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1 Introduction

The goal of Arti�cial Intelligence is the design of systems that behave in-

telligently. We want to build intelligent actors, not just intelligent thinkers.

Indeed, it is not even clear how one could assess intelligence in a system that

never acted|or, put otherwise, how a system could exhibit intelligence in

the absence of action. It is therefore not surprising that planning has always

been an important landmark on the map of arti�cial intelligence. Intelligent

creatures, like us or the agents we want to design, inhabit complex environ-

ments, which they manipulate in complex ways. To do this, they need to

reason about what to do. They need to plan.

Or so the commonsense story goes. Of late there have been a number of

challenges to this story. Some have suggested that most of the deliberate,

apparently planned quality of intelligent action is actually ephiphenomenal.

They argue that intelligent action can be achieved without anything like what

we would want to call reasoning. A second set of challenges is methodological.

Some researchers have argued that while the process of planning may, in the

end, turn out to be relevant to the design of intelligent systems, it is not

yet fruitful to attempt to understand planning. There are other problems,

such as enabling locomotion or accurate vision, that must be solved �rst.

Until we solve these problems, we will not even be sure that we need to

develop planning mechanisms. Brooks's Computers and Thought lecture is

an important example of both kinds of challenge to AI models of planning

[9].

In this paper, I will argue that, contrary to these challenges, planning de-

serves its central place on the AI map. I will claim that intelligent agents

are planning agents, and that philosophical and commonsense psychological

theorizing about the process of planning can provide useful insights into the

question of agent design. The theories I have in mind are not restricted to
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how agents can form plans. Much of my research has concerned the ways in

which intelligent agents use their plans. I will describe some of that research,

and will argue that plans are used not only to guide action, but also to control

reasoning and to enable inter-agent coordination. These uses of plans make

possible intelligent behavior in complex, dynamic, multiagent environments.

2 Planning

We can begin by asking what exactly we mean by \planning". For many

years, planning had a quite speci�c meaning in AI: it was the process of

formulating a program of action to achieve some speci�ed goal. You gave a

planning system a description of initial conditions and a goal, and it produced

a plan of action whose execution in a state satisfying the initial conditions

was guaranteed to result in a state satisfying the goal. These plans were akin

to recipes for achieving the goal. Your goal might be to have a chocolate

cake. In the initial state, you might have eggs, milk, and chocolate, a pan

and a working oven. In these conditions, a valid plan might be to go the

store to buy some 
our, return home, preheat the oven, mix the ingredients,

pour the mixture into the pan, and put it in the oven for 45 minutes.

Traditional AI planning systems like STRIPS [22], NOAH [63], and SIPE

[71], were designed to construct just this kind of plan|except usually the

goal was something like a tower of three blocks instead of a cake. The point of

building these planning systems was to investigate the process of constructing

plans, or of concocting recipes, if you will. By and large, very little attention

was paid to the uses to which the constructed plans were put.

To be fair, the computed plans were always meant to control a system's

subsequent action. And in a few cases, this actually happened. Shakey the

robot is a notable example [49]: after it �gured out how to form a row of
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blocks, it went ahead and tried to do it. Sometimes Shakey ran into trouble.

The plans it computed, using STRIPS, were incomplete, in that they did not

cover all contingencies. In the movie that was made to document Shakey's

performance [65], Shakey forms and begins to execute a plan to move a

block into a doorway. At the climactic moment, a Gremlin appears and,

unbeknownst to Shakey, moves a di�erent block into Shakey's planned path.

Shakey subsequently discovers the block and thus determines that its plan is

unexecutable. Undaunted, Shakey computes an alternative plan for achieving

its goal.

Because there is always the possibility of a system encountering unanticipated

circumstances, like the block in Shakey's path, many planning systems were

augmented with replanning capabilities. Usually, these consisted of tech-

niques for reusing as much of the already computed plan as possible. The

\triangle table" that Shakey exploited in replanning is an early example of

a plan reuse mechanism [50]. Plan reuse has today become the object of in-

creasingly sophisticated study (e.g.,[38]). But, although traditional systems

allowed for replanning, they assumed that during replanning, the world was,

once again, unchanging. Thus the fundamental picture underlying work in

replanning is virtually identical to that underlying traditional AI planning.

There is a reasoning module that has knowledge about the world, and about

actions and their e�ects; it has a goal; and its job is to produce a plan of

action to achieve that goal. The only di�erence in the case of replanning is

that the reasoner may also make use of previously computed, and presumably

partially correct plans. As researchers in case-based reasoning have argued,

much of planning itself|not just replanning after failure|should probably

operate thus [3, 27].
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2.1 The Challenge of Dynamic Environments

We so far have a picture in which plans are produced by a reasoning process,

a planner, and then are used to guide action. More or less hidden in this

picture are some crucial assumptions. One is that an agent's goals are directly

given to it, either by its designer or by some other \user" who plays the role

of task-master. Moreover, goals are given to the agent one at a time. The

agent is given a goal, it computes a plan for achieving it, and then, at least

in principle, it executes that plan. The environment is quiescent; the agent

is the only force acting on it. So nothing of signi�cance happens while the

agent is forming its plan. And nothing happens while the agent is executing

that plan, except what the agent itself causes to happen.

Of course, Shakey's Gremlin was, in one sense, an exogenous force: it caused

signi�cant changes in Shakey's environment. But Shakey was never cognizant

of the Gremlin. It did not know that the Gremlin had moved the block;

it only knew that the world was not the way it expected it to be. From

Shakey's perspective, the problem was simply that its original model of the

world was wrong. So when Shakey attempted to replan, it did not worry

about whether the Gremlin would reappear and once again disrupt things.

Whether it was planning or replanning, Shakey assumed that the world was

static. Under this assumption, plan formation (and plan reformation) can

be allowed arbitrarily much time. They are constrained only by the patience

of the person using, or observing, the planning system.

Shakey was lucky, because its environment was nearly static. The Gremlin

was an aberration who seldom appeared. The real world, though, is not like

this. Real environments are dynamic. They are populated by multiple agents

that can and do e�ect change. Because they are dynamic, real environments

may change while an agent is reasoning about how to achieve some goal,

and these changes may undermine the assumptions upon which the agent's
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reasoning is based. While you are trying to �gure out which grocery store

has the best price for 
our for the cake you plan to make, your children may

come along and drink up the milk. If you then spend arbitrarily long trying

to �gure out where to buy milk, the store at which you plan to buy 
our

may close. And if you then spend a long time recomputing the best plan for

buying 
our, you just may lose your appetite for cake before you are done.

Real environments may also change while an agent is executing a plan, and,

again, they may change in ways that make the plan invalid. While you are

on your way to the store, the grocers may call a strike. As if this were

not enough, real environments may change in ways that do not invalidate a

current plan, but instead o�er new possibilities for action. The problem is

that the new possibilities may only be good for a limited time. It may not do

for an agent to �nish executing its current plan before considering whether to

act on some new option. While you are mixing the ingredients for your cake,

you may notice that a grease �re has started, and that you therefore have

a new option: putting it out. It is probably not a good idea to wait until

you have completed making the cake before you weigh the pros and cons of

putting out the �re. Similarly, if your phone rings, you might not want to

wait until the cake is in the oven before considering whether to answer it.

Agents in real, dynamic environments need to be receptive to many potential

goals, goals that do not typically arise in a neatly sequential fashion. They

need to decide what to respond to, and when. Intelligent behavior depends

not just on being able to decide how to achieve one's goals, but also on being

able to decide which goals to pursue in the �rst place, and when to abandon

or suspend the pursuit of an existing goal.

Dynamic environments are ubiquitous. There is a large and growing number

of AI applications, current or planned, that involve deploying agents in dy-

namic environments [45]. These applications include equipment-malfunction

monitoring [23], process management for manufacturing [58], medical patient
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monitoring [33], crisis management [13], and support for combat personnel

[4]. In addition, as the examples in this paper demonstrate, even humbler

applications, such an o�ce errand robot or a household assistant, require

mechansims for coping with changing environments.

Over the past four or �ve years, there has been a growing appreciation of the

problems faced by agents in dynamic environments. To some, these problems

have suggested that our underlying picture is all wrong|that instead of

conceiving of agents as deciding on goals and on plans for achieving them,

we should envision agents whose behavior is generated by much simpler,

more direct processes that involve little or no explicit symbol manipulation

[1, 9, 10, 37, 59]. We are counseled to build such agents by \hard-wiring"

them to do the right thing in response to perceptually detectable features of

their environment. The ultimate feasibility of this approach is an empirical

question, but there are many researchers, including me, who are skeptical

and who believe that knowledge-compilation techniques will provide only

one piece of the intelligent-behavior puzzle [14, 20, 25, 43, 57, 60].

The reasons for skepticism are wide-ranging. There are practical, engineering

concerns: obviating planning puts an enormously heavy burden on a system

designer. There are philosophical concerns: accounts of rationality and re-

sponsibility depend upon conceiving of behavior as resulting from explicit

deliberation. There are empirical concerns: although psychologists debate

the exact relation between language and cognition, many problem-solving

skills, including some that resemble planning, seem to require a level of lin-

guistic competence. So planning may only be possible for agents capable

of the kind of explicit symbol manipulation inherent in human language.

Perhaps most signi�cantly, there is the tremendous explanatory power of

planning theories. By beginning with the premise that agents explicitly rea-

son about what actions to perform, we put within our grasp a large set of

well-explored theories of agent behavior.
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2.2 Controlling Reasoning

Rather than give up on the idea that agents reason about what actions to

perform, many researchers have been investigating the principles by which

agents control that reasoning. Indeed, such investigations constitute some-

thing of a renaissance in planning research. Broadly speaking, there have

been two main approaches taken to the control of reasoning: explicit control

and implicit control.

In explicit control, an agent reasons about the potential value of its candi-

date reasoning tasks. Explicit reasoning about reasoning, or meta-reasoning,

has been a topic of interest in the expert-systems community for some time,

dating back at least to the TEIRESIAS system [15]. Expert systems include

meta-level control in order to increase the e�ciency of their base-level reason-

ing. A medical expert system, for example, may engage in meta-reasoning

about which of its candidate hypotheses are most likely to explain some

observed symptoms, and can then entertain those hypotheses �rst.

Similarly, explicit meta-level reasoning can be used to increase the e�ciency

of plan formation. As far back as 1977, Feldman and Sproull suggested

the use of decision-theoretic techniques to estimate the likelihood that alter-

native partial plans could be successfully expanded to form complete, exe-

cutable plans for a given goal. Attention could then be focused on the highest

scoring candidates [21]. Just a few years later, the MOLGEN system was

developed; it used traditional AI planning techniques to form meta-plans

that then guided domain-plan formation [69]. But this early work on meta-

planning, like the concurrent work on planning and replanning, assumed an

agent with one goal at a time, situated in a more or less static environment.

As I have already noted, dynamic environments stress an agent further, and

so amplify the need for control of reasoning. Explicit control of reasoning

for agents in dynamic environments has been explored, again primarily using
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the tools of decision theory [5, 16, 18, 34, 35, 39, 61, 62]. In addition to

these theoretical investigations, programming systems have been built to

support the implementation of explicit meta-level reasoning processes. The

Procedural Reasoning System (PRS) typi�es the approach [23, 24]. Using

PRS, a system designer can encode both object-level and meta-level reasoning

procedures in a uniform way. Blackboard systems have also been used for

this purpose [17].

The alternative to explicit control of reasoning is the development of agent

architectures that directly incorporate principled control strategies. An agent

with implicit meta-level control will not always need to reason about what

(object-level) reasoning options to pursue at any time. Instead, it will have

built-in strategies for focusing its reasoning. Of course, the researcher advo-

cating this approach needs to articulate carefully what those control strate-

gies are|otherwise, she will be back in the position of simply counseling the

design of agents that \do the right thing," but now at the meta-level. It

turns out that one can articulate and provide detailed arguments for at least

some rational control strategies, as I will show in Section 3 when I describe

the research I have been conducting over the past few years.

2.3 Resource Bounds and Satis�cing

Before turning to my research, though, I want to point out that just below

the surface of all this work on the control of reasoning lies a set of ideas that

pre-dates the establishment of AI as a discipline. It has now been about 35

years since Simon introduced the idea of \satis�cing" [66, 67, 68]. He argued

that, contrary to the prevailing slogan of decision theory, a rational agent is

not one who always chooses the action that does the most to satisfy its goals

given its beliefs. A rational agent simply does not have the resources always

to determine what that optimal action is. Instead, rational agents must and
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should attempt only to \satis�ce," that is, to make good enough, though

perhaps non-optimal, decisions about their actions. Sometimes an agent just

has to got ahead and act on the basis of the reasoning it has already done,

even if additional reasoning might lead it to do something else.

To a large extent, the AI planning renaissance is about the tradeo� be-

tween getting around to acting, and spending enough time thinking. Control

strategies, whether explicit or implicit, e�ectively determine when su�cient

resources have been allocated to a decision problem|that is, whether a so-

lution so far computed is \good enough," or whether the agent's current

circumstances allow it the luxury of further consideration. It is worth noting

that we were more or less able to ignore the challenge of resource bounds

until we began to worry about systems using the plans they computed. As

I have already said, �rst-generation planning systems could a�ord to reason

inde�nitely. Of course, their users might become restless, but the correct-

ness of the plan they eventually produced was in no way threatened by the

amount of time it took them to produce it. After all, the computed plan was

tagged with a set of initial conditions, and it was simply assumed that those

were the conditions that would hold at the time the plan was executed.

But useful planning does not happen in a vacuum. Current planning research

aims at designing systems capable of inhabiting real, dynamic environments.

Thus it is concerned with how systems can respond to opportunities in their

environment, adopt appropriate goals, form plans for achieving those goals,

and execute (at least some of) those plans successfully. Under these condi-

tions, thinking too long can have dire e�ects. When TEIRESIAS provided

meta-level control for the medical expert-system MYCIN, it enabled MYCIN

to make its diagnosis more quickly. The correctness of the diagnosis|that

is, the likelihood that it identi�es the cause of a �xed set of symptoms|is

independent of the amount of time it took for TEIRESIAS plus MYCIN to

arrive at it.
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This contrasts dramatically with the Guardian system, which is intended

to monitor and assist in the management of an intensive care patient in

real time [31, 33]. If Guardian spends too long diagnosing and developing a

treatment for some perceived problem, its solution may be very wrong. For

although the proposed treatment may have been perfect for a patient with

the symptoms as described at the beginning of its reasoning process, by the

end of the reasoning process, the patient's condition may be signi�cantly

di�erent. In a dynamic environment, meta-level control is needed not only

to improve the e�ciency of reasoning, but also the accuracy and utility of

the results of reasoning.

3 Using Plans to Constrain Reasoning

I want next to consider a speci�c set of proposals about the rational control

of reasoning that my colleagues and I have developed over the past few years

[7, 44, 55, 56]. This work begins with a question: what is the point of forming

plans? As I have already stated, most agents inhabit dynamic environments.

Any plan they make may be rendered invalid by some unexpected change.

The problem is bad enough for plans that will be carried out immediately,

like your plan to make a chocolate cake as soon as you �gure out where to

buy 
our. The problem of potential change is exacerbated for plans for future

activities, like my plan to 
y to California in a week, or my plan to attend

my grandmother's 80th birthday party in October. The more distant the

intended execution time of some plan, the less that can be assumed about the

conditions of its execution. So why should resource-bounded agents bother

with such plans for the future?

This is a question that has considered in detail by Bratman [6], who argues

that agents form plans in large part because of their resource bounds. An

agent's plans, he claims, serve to frame its subsequent reasoning problems
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so as to constrain the amount of resources needed to solve them. Here is an

example of how this is supposed to work. During the spring of 1991, I engaged

in some serious deliberation about the best plan for my trip to IJCAI. This

was quite a complicated deliberation problem, because I not only had to

arrange an international trip, to Sydney, where the IJCAI meeting was being

held, but I also knew that my family and I had to move cross-country at

roughly the same time. I had to weigh the costs and bene�ts of adding a

vacation with my husband onto the IJCAI trip against those of leaving our

small daughter with my parents during that time and of not arriving at our

new home until a few days before beginning a new job; I had to consider

the problem of ensuring that the moving truck containing our furniture did

not arrive before we did; I had to coordinate the transport of our cars cross-

country; I had to think about the rami�cations of starting a new job in a

state of jet lag; and so on.

There were a huge number of relevant factors to consider, and I spent a fair

amount of time trying to sort them out and come up with the best plan

I could. And then I adopted that plan; I committed to it. Thereafter, I

reasoned on the presumption that I would leave for Syndey on Aug. 19, and


y back on the 30th; that my husband and daughter would 
y to the East

coast on the 19th and visit with my in-laws while our furniture was in transit;

and so on. I no longer weighed all the factors to continually recompute the

best plan; I had settled on a plan and I was generally committed to it. My

beliefs about all kinds of things continued to change, but very few of these

belief changes caused me to reassess my plan. Instead, I used my plan to

frame other decision problems. For example, I now had a range of dates

that were suitable for the moving company to come and collect my furniture,

dates that were compatible with the travel plans to which I had already

committed.

This then, illustrates Bratman's fundamental insight: that agents commit
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to their plans, which then frame, and thereby constrain, their subsequent

reasoning. Their plans tell them what to reason about: in general they try

to �gure out how to execute the plans to which they are already committed.

And their plans tell them what not to reason about: they will not, in general,

give full consideration to options that are incompatible with their existing

commitments.

3.1 An Agent Architecture

These ideas served as the starting point for an architecture for resource-

bounded reasoning called IRMA, the the Intelligent, Resource-Bounded Ma-

chine Architecture [7], which is depicted in Figure 1.

One assumption made in IRMA is that agents need to reason about how to

achieve their goals. This is means-end reasoning, or what I earlier described

as \recipe concoction." I will discuss the process of means-end reasoning

further in Section 3.6. For now, imagine a program that computes plans

from �rst principles, like STRIPS or NOAH, or one that retrieves them from

a cache, like the case-based planners, or something else along these lines.

What is important is that an IRMA agent will concoct recipes for its exist-

ing intentions, not for arbitrary ends. This much is not a departure from

traditional AI planning systems, which compute recipes for given goals.

A second assumption in IRMA is that agents not only need to �gure out

how to achieve their goals, they also need to decide which goals to adopt in

the �rst place. This is deliberation. A deliberation mechanism will be some

routine that is given a small set of options, weighs their likely outcomes, and

selects the option or options whose potential value exceeds some threshold.

The options that are selected by the deliberation process become the agent's

new intentions.
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But where do the options come from? On the one hand, they may be sug-

gested by changes in the environment. When I �rst learned that IJCAI was

going to be held in Sydney, I was implicitly presented with a new option:

that of attending the conference there. Alternatively, options may be sug-

gested by the means-end reasoner, as candidate ways of achieving adopted

goals. When I began to think about how to get to Sydney, I constructed a

variety of recipes: 
ying nonstop on Qantas, arranging to stop in Honolulu

on the way, etc.

In IRMA, options from both sources are passed through a �ltering mecha-

nism, shown in the center of the diagram. The �ltering mechanism performs

a quick-and-dirty check to see whether an option is compatible with the

agent's existing plans. If it is not, the option can be immediately dismissed,

without being subject to full-
edged deliberation. After all, if the agent is

committed to carrying out the plans it has adopted, there is, in general, no

point weighing options that will render those plans impossible.

I have quali�ed this last comment, because, of course, it is sometimes valu-

able to consider options that are incompatible with one's plans. An agent

that never reconsidered its adopted plans, regardless of what unanticipated

changes it encountered, would be unlikely, in the long run, to behave intel-

ligently. I illustrated this earlier with the example of the grease �re. To

allow for prudent reconsideration, IRMA's �lter contains a second module:

the override mechanism. This mechanism encodes classes of environmental

characteristics to which the agent is sensitive. An option that triggers an

override sensitivity will be subject to full-
edged deliberation, even if it is

incompatible with the agent's already adopted plans.

Above I described the process by which I settled on a plan to travel to

IJCAI. That plan included the step of 
ying Qantas to Sydney on Aug. 19.

A few weeks after I made my reservations for this 
ight, I learned that some

air carriers had signi�cantly reduced their prices. As a result, I constructed
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alternative options that involved 
ying these other carriers, and I deliberated

about whether to adopt one of these alternatives. It turned out that none

of the alternatives was good enough. I either had to leave weeks too early,

or 
y a route that involved no less than four stop-overs. In the end, I went

ahead with my original plan. But the possibility of saving a large amount of

money prima facie was su�cient for me to engage in reconsideration, despite

the e�ort that reconsideration entailed.

My reasoning was quite di�erent for other options that I encountered. For

instance, after I had settled on my plan, a colleague asked whether I would

give a lecture in her class on Aug. 23. I did not spend a lot of time de-

liberating about whether to revise my plans in order to give the lecture. I

quickly determined that giving the lecture was incompatible with my existing

plans, and that it was not prima facie the kind of thing worthy of serious

consideration nonetheless. So I quickly dismissed the option of doing it.

3.2 The E�ect of Filtering

We can now turn to the question of evaluating an IRMA agent. To do this,

we track its behavior over a period of time, and record what happens each

time a new option arises. Each option will be seen to be either compatible

or incompatible with the agent's existing plans. We will consider only the

cases in which the option is deemed incompatible. The agent may or may

not end up deliberating about such an option, depending upon whether or

not it triggers an override. If the agent does deliberate, that deliberation

may or may not lead to a change of plans.

I have enumerated the possibilities in Table 1. Cases 1 and 2 are where the

agent engages in deliberation about whether to change its plan, as indicated

by a \Y" (\yes") in the �rst column. This is the class of situation I was in

when I learned about the availability of inexpensive fares to Australia.
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Triggers Deliberation Deliberation

override: leads to change would have Example

Deliberation of plan led to change

Occurs of plan

1 Y Y Changes to Continental

2 Y N Sticks with Qantas

3 N N Does Not Give Lecture

4 N Y Would have Given Lecture

Table 1: Partial Taxonomy of Practical-Reasoning Situations: Options

Deemed Incompatible

Case 1 is where the deliberation leads to a change of plans, as indicated by

the second column of the table. This was not what happened in my case, but

it might have been. We can call this the \Changes to Continental Airlines"

case. Case 2 is where the deliberation does not result in a change, as was

true in my example. We can call this the \Sticks with Qantas" case. It is

obvious that in Case 1, deliberation turns out to be worthwhile, while in

Case 2, there is wasted e�ort.

We also want to consider situations in which the agent does not deliberate

about some option that is perceived to be incompatible with its existing

plans: Cases 3 and 4. This is the class of situation I was in when I quickly

dismissed the option of giving a lecture in my colleague's class. For our

analysis, we need to determine what the agent would have done, if it had

deliberated. This is relatively easy for the designer of an arti�cial agent to

do; it is sometimes harder for a human who is introspecting. In the current

example, we can imagine that even if I had reasoned more about whether

to give the class lecture, I would not have changed my plans. So this is

an example of Case 3. In this case, not deliberating was just right, since

deliberation would not have led to a change in plans anyway.
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But there are times when the agent would have done something di�erent

if it had engaged in further deliberation. If I had thought more about my

colleague's class, I might have remembered that it was attended by some

important visiting researchers whom I had hoped to meet|and then might

have realized that giving the lecture in class would provide me with an op-

portunity to meet them. This added advantage might have been su�cient for

me to change my plans. Then this would have been an instance of a Case 4

situation, which I will accordingly call \Would have given lecture." In a Case

4 situation, the agent performs locally suboptimal behavior. Because it does

not engage in full-
edged deliberation, it misses an opportunity to perform

an action it might otherwise have chosen, given more reasoning resources.

This analysis has been simpli�ed in a number of ways; further details can

be found in [7]. The point to note here is that IRMA, and in particular,

its �ltering mechanism, embody the tradeo� between spending enough time

thinking and getting around to acting. Putting it somewhat coarsely, in

Cases 1 and 2, the inexpensive fare cases, thinking takes precedence over

acting; and the reverse is true in Cases 3 and 4, the class lecture cases.

The challenge for the designer of an IRMA-agent is to tune the �ltering

mechanism so that, to the extent possible, the agent does not end up in Case

2 (\Sticks with Qantas") or in Case 4 (\Would have given lecture"). In Case

2, there is wasted reasoning, such as my reasoning about whether to switch

to Continental, when, in the end, I stuck with Qantas. In Case 4, there is

suboptimal behavior: not giving the class lecture when it would have been

better to do so.

The challenge is to balance appropriate sensitivity to environmental change

against reasonable stability of the system's adopted plans. But we should

not expect perfection. Resource bounded agents have to trade occasional

wasted reasoning and locally suboptimal behavior for global success.
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3.3 Relation to Decision Theory

IRMA agents are, clearly, planning agents. They form plans, and they adopt

a distinctive attitude towards those plans. We can say that they intend

them, or that they are committed to them. This commitment pervades the

practical reasoning of an IRMA agent. Their commitment to their plans

is what distinguishes IRMA agents from strict Bayesian decision-theoretic

agents.

I began this paper by claiming that resource-bounded agents in dynamic

environments need to reason about their actions. I said they need to plan.

In saying this, I used the term \plan" somewhat loosely, equating it with

any sort of reasoning about action. One can certainly imagine agents who

plan, in this broad sense, without forming the kinds of commitment to their

plans that is the hallmark of an IRMA agent. For example, we can envision

an agent who, at each point in time, reasons about what action to perform,

given the totality of its current beliefs and desires. You may recognize this

as a somewhat uncharitable caricature of a Bayesian deliberator [36]. The

caricature is uncharitable because the decision theorists never intended a

model of such unconstrained reasoning. Their presumption instead is that

each decision involves a limited set of options. The problem of selecting

the relevant set of options has been called the \small world problem" [64].

Decision theorists have had little to say about general solutions to the small

world problem, but progress has been made on it from an AI perspective

[8, 70].

In IRMA, an agent's commitment to its plans plays a large role in framing

its decision problems. Its commitment often de�nes decision problems, in

which the options are alternative ways of carrying out the plans. And its

commitment often prunes decision problems, by ruling out options incom-

patible with its plans. With this in mind, we can distinguish between two
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related claims that I am making in this paper. First, I am arguing that

agents need to reason about their actions|to plan, in the broader sense of

planning. Second, I am arguing that agents need to commit to their plans.

This commitment, in my view, is the essence of useful planning. It is cer-

tainly the essence of IRMA. For the reminder of this paper, when I speak of

planning, it will be in this latter, more restrictive sense.

3.4 Evaluating Filtering Strategies

We can now return to the central challenge that confronts the designer of an

IRMA agent. The control principles embodied in IRMA provide only partial

guidance in designing an intelligent agent, since there is still the problem

of tuning the �ltering mechanism. Can we say anything more about the

conditions under which it pays to be especially sensitive to environmental

change, and those under which it pays to be more stubbornly committed to

one's plans?

To address the question, the Tileworld testbed system was built [56].

1

Tile-

world comprises two parts: a simulated dynamic environment with an asso-

ciated set of tasks, and an embedded agent incorporating an IRMA-design.

Both the agent and the environment are highly parameterized, and a menu-

based interface makes it easy for an experimenter to vary the parameter

settings. For example, an experimenter using the Tileworld can control the

average rate of change in the environment. The experimenter can also control

the properties of the tasks the agent faces, creating an environment in which

all tasks are of roughly equal di�culty, or one in which some tasks are much

easier than others. It is possible to create environments in which tasks have

hard deadlines, or ones in which the tasks have high value only if they are

1

Marc Ringuette and Michael Frank both contributed greatly to the design and imple-

menation of Tileworld.
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completed by the deadline, after which their value decays continuously. Vari-

ous other environmental conditions are also under the experimenter's control.

In addition, the Tileworld includes an embedded IRMA agent, and the exper-

imenter can tune its �ltering mechanism, to vary its degree of commitment

to its existing plans.

Thus to conduct experiments using Tileworld, one sets the parameters to

establish an environment and an agent with characteristics of particular in-

terest, and then generates simulations. The initial state of each simulation

is randomly generated, and the simulation evolves over time, in accordance

with the parameter settings, but subject to the in
uence of pseudo-random

variation. During each simulation, the agent performs Tileworld tasks, and

the system keeps track of how successful it is. In other words, one conducts

experiments in which the independent variables are the characteristics of the

environment and of the agent, and the dependent measure is the agent's per-

formance. The goal is to develop an understanding of the relation between

agent design choices and environmental factors.

Researchers at several sites have found Tileworld to be a good starting point

for exploring their ideas on agent design. A notable example is Kinny's work

[41, 42], which investigated variants of the commitment strategy proposed in

IRMA. Figure 2, taken from [42], shows the results of one of his experiments.

The graph plots the success of di�erent IRMA-agents on the y-axis, against

the rate at which their environments were changing on the x-axis. There

are three agents shown: an agent that commits strongly to its plans, labeled

the \bold" agent; an agent somewhat more open to reconsideration, labeled

\normal"; and an agent prone to reconsideration, labeled \cautious". In all

cases, the bold agent performs best.

In a subsequent experiment, means-end reasoning was made more \expen-

sive", that is, each decision about how to achieve a given goal was made to

take more time, relative both to the rate at which the agent could move and
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Figure 2: Performance of Baseline Agent (Source: D. Kinny, IJCAI-91)
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Figure 3: Performance of Costly Reasoner (Source: D. Kinny, IJCAI-91)

to the average rate of change in the environment. The results of this exper-

iments are shown in Figure 3. A comparison of the two experiments shows

that under conditions of costlier means-end reasoning, the margin between

the committed agent and the uncommitted one narrows, and in really rapidly

changing environments, strong commitment ceases to dominate.

The agents in these �rst two experiments are absolutely committed to their

existing plans: they never reconsider them, regardless of any changes they

perceive in their environment. Weakening this commitment in certain ways

improves the agent's performance. In particular, Kinny found superior be-

havior in agents that immediately consider options to abandon goals they

believe have become impossible. Agents who are committed to their plans
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except under these conditions perform better than any of the other agents

studied in the �rst two experiments, even in the most rapidly changing en-

vironments. Details of the experiments that provide this result, along with

experiments that explore other variations in the commitment strategy, can

be found in [42]. The point to notice here is that Kinny's experiments pro-

vide support for the key claims in IRMA. For the agents he studied, optimal

behavior was achieved by the agents that committed to their plans, except

under speci�c, restricted kinds of environmental change. This is consistent

with what IRMA predicts: agents do well to remain generally committed

to their plans, except in response to identi�able classes of events, which the

system designer encodes in the override mechanism.

Of course, Kinny's results are only a �rst step towards understanding what

must be encoded in an agent's override mechanism|and, even more, his re-

sults are only a �rst step towards understanding the general nature of the

relationship between agent design and environmental factors. Many more

experiments are needed, and it will take signi�cant e�ort to understand fully

the implications of such experiments for complex, \real-world" applications

[28]. Nonetheless, Kinny's works provides a detailed illustration of how one

can use controlled experimentation, supported by a testbed like the Tile-

world, to carefully investigate claims about agent design.

3.5 AI as an Experimental Science

One goal of the Tileworld system has been to has been to provide a testbed

for studying a wide range of domains and tasks. Towards this end, we aimed

for an abstract, almost generic environment. One important open question is

whether this strategy is viable. Will it be possible to identify pertinent fea-

tures of environments and tasks that can guide the design of agents intended

for them? In other words, will we be able to �nd environmental \natural
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kinds", such that there are lawlike regularities between the environmental

kinds and particular reasoning strategies?

This is just one of many methodological questions confronting researchers

interested in using simulation techniques for performing AI experimentation

[13, 19, 47]. As Cohen demonstrated in his analysis of the papers presented at

AAAI90, we are, as a discipline, just learning how to perform real, systematic

experimentation [12]. One hears a lot of talk about AI as an experimental sci-

ence, but typically the \experiments" amount merely to writing a computer

program that is supposed to validate some hypothesis by its very existence.

As Newell and Simon explained it in their Turing lecture,

Each new program that is built is an experiment. It poses

a question to nature, and its behavior o�ers clues to an an-

swer . . . [Computer systems] are artifacts that have been designed

. . . and we can open them up and look inside. We can relate their

structure to their behavior and draw many lessons from a single

experiment. We do not have to build 100 copies of, say, a theorem

prover, to demonstrate statistically that it has not overcome the

combinatorial explosion of search in the way hoped for. Inspec-

tion of the program in light of a few runs reveals the 
aw [48,

p.36, emphasis mine].

It is doubtless true that we do not have to build 100 copies of a theorem prover

to derive results about its performance. It is less clear that we can always

get by with just a few runs. This may be possible when our mathematics

is sophisticated enough to support analysis, as in the case of complexity

analyses of theorem proving. But it has proven to be exceedingly di�cult to

provide mathematical analyses of complex behavior by systems situated in

complex environments. This is why researchers in performance analysis so

frequently make use of simulation techniques rather than relying exclusively
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on the mathematics of queueing theory.

It is time, I believe, that we in AI admit the limitations of our single-

experiment methodology, and supplement it with more traditional, rigorous

experimentation techniques. I am not suggesting that all AI research needs

to involve controlled experimentation of the kind typi�ed by Tileworld. Nor

am I saying that all controlled experimentation that is done should rely on

simulators. Where it is possible, one should attempt to gather su�cient data

about the performance of actual systems operating \in the real world." But

what simulation provides is a way for the experimenter to carefully moni-

tor, control, and replicate environmental conditions, something that is often

infeasible for actually deployed systems.

3.6 Overloading

Having taken a detour to discuss methodology, we can now return to the

principal focus of this paper: a consideration of the ways in which intelli-

gent agents use plans. I have already suggested that plans are useful not

just for guiding action, but also for constraining reasoning. To illustrate how

an agent's plans constrain its reasoning, I described the process by which

I formed my plan to attend IJCAI, and then used that plan as a �xed as-

sumption in further decision-making. But much of our quotidian reasoning

involves less-extensive deliberation than did my trip to IJCAI. It is more like

the decision-making you are likely to engage in when you have to buy 
our

for cake. You do not generate a large number of alternative recipes for get-

ting the 
our, and then carefully weigh the pros and cons of each. You are

much more likely to settle fairly directly on a plan for achieving your goal of

getting 
our. For example, you may know that you have to go to the bank

anyway, and that Franklin's supermarket is right next door, so you decide to

stop at Franklin's on the way to the bank.
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As the philosopher Gilbert Harman puts it:

. . .many of one's decisions are of necessity what we might call

simple decisions. These arise when one �nds oneself with a salient

end E [like getting 
our] and one recognizes a salient means M

that will get one E [like stopping at Franklin's, because it is

right next door to the bank]. In a simple case, one does not

consider whether there might be some other means to E or some

other end distinct from E that one might now obtain, and one

disregards any other consequences of one's act. One simply forms

the intention of getting E by doing M [29, p. 106].

The question, of course, for those of us who want to design intelligent agents,

is: how does the agent recognize that salient means M to its end E? There

are doubtless lots of strategies that an agent might use for this purpose.

Case-based reasoning attempts to get at one such strategy. I will describe

a di�erent strategy|one that, perhaps not surprisingly, involves the agent

once again making use of its already adopted plans.

The strategy I have in mind is one that I have called overloading [55], on

analogy with the way that term is used in programming languages. Over-

loading is illustrated by the cake-making example. You have a means-end

reasoning problem: getting 
our. You solve it by considering the relatively

small set of active plans you currently have, which includes your plan to go

to the bank. That plan includes the step of driving to a particular location,

say, the Bondi Junction Shopping Centre. You recognize that you can also

use that same action, of driving to Bondi Junction, in a plan to get 
our. So

you decide directly, without further deliberation, to overload your intention

to drive to Bondi Junction. You will use that action both for its initially

intended purpose of getting you to the bank, and for the new purpose, of

getting you to Franklin's, where you will buy your 
our.
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In terms of IRMA, you engage in a special kind of means-end reasoning. You

attempt to form a plan for your goal that involves some action you already

intend for another purpose. If you are successful, you immediately adopt

that plan, without subjecting it to further deliberation.

3.7 The Rationality of Overloading

This example is suggestive, and seems intuitively to describe a kind of reason-

ing that we engage in. In fact, two observational studies of human planning

behavior show that humans frequently do make use of the strategy of over-

loading [30, 32]. But to justify incorporating this strategy in the agents we

design, we need to ask whether it is cost-e�ective. Is it sensible to control

reasoning by overloading existing intentions?

Indeed it is. There is a certain e�ciency to be gained in overloading an

action|in killing two birds with one stone, so to speak. Although a plan that

involves an overloaded action may not be the very best plan that the agent

could use to achieve its goal, it is likely to be a reasonably good one, given

the e�ciency of action inherent in it. Moreover, if the agent directly adopts

the plan involving the overloaded action, without generating and weighing

alternatives to it, it thereby saves reasoning costs. It avoids the extra means-

end reasoning that would be needed to generate the alternatives. It avoids

the deliberation that would be needed to choose among them. And it cuts

down on the amount of subsequent means-end reasoning needed, since it

only has to determine how to perform one action|the overloaded one that

subserves multiple goals|rather than �guring out how to perform a separate

action for each goal.

So a plan containing an overloaded action will exhibit a certain e�ciency of

action, and directly adopting it will result in an added e�ciency of reasoning.

At least in everyday decision-making tasks, e�ciency of action tends to be a



The Uses of Plans 29

signi�cant factor in a plan's utility. So it is likely that the savings in reasoning

cost will outweigh the advantages of the \best" possible plan relative to the

one suggested by overloading.

We can relate this back to the plan to buy 
our at Franklin's. If you had

carefully considered all the ways of getting 
our, scouring the newspapers for

ads, computing mileages to each grocery, and so on, you might have deter-

mined that going to Safeway was marginally better than going to Franklin's.

But going to Franklin's is a pretty good plan, since, after all, you can go

there while you are at the bank, and save yourself an extra trip. And the

marginal advantage of going to Safeway is likely to be outweighed by the

e�ort involved in deciding on it.

Overloading thus provides a computational account of how, in some cases, an

agent can perform what Harman called simple decision making. In addition,

it contributes to an explanation of how simple decision making can be good

decision making. Of course, not all simple decisions will be instances of

overloading. Further research is needed to identify additional strategies.

Once again, we have started with a commonsense idea about how agents use

their plans, and we have argued that this use makes good sense in light of

resource bounds. Overloading, like �ltering, is a way of satis�cing. An agent

who relies on overloading will sometimes engage in suboptimal behavior: if

it had taken the time to generate and consider alternatives to the overloaded

plan, it might have adopted one of those alternatives. But, as I have said

before, local suboptimality appears to be the price that resource-bounded

agents pay for global success.



The Uses of Plans 30

4 Using Plans for Coordination and Com-

munication

So far, I have been arguing that it is a good idea to be a planning agent,

because you can use your plans to focus and constrain your reasoning. Plan-

ning, I have claimed, is advantageous even if you never interact with other

agents. But the agents we build need to interact with other agents. They

typically need at least to interact with us. Eventually, we are also going to

want to build agents that can interact e�ectively with one another, because

there are many tasks that cannot be satisfactorily performed by a single

agent.

It turns out that, if you want to coordinate and communicate with other

agents, it is extremely useful|and possibly even essential|for you and those

other agents to be planners. There are two reasons for this. First, coordi-

nation between agents seems possible only because they can count on one

another behaving in more or less stable ways, such as would result from

an agent's commitment to its plans. I will not defend this claim here, but

see Bratman [6, Chap. 5]. Second, as I will illustrate below, communica-

tion between agents is greatly facilitated by the agents reasoning about one

another's plans.

4.1 Plan Recognition in Discourse

Consider once again my trip to the IJCAI meeting in Sydney. When I was

forming my plans for the trip, I called my travel agent, and asked her,

\How much does a round-trip 
ight to Sydney on Qantas cost?"
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She could have just answered by telling me the price, but instead she said

something like:

\$1500. They 
y nonstop out of Los Angeles every evening. For

the same price, you can also 
y out of San Francisco on Conti-

nental or Northwestern, making a stop in Honolulu."

Why did she give me this answer? I did not ask her anything about the

departure times or locations of the 
ights, or about alternative carriers. At

an intuitive level, it is not hard to see why my travel agent answered the

way she did. She recognized that if I was asking about how much it cost to


y to Syndey, I must be considering a plan that involved going there. And

she recognized that to form, evaluate and possibly execute this plan, I would

need additional information. So she took it upon herself to be helpful, and

provide that extra information. Being helpful, after all, is her job.

This style of analysis was originally formalized by Allen [2], who recognized

that we could take the recipe-formation techniques of the classical AI plan-

ning systems, and e�ectively turn them on their heads to model plan recog-

nition behavior. In Allen's approach, a plan-recognition system reasons both

about what kinds of actions might be supported by an observed action, and

about what kinds of actions might be performed in order to achieve contex-

tually likely goals. In the current example, the observed action is my request

for information about the cost of 
ights to Sydney; the likely goal, given

that the context of the conversation is a phone call to a travel agent, is to

take a trip somewhere. Plan recognition consists in chaining forward from

the observed action and backwards from each candidate goal, using a set of

heuristics to guide the inference, and terminating when the two action chains

intersect to form a complete plan. Allen's original work on plan recognition

lay the foundation for a number of later research e�orts [11, 40, 46].
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Suppose my travel agent had not reasoned about my plans; could I still have

gotten the information I needed? Perhaps, but it would have been a tedious

process. Thus, in this example, plan recognition increases the e�ciency of

the conversation. There are also circumstances in which plan recognition

actually prevents a failure in the communication process. For instance, after

I reserved my ticket for a Monday evening 
ight to Sydney, I said to my

travel agent,

\Please reserve a car for me in Sydney for Tuesday morning."

My travel agent did not simply assent to my request. She understood my

wanting a car as part of my larger plan of taking a trip, and recognized that

I must have forgotten about, or misunderstood, the implications of crossing

the international date line. So she explained to me that although I would be

leaving the States on a Monday evening, I would not arrive in Sydney until

Wednesday morning. The reasoning needed for her to recognize my plan in

this instance may have been almost trivial. The point is that she performed

that reasoning. An agent that did not attempt to understand my utterance

as part of my plans would have gone ahead and made the car reservation for

Tuesday.

In my thesis research, I focused on with the problem of recognizing invalid

plans, like the one I have just described [51, 52, 54]. I showed that the

traditional models of plan recognition, which equate plans with recipes for

action, are insu�cient for this task. Traditional models are more or less

restricted to searching through a �xed space of plans. With some limited

exceptions, you can only recognize plans that you might yourself form. But

what you really need is to be able to generate a space of a plans. To do that,

you need to take seriously the idea that a plan is a structured collection

of beliefs and intentions. Then plan recognition becomes the problem of

ascribing plausible beliefs and intentions that are related to one another
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in a coherent fashion [44]. In other words, recognizing the way in which

plans decompose into beliefs and intentions is a prerequisite for adequately

describing the plan recognition process.

4.2 Plan Use and Plan Recognition

Enabling cooperative responses is just one of many communicative phenom-

ena that can be accounted for in terms of plan recognition. From �guring

out what object a referring expression signi�es, to recognizing the structure

of an extended discourse, most aspects of communication seem to be inti-

mately linked to reasoning about the communicator's plans [26]. Yet, most

research on plan recognition has taken place in isolation from the AI planning

renaissance. Could a marriage of these two research projects bear any fruit?

I believe that it could, although so far this is on the basis of reasoned spec-

ulation, rather than on any careful working-out of the technical details [53].

I will describe, in support of this claim, one more example of the intelli-

gent use of plans. The example involves multi-agent coordination, although

similar examples that involve communication could be constructed. It illus-

trates how plan recognition can pro�t from taking into account the role of

an agent's plans in constraining reasoning.

You talk with a colleague one morning and she tells you that she plans to

visit a nearby research laboratory later that day, and also plans to go to

the bank sometime. In addition, you know that she plans to attend the

monthly departmental lunch at noon. At 11:45, you see her heading out to

the parking lot. Because you have a paper that you want delivered to the

research laboratory, you attempt to recognize her plan: is she on her way

to the laboratory? If she is, you will run after her to give her the paper.

Suppose you know that it only takes about 10 minutes round-trip to get to

the bank, but that when she goes to the laboratory, she will probably be gone
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for more than an hour. In that case, the likely conclusion is that the plan she

is currently executing is to go to the bank, since going to the laboratory now,

at 11:45, would be incompatible with her plan to attend the departmental

lunch at noon.

Virtually all existing AI plan recognition systems would only take into ac-

count the current observation, that your colleague is heading out to the

parking lot. And so they would be unable to decide what plan she is pursu-

ing. In contrast, a plan recognition system that took into account knowledge

of her other plans, along with the fact that plans are generally consistent

with one another, would draw the right conclusion. But notice|and this is

the key|the fact that plans are mutually consistent results from the roles

that they play in an agent's mental life, from the uses to which an agent puts

them. To recognize plans, we have to understand how plans are used.

5 Conclusion

In this paper, I have described some of the ways in which intelligent agents

use plans. I have focused primarily on how plans can be used to constrain

reasoning, and thereby facilitate survival in dynamic environments. I pre-

sented two methods for controlling reasoning|two design principles|that

both involve the use of plans. The �rst, �ltering, amounts to having a ten-

dency to give less than full consideration to options that con
ict with one's

plans. The second, overloading, amounts to preferring to use one's actions

for multiple purposes. Both �ltering and overloading are satis�cing strate-

gies: they inevitably result in episodes of locally suboptimal behavior. But

this is the price that resource-bounded agents pay for survival in complex,

changing environments.

I also suggested that agents \use" one another's plans. That is, they reason
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about other agents' plans in order to communicate and cooperate with them.

Finally, I conjectured that our models of the plan recognition process could

be greatly improved by having them re
ect our recent insights about the uses

of plans by resource-bounded agents.

I want to conclude with a few remarks about methodology. I have pre-

sented several theories here, about how to design agents that use their plans

to behave intelligently. I have not presented any theorems, and this may

have surprised some of you, who may have been expecting modal, temporal,

autoepistemic logic, and possible-worlds semantics, and a even few circum-

scriptive axioms. Where, you may be wondering, is the formalization?

Formalizing our theories is, without question, an important activity, and one

in which I, like many AI researchers, have engaged. But I am concerned that,

especially of late and especially in certain sub�elds of AI, there has been an

overvaluing of formalization, and an unfortunate, concomitant devaluing of

the hard work of theory formation. In some quarters, formalism hacking

has replaced system hacking. Both activities are essential, but both must

be supported by rich theories of the phenomena that concern us. I think we

ought to adopt a new slogan in AI: theories before theorems.

In this paper, I have tried to illustrate the kind of theory formation that I

think is essential to the long-term progress of our �eld. Such theory formation

should not be confused with mere introspection. I did not argue that we

should build planning agents because it somehow seems obvious to us that

we plan. Rather, I began with the hypothesis that we plan|that much was

based on introspection|and then asked what possible reasons we might have

for planning. What bene�ts accrue to a planning agent? The arguments thus

bear structural similarities to those given by biologists, who ask what value

some expressed characteristic may have for an organism, in order to explain

how that characteristic might have survived the test of evolution. Planning,

I argued, has tremendous value for organisms like us and like the systems we
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are aiming to build.
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