot, M. A., and Smith, D. E. 1992. Conditional nonlinear

planning. In Proc. 1st Int. Conf. on AI Planning Systems,
189 197.

Pryor, L., and Collins, G. 1996. Planning for contingen-
cies: A decision based approach. Journal of AI Research
4:287-339.

Warren, D. H. 1976. Generating conditional plans and
programs. In Proc. AISB Summer Conference, 344 354.
Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998.
Extending graphplan to handle uncertainty and sensing
actions. In Proc. 16th Nat. Conf. on AI 897 904.

Weld, D. S. 1994. An introduction to least commitment
planning. AI Magazine 15(4):27 61.

