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Abstract

To secure good deals, an agent may engage in multiple con-
current negotiations for a particular good or service. How-
ever for this to be effective, the agent needs to carefully co-
ordinate its negotiations. At a basic level, such coordination
should ensure the agent does not procure more of the good
than is needed. But to really derive benefit from such an ap-
proach, the agent needs the concurrent encounters to mutu-
ally influence one another (e.g. a good price with one op-
ponent should enable an agent to negotiate more strongly
in the other interactions). To this end, this paper presents
a novel heuristic model for coordinating multiple bilateral
negotiations. The model is empirically evaluated and shown
to be effective and robust in a range of negotiation scenar-
ios.

1. Introduction

Automated negotiation is a key form of interaction in agent-
based systems and such negotiations exist in many differ-
ent forms [5]. In this paper, we focus on one such form,
namely one-to-many negotiations in service-oriented con-
texts. Here, a service is simply viewed as an abstract rep-
resentation of an agent’s capability (this view is now
widespread in a range of domains that we are target-
ing for our work, including the web, the grid, perva-
sive computing and e-business). Thus, one agent is seeking
to provision a single service (described by multiple at-
tributes, such as cost, time, quality, etc.) from a number
of potential providers. Now this type of encounter is usu-
ally handled via some form of single-sided (reverse)
auction protocol. However, in [6], we introduced multi-
ple, concurrent bilateral negotiations as an alternative. Our
approach offers a number of advantages over its more tra-
ditional counterpart (especially in the time-constrained
environments that motivate our work).

∗ This work is sponsored by BT Exact.

First, in most reverse auctions, the buyer is only al-
lowed to select an agreement from the set proposed by
the sellers. On the other hand, the buyer in our approach
can also send proposals and counter-proposals. For multi-
dimensional agreements, this two way communication is
important because it allows the buyer to provide an indica-
tion of the areas of the search space where it would like to
see the agreements lie. This, in turn, should lead to more ef-
ficient negotiations because the agents can focus on the rel-
evant areas of the space more rapidly. Moreover, separate
bi-lateral encounters (threads) enable the buyer agent to de-
ploy different strategies in each. Thus, in some cases, it will
adopt a very tough bargaining stance in order to try and ob-
tain a high value agreement, while in other cases it can adopt
a strategy that is more likely to lead to an agreement (but
perhaps one that is not as valuable). This variability means
negotiation can be tailored to the individual opponents (e.g.
some opponents may be known to be desperate to obtain a
deal), rather than derived implicitly though the competition
of the sellers (as happens in the traditional auctions). Also,
the agreement reached in one thread can be used to influ-
ence negotiation behavior in other threads. This gives the
buyer additional strategic information (and hence bargain-
ing power) that can be exploited to obtain better deals.

Second, the time at which an agreement is reached in the
multiple concurrent negotiation case can be reduced. For
auctions that do not have deadlines, the end time is indeter-
minate which is unacceptable for our time-constrained do-
main. In auctions where there is a deadline, no agreement
can be reached before this time. On the other hand, by us-
ing multiple concurrent negotiations, deals are likely to be
available before the overall deadline and if these are deemed
satisfactory the agent may decide to terminate other negoti-
ations (perhaps sacrificing some potential gain) in order to
take benefit from the agreed deal more quickly.

The downside of the concurrent negotiation approach is
that the agent has to coordinate its bidding behavior across
multiple negotiation threads. At a basic level, such coor-
dination needs to ensure the agent does not procure more
of the good than is needed. However to really derive ben-



efit from such an approach, the agent needs the concur-
rent encounters tomutually influence one another. Thus a
good deal reached in one negotiation thread should enable
it to negotiate more strongly in remaining threads because
it already has a good deal that it can fall back on. In con-
trast, this coordination in auctions is enforced by the auc-
tion protocol which, in a sense, serializes the bidding and
the buyer’s decision making problem.

Against this background, a number of coordination tech-
niques have been proposed (see section 4 for more details).
Generally speaking, however, these approaches suffer from
a number of shortcomings. First, most techniques deal with
the various sellers in a homogeneous way (i.e. the behav-
ior of the buyer agent is fixed throughout the negotiation
process, regardless of the agent it is dealing with). This
rigid approach is unlikely to be effective in open and dy-
namic environments because not all the participating sellers
are likely to be similar. They will typically come from var-
ious sources and have different objectives. Thus, some will
be desperately searching for an agreement, whereas others
will just be trying to improve their current positions. Con-
sequently, in order to be effective, the buyer agent needs
to be flexible in its bargaining behavior and change its ne-
gotiation strategy to fit with its prevailing context. Second,
the mutual influence capability of the existing techniques is
limited. It can only ensure that the threads will not accept
any agreement with a value lower than what has already
been achieved. While this may be adequate to secure a deal,
it does not allow the buyer to obtain the best possible agree-
ment. Third, existing techniques tend not to take into ac-
count available information about participating sellers (e.g.
their typical negotiation trends, or whether they seem to be
desperate to obtain a deal or adopt a tough stance). This
information is sometimes available in a social system of
agents [10], [4] and if known should be used to enable the
buyer agent to reach better deals.

To this end, in this paper we report on a novel coordina-
tion model that removes the aforementioned shortcomings.
Specifically, we develop a heuristic approach to coordinat-
ing multiple concurrent negotiations. In so doing, this work
advances the state of the art in the following ways. First,
prior to the negotiation episode, the buyer selects its nego-
tiation strategy for the various threads based on its belief
about the available service providers (this belief is repre-
sented as a probability distribution over the different types
of providers, see section 2.1). Second, we classify the sellers
according to their specific behaviors during the encounter
and, consequently, adapt the agent’s negotiation behavior
based on these classifications. Third, the results from a suc-
cessfully terminated thread can be used to influence other
ongoing threads. Finally, we empirically evaluate our model
against the other main approaches advocated in the litera-
ture and show that it can outperform them in a broad range

of negotiation situations.
The remainder of the paper is organized as follows: sec-

tion 2 details the coordination model and section 3 evalu-
ates it. Section 4 relates the model to current work in the
field and, finally, section 5 presents the conclusions.

2. The concurrent negotiation model

This work builds upon the basic model outlined in [6]. In
particular, the main contribution of this paper is in enhanc-
ing the coordinator component which was very simple in
the initial proposal (see section 4 for more details). Before
we can focus on this component, however, we first need to
recap the basic architecture of our model. The agent that
wishes to purchase the service is called thebuyer and the
agents that are capable of providing the service are called
the sellers. Service agreements (contracts) are assumed to
be multi-dimensional. The buyer has a hard deadlinet bmax

by when it must conclude its negotiations for the service.
Similarly, each sellerα has its own (private) negotiation
deadlinetαmax . All agents have their own preferences about
the service and this information is private. Each agent has
a range of strategies (S) that it can adopt1 and its choice of
strategy is also private information. Each thread follows a
Sequential Alternating Protocol [9] where at each step an
agent can either accept the offer from the opponent, pro-
pose its counter-offer, or opt out of the negotiation (typi-
cally if its deadline is reached).

Thread 1

Thread 2

Thread n

Seller 1

Seller 2

Seller n

Buyer Agent

C
o

o
rd

in
a

to
r

Figure 1. System architecture.

In more detail, the model for the buyer agent consists of
two main components: acoordinator and a number ofnego-
tiation threads (see figure 1). The negotiation threads deal
directly with the various sellers (one per seller) and are re-
sponsible for deciding what counter-offers to send to them

1 Given the time-constrained nature of our encounters, the types of strat-
egy that we consider are the time-dependent family introduced in [3].
These can be broadly divided into three classes: theconceder strategy
quickly lowers its value until it reaches its reservation (minimum ac-
ceptable) value. Thelinear strategy drops to its reservation value in
a steady fashion. Finally, thetough strategy keeps its value until the
deadline approaches and then it rapidly drops to its reservation value.



and what proposals to accept. Each thread inherits the pref-
erences from the main buyer agent, including the acceptable
ranges of values for each negotiation issue, the deadline of
the negotiation and the current reservation value (the low-
est utility value of an offer that the agent considers accept-
able). The coordinator decides the negotiation strategies for
each thread (details of how it does this are given in section
2.1). After each round2, the threads report back their status
to the coordinator. If a thread reaches a deal with a particu-
lar seller, it terminates its negotiation. The coordinator will
then notify all other negotiation threads of the new reser-
vation value and it may change the negotiation strategy for
some of them. The detailed working of the two components
are described below.

2.1. The coordinator

The coordinator is the most important component of the
buyer. It is responsible for coordinating all the negotiation
threads and choosing an appropriate negotiation strategy for
each thread.

Before starting a negotiation, the coordinator consid-
ers the available information about the types of the sellers
that are in the environment. In our case, we consider that
seller agents can be of the following types:conceder (i.e.
they are willing to concede in the search for deals) ornon-
conceder (i.e. they tend to negotiate in a tough manner). The
set of available agent types is denoted asA types : Atypes =
{con, non}. This information is represented as a probabil-
ity distribution over the agent types. Such information may
be based on past experiences, obtained from a trusted third
party, or from a system of referrals [4]. If no such informa-
tion is available, all agents are assumed to be unknown.

There are two further sources of information that aid the
coordinator’s decision making: thepercentage of success
matrix (PS) and thepay off matrix (PO). The former mea-
sures the chance of having an agreement as the outcome of
the negotiation when the buyer applies a particular strategy
to negotiate with a specific type of the seller (e.g. when ap-
plying a tough strategy with a non-conceder seller, the av-
erage chance of reaching an agreement is 15%). The latter
measures the average utility value of the agreement reached
in similar situations (e.g. when applying a tough strategy
with a conceder seller, the average utility value of the agree-
ment, once reached, is 0.7). The values of these matrices are
initially set to a common value to avoid bias3 and they are
updated after all the negotiation threads finish (by averag-
ing the values over a sufficient number of encounters, vari-

2 A round consists of the exchange of one offer and one counter-offer
between the buyer and all the sellers.

3 Naturally these matrices could have differential values if the appropri-
ate domain information was available in a particular context.

ances in deadlines and reservation values in the different en-
counters can be largely ignored).

Given this information, the coordinator calculates the
probability of the first seller (a randomly picked agent from
those that will be negotiated with for the service in ques-
tion) being of a specific type. Based on this, the agent cal-
culates the expected utility of applying the various strate-
gies at its disposal for this particular seller and selects the
one that maximizes this value. Formally, the expected util-
ity EU(λ) for strategyλ ∈ S is calculated as:

EU(λ) =
∑

a∈Atypes

PS(λ, a)PO(λ, a)P (a), (1)

whereP (a) is the probability that the seller agent is of type
a andPS andPO are the values in the corresponding ma-
trices, respectively. After finishing with the first seller, the
coordinator uses a Bayesian update function to update the
probability distribution of the agent types and continues on
with the second seller. This process is repeated until the co-
ordinator finishes allocating the strategies to all the negoti-
ation threads.

To illustrate this in more detail, consider the following
example. Assume the coordinator has the following data
prior to negotiation:

• there are 100 participating sellers (n = 100). The set
of sellers isAs = {α1, α2, . . . , α100} and this set is
composed of two types of sellers:As = Acon

⋃
Anon,

namelyconceder andnon-conceder.

• there are three available negotiation strategies that it
can select for a given thread:S = Sc

⋃
Sl

⋃
St,

namelyconceder, linear andtough.

• the probability that the first seller is a conceder,
P (α1 ∈ Acon) or P (Acon), is 0.45 and the probability
that the first seller is a non-conceder,P (α1 ∈ Anon)
or P (Anon), is 0.55.

• the values of the matricesPS andPO are:

PS Acon Anon

Sc 0.35 0.75
Sl 0.25 0.28
St 0.6 0.15

PO Acon Anon

Sc 0.5 0.4
Sl 0.35 0.4
St 0.7 0.65

Based on this information, the values for the EU func-
tions are calculated, using equation (1), as follows:

EU(Sc) = 0.35 * 0.5 * 0.45 + 0.75 * 0.4 * 0.55= 0.2438,

EU(Sl) = 0.25 * 0.35 * 0.45 + 0.28 * 0.4 * 0.55= 0.1010,

EU(St) = 0.6 * 0.7 * 0.45 + 0.15 * 0.65 * 0.55= 0.2426.

As can be seen, strategySc will be chosen for the
first thread. In other words, the highest expected utility is
achieved when considering sellerα1 as a non-conceder.



The probability distributionP (Acon) is then updated us-
ing Bayes rule as:

P (Acon|As \ α1) =
P (As \ α1|Acon)P (Acon)

P (As \ α1)

=
1 · P (Acon)

n−1
n

=
0.45
0.99

= 0.4545

Since there are only two types of seller: conceder and
non-conceder, we haveP (Anon) = 1 − P (Acon). Hence:

P (Anon|As \ α1) = 1 − P (Acon|As \ α1) = 0.5455

Here,P (Acon|As \ α1) is the probability that the sec-
ond seller is a conceder. Similarly,P (Anon|As \ α1) is un-
derstood as the probability that the second seller is a non-
conceder. Again, the values for the EU functions for the sec-
ond seller are calculated, using equation 1, as follows:

EU(Sc) = 0.35 * 0.5 * 0.4545 + 0.75 * 0.4 * 0.5455= 0.2432,

EU(Sl) = 0.25 * 0.35 * 0.4545 + 0.28 * 0.4 * 0.5455= 0.1009,

EU(St) = 0.6 * 0.7 * 0.4545 + 0.15 * 0.65 * 0.5455= 0.2441.

Now, St will be chosen as the strategy for the second
thread. The coordinator continues in this vein, until it fin-
ishes allocating the strategies to all the threads.

The other task of the coordinator is to classify the sellers
during negotiation and to change the negotiation strategies
for the threads. Specifically, the buyer attempts to character-
ize the sellers, based on the utility value of their proposals,
into the setsAcon, Anon. Thus, at timet: 2 < t ≤ tbmax ,
called theanalysis time, the coordinator tries to determine
if a given seller is aconceder or anon-conceder. In particu-
lar, assumeU(α, τ) is the utility value of the offer that seller
agentα made at timeτ: (1 ≤ τ ≤ t), according to the buyer
agent’s preferences. Then sellerα is considered aconceder
if ∀τ ∈ [3, t]: U(α,τ)−U(α,τ−1)

U(α,τ−1)−U(α,τ−2) > θ whereθ is the thresh-
old value set on concessionary behavior. If this condition is
violated, sellerα is considered anon-conceder.

Now, given the set of strategiesS and the set of clas-
sified seller agentsAs, the coordinator changes the strat-
egy for each negotiation thread based on the type of the
agent it believes it is negotiating with. Specifically, for
each agentα ∈ As, the coordinator selects the strategy
λ ∈ S that provides the maximum expected utility and ap-
plies it to the corresponding thread, using equation (1), with

P (j ∈ Atypes) =
{

1 if α is of type j
0 otherwise

2.2. The negotiation threads

An individual negotiation thread is responsible for dealing
with an individual seller agent on behalf of the buyer. Each

such thread inherits its preferences from the buyer agent and
has its negotiation strategy specified by the coordinator.

Initialize

Make offer

and propose

Wait for

reply
Got notified

Process the

notification
Terminate

Report back to

the coordinator

Change the

reservation

value/strategy

Figure 2. A single negotiation thread

In each thread (see figure 2), there are three main sub-
components; namelycommunication (represented by the
dotted lines),process (represented by the bold lines) and
strategy. Thecommunication subcomponent is responsible
for communicating with the coordinator. Before each round,
it checks for incoming messages from the coordinator and if
there are any, it passes them to theprocess subcomponent.
After each round, it reports the status of the thread back to
the coordinator. Theprocess subcomponent deals with mes-
sages from thecommunication subcomponent. This can ei-
ther be changing the reservation value or changing the strat-
egy. Thestrategy subcomponent is responsible for making
offers/counter-offers, as well as deciding whether or not to
accept the offer made by the seller agent. It uses the reser-
vation value as the basis for deciding whether to accept the
seller’s offer; in this case any offer with a value greater than
this is accepted, otherwise a counter-proposal is made (un-
less the deadline has passed in which case a decline is sent).

3. Empirical evaluation

Having outlined the model, the next step is to evaluate its
effectiveness. In this work,empirical evaluation is used as
the method of measurement for a number of reasons. First,
because our model is heuristic in nature, it is difficult to
make meaningful theoretical predictions. Second, there are
a number of internal variables that control the behavior of
the model, as well as external variables that define the envi-
ronment in which the model is being used. These variables
are interrelated and need to be considered in a broad range
of situations. Empirical techniques allow us to manipulate
these variables, conduct the experiments and analyze the re-
sults.

In more detail, we use theexploratory studies evalua-
tion technique [2]. With this method,general hypotheses
are formed to express the intuitions about the causal fac-
tors within the model. Theexperiments are then conducted



and generate the results that either support these hypotheses
or go against them. In our evaluation, theindependent vari-
ables are given in table 1 and thedependent ones are listed
in table 2.

Variables Descriptions values

n the number of seller agents [1,30]
m the number of negotiation issues [1,8]

tαmax the negotiation deadlines of agentα [5,30]
xα

jmin
minimum value for issuej for agentα [0, 20]

xα
jmax

maximum value for issuej for agentα [30, 50]

wα
j the weight of issuej for agentα 1

m

Table 1. The independent variables.

Since there are an infinite number of possible environ-
ments, selecting a finite subset of these is necessary to as-
sess the performance of the model. To this end, the num-
ber of seller agents (n) and the number of negotiation is-
sues (m) reflect typical values for our target domains. An
agentα’s preference for issuej is represented by the tu-
ple {xα

jmin
, xα

jmax
, wα

j }. The tuple [xα
jmin

, xα
jmax

] is an in-
terval independent variable, whose scale is infinite. To sim-
plify the analysis, therefore, we assume all issues have the
same domain of values and we randomly set the value for
xα

jmin
to be in the interval [0, 20] andxα

jmax
to be in the in-

terval [30, 50]. The values forwα
j are set to give all issues

equal importance. The negotiation deadline for each agent
is an ordinal independent variable, whose value is randomly
chosen, ranging from 5 (very short deadline) to 30 (long
deadline).

The seller agents in this evaluation are characterized by
three independent variables whose values are set in the fol-
lowing manner:

• the values’ domain for the set of negotiation issues:
These domains are randomly generated (from the same
distribution as the buyer agents’ values) so that each
domain intersects with the corresponding domain of
the buyer’s preference. For example, if the buyer’s
value domain for an issuej is [xb

jmin
, xb

jmax
] then the

corresponding value domain for sellerα will be gener-
ated as[xα

jmin
, xα

jmax
] that satisfiesxb

jmin
≤ xα

jmin
≤

xb
jmax

≤ xα
jmax

.

• the negotiation strategy: Each seller is assigned a ran-
dom strategy selected from a predefined set of alterna-
tions (as outlined in [3]). This set is composed of time-
dependant functions (like conceder, boulware and lin-
ear) and behavior-dependant tactics (such as tit-for-tat
in its various forms).

• the negotiation deadline: The deadline for each seller
is generated from the same distribution as for the
buyer.

We benchmark our model (noted aseCN - for
e-commerce Concurrent Negotiations) against the op-
timal solution (optimal) and three different controls,
namely desperate (D), patient (P) and optimized pa-
tient (OP). The optimal mechanism operates in a perfect
information situation in which the agents know the pref-
erences and strategies of other agents. Given this, the
buyer agent is able to find the Pareto optimal agree-
ment for each thread if such an agreement exists. If no
such agreement exists, the utility of that thread is consid-
ered to be 0. The individual agreement that maximizes the
buyer agent’s utility is then selected as the optimal solu-
tion. The other three controls are based on the theoretical
work of [8], which is the only other extant model that deals
explicitly with concurrent encounters. Basically,D termi-
nates all the negotiations whenever an agreement is found
in any one thread,P waits until all the negotiations fin-
ish and then selects the highest value agreement as the
final answer, andOP extendsP in that whenever an agree-
ment is found, its value is broadcast to all other ongoing
threads so that they will not accept a lower value agree-
ment.

Variables Descriptions

U the utility value of the final agreement
N the number of successful negotiations

Table 2. The dependent variables.

After each experiment, we measure the utility value of
the final agreement for the buyer (U). In our evaluation, the
utility of an offerX = {x1, x2 . . . xm} to an agentα is cal-
culated as:

U(X) =
m∑

j=1

wα
j · xj − xα

jmin

xα
jmax

− xα
jmin

(2)

We also measure the number of agreements reached (as
a percentage) during the whole negotiation encounter (N).
In all cases, the results are gathered from a series of exper-
iments in different environment settings. Each experiment
consists of 2000 runs and the results are averaged and put
through a regression test to ensure that all differences are
significant at the 99% confidence level.

We now turn to the specific hypotheses.

Hypothesis 1 Our model will achieve more and higher util-
ity agreements than the controls.

To evaluate this hypothesis, we average the utili-
ties achieved with varying numbers of seller agents and
varying deadlines. The results of our model, the con-
trols and the optimal are displayed in figure 3. As can
be seen, our model is between 6-8% better than the clos-
est control and between 11-21% lower than the optimal.
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Figure 3. Final utility value for varying num-
bers of sellers.

Amongst the controls,D has the worst utility (since it ter-
minates whenever an agreement is reached),P has a
better utility (since it waits until all the negotiations fin-
ish and selects the best deal), andOP provides the best
utility (since it is an improved version ofP). Conse-
quently, from now on, we will only focus onOP as the
main point of comparison.

Fundamentally, our model differs from the others in the
way that the buyer agent behaves both prior to and dur-
ing the negotiation process. Unlike the controls, in which
the strategy employed by the buyer stays constant through-
out the negotiation episode, each negotiation thread in our
model will change its strategy if it believes there is a benefit
in so doing. Recall from section 2.1, our agent selects its ini-
tial strategies based on its beliefs about the opponents that it
is likely to encounter4. Specifically, as the sellers have dif-
ferent objectives, they are likely to behave differently. Some
desperately want to sell their services, while others will only
agree to a deal if it will benefit them more than what they
already have. Since we do not know the exact characteris-
tic of each seller, our initial strategy selection is not guar-
anteed to be accurate. However, we overcome this prob-
lem by reclassifying the sellers during the negotiation pro-
cess (based on their actual behaviors rather than the gen-
eral market beliefs). Based on this classification, some of
the threads change their strategies. In some cases, this flex-
ible behavior of the buyer agent helps it finds high value
agreements that would not have been found otherwise. In
our experiments, for example, we found that in 30-40% of
threads where an agent changes its strategy an agreement
is reached where one would not have been possible without

4 Naturally, these beliefs may not necessarily be true. Therefore we ex-
amine the effect of the accuracy of this initial selection on the model’s
performance in hypothesis 4.

the change. Consequently, this increases the buyer’s utility
and leads to an improvement in the model’s performance.
The improvement in utility is particularly marked when the
buyer can recognize a conceder seller and can negotiate in
a very tough manner to obtain a high value deal.

However, it is not always beneficial for an agent to
change its strategy. This is particularly the case when it
leads to conflict between the buyer and the seller and no
agreement can be reached. Thus, in 12% of threads where
an agent changed its strategy, no agreement was reached,
whereas without such a change an agreement would have
been found (although this may not have been the agent’s
overall agreement).

No of sellers 5 10 15 20 25 30

eCN 1418 1615 1710 1762 1802 1830
OP 1389 1593 1690 1744 1776 1804
optimal 1686 1827 1887 1908 1928 1946

Table 3. Number of successful negotiations.

In terms of agreements made, as can be seen from ta-
ble 3, our model produces more agreements than the others.
This improvement can also be explained by the adaptive na-
ture of our strategy selection. Compared to the controls, the
number of times our strategy selection leads to a conflict is
lower than the number of times it leads to an agreement.
This, in turn, leads to a modest increase in the number of
successful negotiations.

Hypothesis 2 To realize the benefits of our model, the
buyer agent’s deadline cannot be too short.

Figure 4 shows the difference in the performance of our
model compared toOP with different values of the buyer’s
deadline. As can be seen, the longer the deadline, the better
the performance of our model. This is because the buyer’s
deadline affects our classification of the sellers which is
a key deciding factor for our improved performance over
other controls (see hypothesis 1). Recall from section 2.1,
the buyer categorizes the sellers according to their propos-
als’ utility values. Thus, if the deadline is too short, the data
gathered is insufficient for the buyer to detect a meaningful
pattern in the behavior of a particular seller. Thus, the clas-
sification of sellers is inaccurate and so the model performs
poorly. On the other hand, given an adequate negotiation
deadline (above 10 in this case), the buyer will have more
data to analyze the sellers’ behaviors. This, in turn, im-
proves the accuracy of the classification process and, even-
tually, leads to better deals.

In our experiments, most of the final agreements are ob-
tained from threads that adapt their strategies after the clas-
sification process (this occurred in about 75% of all the
tests). This figure further explains why accurately classifi-
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Figure 4. Buyer’s performance for varying
deadlines.

cation of the sellers plays such an important role in improv-
ing the model’s performance.

Hypothesis 3 The larger the number of participants, the
closer the utility produced by our model is to the optimal.

Here, we measure the differences in the results obtained
by our model with the optimal as the number of participants
increases. The results with respect to utility and number of
agreements are displayed in table 4.

No of sellers 5 10 15 20 25 30

U(eCN) 0.56 0.61 0.64 0.66 0.68 0.70
U(eCN) tbmax ≥ 15 0.62 0.67 0.70 0.72 0.75 0.76
U(optimal) 0.76 0.77 0.78 0.79 0.80 0.81
N(eCN) 1418 1615 1710 1762 1802 1830
N(eCN) tbmax ≥ 15 1499 1672 1753 1797 1830 1860
N(optimal) 1686 1827 1887 1908 1928 1946

Table 4. Buyer’s performance with varying
numbers of sellers.

As can be seen, the greater the number of participating
sellers, the closer our result is to the optimal. Specifically,
the gap between the results decreases from 18% to 9% as
the number of sellers increases from 5 to 30. This is ex-
plained by the fact that the buyer only finalizes the deal with
the seller that provides the highest value deal. Thus, as the
number of sellers increases, so does the number of agree-
ments reached by the threads. Since these agreements are
used to influence other ongoing threads, the utility value of
the final agreement will be improved. This is also the sit-
uation for the number of successful negotiations. With 5
sellers, the agent only succeeds in 40% of the encounters.
However, this rate increases to nearly 82% when there are
30 participating sellers. Furthermore, if we only consider
cases where the buyer has a sufficient deadline (larger than

10 units in this case), our results come even closer to the
optimal (the gap decreases from 15% to 4%, whereas the
success rate is increased from 52% to 87%). Again this is
mainly due to the accuracy of our classification process (see
hypothesis 2).

Hypothesis 4 The more accurate the agent’s information
about the probability distribution of agent types, the better
the performance of our model.

To ensure our model can perform robustly in unpre-
dictable environments, this set of experiments evaluates its
reliance on the accuracy of information an agent holds about
the market place. Specifically, we consider the degree to
which the probability distributionP (defined in section 2.1)
matches reality and what impact this has on the initial se-
lection of negotiation strategies.
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Figure 5. The accuracy of the belief versus
the performances.

The initial selection of strategies is only part of the story
since the buyer agent can reclassify the sellers and change
its strategy. Nevertheless, it can be observed from figure
55 that the accuracy of this information does have an ef-
fect on the result of the process, albeit by a small figure
(1-2%). In our experiments, about 9% of the agreements
were reached in threads before the sellers’ classification oc-
curs and some of these initial agreements become the fi-
nal solutions at the end of the encounter process. Thus, the
aforementioned small improvement was made by improv-
ing these early agreements.

5 Here, theunknown plot corresponds to the case whereP has equal val-
ues throughout,50% to the case where half of the values inP are cor-
rect, and100% is whereP reflects the actual strategies of the sellers.
OP does not useP in its decision making andoptimal also operates
with the correct values for the sellers’ strategies.



4. Related work

Most of the existing work in the area of one-to-many nego-
tiations uses some form of single-sided auction. However
while this has many advantages in a range of scenarios, it
also has a number of shortcomings as discussed in section
1. Thus, a number of researchers have considered multiple
concurrent negotiations as an alternative.

In AutONA [1], concurrent negotiation is used in the do-
main of operational procurement. In more detail, the buyer
agent in AutONA seeks to buy a good that consists of multi-
ple purchase units from several sellers. It tries to divide the
quantity up among the sellers and for each seller it generates
offers using a belief system over price (a probability distri-
bution over prices per unit, parameterized by the properties
each unit may have). The negotiation finishes when an ac-
ceptable solution is found. AutONA has been empirically
evaluated and is shown to secure good outcomes. How-
ever, this approach is not suitable in our context because we
want to procure an indivisible good (a service) from a sin-
gle provider whereas AutONA focuses on dividing the good
among all the potential sellers. If we wanted to extend our
model to deal with procuring multiple instances of a partic-
ular service then AutONA’s strategy could be exploited to
complement our own.

On the other hand, the theoretical model presented in [8]
has the same objective as our work. They also use the same
basic concepts of sub-negotiators and a coordinating agent.
However, their coordination mechanisms are limited (see
theD, P andOP strategies in section 3) and we have shown
that our coordination mechanism is significantly more ef-
fective.

In our previous work, we developed a simple coordina-
tor for this target environment and we showed the bene-
fits of our approach over a series of sequential negotiations
[6]. The work described in this paper, however, extends this
basic coordination mechanism in two ways: (1) the initial
strategy selection is based on the buyer’s beliefs about the
potential providers (previously we did not take into account
this information) and (2) the mutual influence capability is
improved (previously we changed the strategies at the anal-
ysis time in a randomized way).

5. Conclusions and future work

This paper has developed a novel heuristic model for man-
aging concurrent negotiations in time-constrained settings.
Through empirical evaluation, we showed how the model
leads to good deals. This is especially true when there are
large numbers of participants and when the agent is given
sufficient time to reach a deal. We also showed that our
coordination mechanism outperforms the existing mecha-
nisms proposed in the literature, both in terms of the number

of deals that are made and the utility obtained from them.
Our model is also currently being used in a number of real
world applications to form and maintain coalitions in busi-
ness and e-science virtual organizations [7] and in an inter-
nal project of BT concerned with logistics planning.

For the future, there are a number of ways in which our
model can be improved. First, we want to extend our ne-
gotiation model so that the participating providers can also
renege from deals (as it stands, this capability is only avail-
able to the buyer agent). This, in turn, will allow the agents
to behave in a more flexible and efficient manner. Second,
we believe the solution found by our model can be still fur-
ther improved by incorporating some form of reinforcement
learning into the seller classification process. This will help
increase the accuracy of this process and will, in turn, re-
sult in higher performance of the model.
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