To appear in the IEEE Intl.

Symposium on Computational Intelligence in Robotics and Automation, 1999

Towards Focused Plan Monitoring: A Technique and an Application to
Mobile Robots

Martha E. Pollack™’ and Colleen McCarthy”

Department of Computer Science® and Intelligent Systems Program

i

University of Pittsburgh
Pittsburgh, PA 15260
{pollack,colleen@cs.pitt.edu}

Abstract

Until recently, techniques for Al plan gener-
ation relied on highly restrictive assumptions
that were almost always violated in real-world
environments; consequently, robot designers
adopted reactive architectures and avoided Al
planning techniques. Some recent research ef-
forts have focused on obviating such assump-
tions by developing techniques that enable the
generation and execution of plans in dynamic,
uncertain environments. In this paper, we dis-
cuss one such technique, rationale-based mon-
itoring, originally introduced by Veloso, Pol-
lack, and Cox [9], and describe our use of it in
a simple mobile robot environment. We review
the original approach, describe how it can be
adapted for a causal-link planner, and provide
experimental results demonstrating that it can
lead to improved plans without consuming ex-
cessive overhead. We also describe our use of
rationale-based monitoring in a mobile robot
office-assistant project currently in progress.

1 Introduction

Until recently, techniques for AI plan generation re-
lied on highly restrictive assumptions that were al-
most always violated in real-world environments; conse-
quently, robot designers adopted reactive architectures
and avoided Al planning techniques [1]. Some recent
research efforts have focused on obviating such assump-
tions by developing techniques that enable the genera-
tion and execution of plans in dynamic, uncertain envi-
ronments. In this paper, we discuss one such technique,
rationale-based monitoring(RBM), originally introduced
by Veloso, Pollack, and Cox [9] (hereafter VPC), and
describe our use of it in a simple mobile robot environ-
ment.

RBM is intended to help plan-generation systems per-
form effectively in dynamic environments. As is well-
known in the robotics community, changes in such envi-
ronments may occur during plan generation and execu-
tion. The motivation behind RBM is to identify those
features of the environment that are most likely to im-
pact the plan being formed or executed. The RBM

approach takes seriously the view that planning is a
decision-making process. Thus, in the RBM framework
the rationale behind each plan decision is recorded so
that attention can be focused on those conditions that
are most likely to change a planning decision.

The authors of the original paper on RBM described
three processing stages: (1) generating monitors that
represent environmental features that are potentially rel-
evant to the plan; (2) deliberating, whenever a monitor
fires, about whether to respond to that monitor; and
(3) transforming the plan as warranted. They also de-
scribed a preliminary implementation of their approach
in the Prodigy planning system. In this paper we adapt
RBM for a causal-link planner, provide experimental re-
sults to demonstrate its feasibility, and discuss its use
in a mobile-robot office-assistant project currently in
progress.

2 RBM for Robots

Mobile robots inevitably need to track changes in their
goals and their environments; rationale-based monitor-
ing provides a potential way of focusing their monitor-
ing, assuming the robot agent is plan-based. Consider,
for example, a mobile robot of the familiar “office go-
pher” type, whose tasks range from delivering coffee,
mail, and faxes to planning entire meetings and mak-
ing arrangements for meals and accommodations. Such
a robot would require the ability to generate complex
plans beyond the reactive level, and to adjust those plans
as its environment changes.

In general, fully interleaved planning and execution
would be desirable. However, existing techniques for full
interleaving do not address the problem of automatically
generating focused monitor sets. 1 RBM, as so far devel-
oped, facilitates monitoring during plan generation, but
not (yet) during plan execution. VPC note that many
planning problems take place over a period of hours to
days, including, for example, planning a vacation or a
large-scale military operation. During extended plan-
ning, new information that affects plan decisions may
arrive and should be attended to.

! Most reactive planning systems [5; 4; 3] rely on hand-
encoding of monitoring actions.



In the mobile robot scenario, we view the robot’s op-
eration as being divided into sequential periods of time,
where the optimal period for the time segments needs
to be determined empirically in the target domain. (In-
deed, the segments need not all have the same dura-
tion: at night, for example, they may be much longer
than during the day.) While the robot is performing
its activities during period i, it is also forming plans for
future periods (i+1, i+2, ...). During period 4, it can
also accept requests for new tasks for future periods, and
similarly, can receive information about actual and an-
ticipated world changes that may impact the plans it is
forming for future periods.? Thus the robot might ini-
tially form a plan for the next period to service orders to
the third floor before the second. If it learns that eleva-
tor use will be restricted during the next period, it might
change the order of the actions in its plans. If the restric-
tion is then reversed, it might reconsider its initial plan.
In the extreme case, attending to relevant changes may
mean the difference between valid and invalid plans. If
the robot learns that the the elevator will be completely
out of service at the relevant time, then its initial plan
may be useless unless modified in response to this new
condition. Of course, changes such as these may also oc-
cur during plan execution, and we hope in future work
to extend the ideas behind RBM to full interleaving of
planning and execution. For now, however, it is useful
to have a principled technique to enable plan generation
to proceed in dynamic environments.

3 An Overview of RBM

As mentioned earlier, RBM is based on the idea of plan-
ning as decision making. In an RBM framework, the
rationale behind each decision is recorded and used as
a basis for establishing monitors. There are clearly con-
nections between the RBM approach and techniques for
execution monitoring that date all the way back to the
development of triangle tables [2], originally used in the
Shakey the robot project at SRI. RBM generalizes ear-
lier forms of monitoring, not only by making monitoring
relevant to plan generation, but also by considering a
wider set of types of monitor and of planning responses.

3.1 State Dependent Planning Decisions

An RBM planner must keep track of the planning deci-
sions that depend on the current world state, and thus
are subject to change. All planners make certain types
of decisions: they decide which actions to employ in a
plan (action selection), which objects to apply those ac-
tions to (parameter binding), and which new subgoals
are introduced by a particular action (subgoal introduc-
tion). VPC identified three types of monitors, repre-
senting world-state conditions that can influence plan-
ning decisions, and we have added a fourth (preference-
condition monitors).

2Real-time sensing will also be required to make critical
changes to plans underway for the current time period, but,
at least for now, that would be handled by a different mech-
anism, perhaps involving hand-encoding of reactive control
methods.

Subgoal monitors encode all the preconditions and
bindings of operators that have been considered so far in
the planning process. The truth value of these conditions
can influence decisions about action selection, parame-
ter binding, and subgoal introduction. For instance, a
particular choice of action and parameter binding may
be preferred because the action’s preconditions are cur-
rently true under that binding.

Usability-condition monitors represent any usabil-
ity constraints for operators considered so far in the
planning process. In contrast to preconditions, usabil-
ity conditions are intended to represent conditions that
the agent either cannot or should not modify. The
truth value of usability conditions can influence deci-
sions about action selection and parameter binding: a
particular action/parameter binding combination may
be deemed impossible, if the action’s usability conditions
are currently false under that binding. UCPOP [8] and
related causal-link systems have typically not supported
usability conditions, but because they are a useful con-
struct, we implemented them for our experiments and
our mobile robot application.

Quantified-condition monitors are derived from
the universally quantified preconditions in any operator
considered during planning. These monitors track the
extension of the universally quantified condition. For in-
stance, if a plan includes a step of delivering a memo to
all employees in a certain group, it is important to know
if someone has been added to or deleted from the group.
Although quantified-condition monitors are clearly im-
portant and interesting, VPC only briefly mention their
implementation, and we have not yet implemented them.

Preference-condition monitors represent user-
specified preference information, which may be indepen-
dent of preconditions or usability conditions. Suppose
the robot has an operator for supplying food from the
cafeteria for a meeting. While both doughnuts and sand-
wiches are acceptable, the user might specify a preference
for doughnuts in the morning and sandwiches in the af-
ternoon. The truth of the condition “meeting-time <
noon” will then influence action selection, but it is nei-
ther a precondition nor a usability condition for supply-
ing food. In the UCPOP system, such preference infor-
mation can be directly implemented with user-specified
search control rules.

3.2 Monitor Generation and Response

To include rationale-based monitoring in a causal-link
planner, two steps must be taken. First, monitors must
be generated. This occurs throughout the planning pro-
cess when new planning nodes are generated. Whenever
a partial plan is extended by the addition of a new step, a
monitor is generated for every precondition and usability
condition associated with that step. The current truth
value of the monitored condition is stored, along with
a pointer to the node(s) in the search space that rely
on that condition. In addition, whenever a search con-
trol rule that relies on a domain condition is triggered,
a monitor is established for that condition.

Second, when a condition being monitored changes, an



Loop until a solution is found

1. For each monitor that fired since the last iteration

2. Update the current state information.
3. For each affected node NV
4. Make needed revisions to V.
5. Recompute the ranking function for N.
6. Select the next node for expansion, M.
7. Make M consistent with the initial state.
8. Expand M.

Figure 1: The Top-Level Algorithm

appropriate response must be taken. More specifically,
when a monitor for some condition C' fires, indicating
that the truth value of C' has changed, the affected nodes
must be reassessed and revised as necessary.® The revi-
sions to the plan depend upon the type of monitor and
the polarity of change (whether a true condition became
false or vice versa). For instance, consider the case in
which a subgoal monitor indicates a condition C' has be-
come true. In the partial plans that include steps with
precondition C', any steps that only support the estab-
lishment of C' may be removed and replaced with a link
from the dummy initial step.

Plan reassessment is straightforward in the causal-link
framework—indeed, much simpler than in the Prodigy
implementation of VPC. Recall that causal-link planners
perform a best-first search. At each iteration, they em-
ploy a node-selection function, also called a ranking func-
tion, to determine the current best partial plan, which is
then selected for subsequent expansion. Typically, node
selection is a function of the number of steps already
in the plan, the number of open (unestablished) pre-
conditions, and, sometimes, the number of threats [6].
However, as mentioned above, user-defined search con-
trol rules that rely on domain conditions can also be
employed. When a monitor fires during planning, the
ranking function must be recomputed for the affected
nodes. The node with highest recomputed rank can then
be selected for subsequent expansion, as is standard in
best-first search.

4 Implementation in UCPOP

We implemented RBM in the UCPOP causal-link plan-
ner [8], and used this in our mobile robot application.
Figure 1 provides the top-level algorithm. As can be
seen, generating and responding to monitors is tightly
interwoven into the algorithm’s search process.

Two key data structures are added to the basic
UCPOP system. The first simply records information
about the current state. Whenever a monitor fires this
state information is updated. The second added data
structure is the monitoring hash table, which records
monitored conditions, their current truth values, and

3In this paper we assume that sensor values for the moni-
tored conditions have already been converted to truth values.

pointers to the nodes that are relevant for each mon-
itored condition. For subgoal, usability-condition, and
quantified-condition monitors, a node is relevant if it has
the monitored condition as a link or flaw. All nodes are
considered to be relevant to a preference-condition mon-
itor.

During planning, the first step is to make any up-
dates needed as a result of changes in the monitored
conditions. For each monitor that has fired, indicating
a change in condition C', the current state information
must be updated (line 2), and all nodes relevant to C'
must be revised (lines 4-5). The revisions made depend
on the type of monitor and the polarity of change, as
summarized in Figure 2. Note that in all cases, the
ranking function must be recomputed for the relevant
nodes. Plan expansion can then occur: the next node
is selected (line 6) and its successors generated (line 8).
Prior to expansion, however, the selected node must be
checked because its initial state (i.e., the effects of its
dummy initial step) may need to be updated to be made
consistent with the true current state. To see why this
is required, suppose that at some point during planning,
the monitor for some condition C' fires, and assume that
N is a node that is not relevant for C'. Then N will not
be immediately updated: updates in lines 4-5 will only
apply to nodes that are relevant for C'. Suppose that
later IV is selected for expansion. It is possible that one
of its successor nodes will be relevant for ', for instance
because it contains an operator with C as a precondi-
tion. To ensure that the successor nodes inherit correct
information about the initial state, N must be made con-
sistent with the true current state when it is selected for
expansion.

For clarity, we have written the algorithm as if it ter-
minates as soon as a solution is found. In practice, when-
ever a process instantiating the planning algorithm is in-
voked, it should remain alive until the beginning of the
time segment that includes execution of the generated
plans. That way, changes that occur after plan gener-
ation, but prior to execution, can be handled appropri-
ately.

5 Feasibility Experiments

To explore the overhead of RBM, we conducted con-
trolled experiments in which we had the planner gen-
erate plans both with and without RBM, varying the
amount of change in the environment. The experiments
were all conducted on a Sparc Ultra 1 workstation,using
UCPOP’s built-in data collection routines to gather tim-
ing results. We simulated changes to the environment by
creating a file that is read on each planning cycle: each
line represents changes that have occurred since the pre-
vious iteration. We performed initial experiments us-
ing various standard planning domains, including those
in the UCPOP distribution suite and a set of vacation-
planning problems that we encoded to investigate pref-
erence rules. In this paper, we focus for space reasons
on results from the MCD-Grid-World taken from the
UCPOP suite. Results in other domains were consistent
with the results reported here.



Monitor Polarity Revision

Type of Change

Subgoal T —F Update 1initial state; open the
monitored condition; recom-
pute h.

F—-T Update initial state; remove
steps and links that only es-
tablish the monitored condi-
tion; recompute h.

Usability | T = F Update initial state; mark
node as impossible.

F—-T Update initial state; remove
mark as impossible; recom-
pute h.

Preference | T — F Update initial state; recom-
pute h.

F—-T Update initial state; recom-

pute h.

Figure 2: Revisions after Fired Monitors

In the main experiment, we ran the planner, with
and without monitoring on six different problems from
the MCD-Grid-World. The solutions to these problems
range from two to ten steps long. With monitoring, we
varied the frequency of (simulated) change in the world
to model both rapidly changing and slowly changing en-
vironments: we considered cases in which a change oc-
curs in 0%, .05%, .1%, 1%, 5%, and 50% of the planning
iterations, with monitoring occurring at every cycle.*
We generated between five and twenty different input
files for each condition, depending on plan length and
rate of change; we report the average times taken by
the planner. To summarize, there are 42 experimental
conditions: six problems, each run first without moni-
toring and then with monitoring for six different rates of
change.

5.1 Case I: Identical Plans

Clearly, when the world never changes, the use of moni-
toring will not alter the plan that is generated. However,
even when the world is changing, the changes that occur
may not affect the validity or quality of the plan being
formed. Then the planner will generate the same plan
regardless of whether it uses monitoring.

Figure 3 plots the mean time taken by the planner
without monitoring, and with monitoring for each rate
of world change, for those cases in which the plans pro-
duced were identical in all circumstances. The x-axis
shows the length of the original plan, i.e., the one gen-
erated without monitoring. The y-axis, which is loga-
rithmic, plots mean time to find a solution. As can be

*The input files representing the changes were constructed
as follows: when simulating change p% of the time, for each
line of the file we generate a random number n and if n > p,
we randomly select a world-state condition C' and include C
and all its correlated conditions on that line. If n < p, we
instead specify that there have been no changes during the
previous iteration.

seen, RBM as implemented in the UCPOP system gener-
ally incurs very little computational overhead. We note,
however, that this result can be affected by oscillating
conditions. In a few cases, we saw the monitoring sys-
tem taking much longer than average. Analysis of these
cases reveals that they included conditions whose truth
values oscillated frequently.

» 10000

(@]

;g/ 1000 ¢ —e— No Mon.

) / —— 0%

E 100 - , 0.05%

E 10 0.10%

O —%—1%

c 1

5 ——5%
Original Plan Length

Figure 3: Identical Plans Produced

5.2 Better Plans

Sometimes the world changes in a way that allows the
generation of an improved (shorter) plan than would oth-
erwise be possible. In such cases, what overhead there is
in monitoring may be outweighed by the time saved in
generating a shorter plan. This is precisely what we saw
in our experiments. Unfortunately, though, for the cur-
rent domain, only a small number of the randomly gen-
erated cases fell into this category. We saw many more
instances of monitoring leading to better plans in other
domains, notably the TRAINS domains. In these other
domains, monitoring again frequently took less time to
find shorter plans than those found without monitoring.

5.3 Correct Plans

A more extreme case occurs when a change in the world
“breaks” the plan being generated. In this situation,
failure to monitor will lead to the generation of an in-
correct plan. Monitoring prevents this problem, but it
may require extra time to produce a plan. Figure 4 plots
the average times to generate a plan with and without
monitoring (averaging over all rates of change) . Some-
times, the additional time is required because the correct
plan is longer than the incorrect one. For instance, the
peak in Figure 4 for original plan length eight is due to
the fact that in one problem the length of a correct plan
requires 14 (and not eight) steps. Oscillating conditions
again increased mean time for some of the problems in
this category. Note that there is a data point missing for
original plan length of three in the figure because none of
the randomly generated input files led to this particular
case.



10000

1000 -

100 -

]\ T T T
7%5 6 8 10

Original plan length

—e— No Mon.
—— Monitored

Mean CPU time (secs)
H
=)

o
-

Figure 4: Correct Plans Produced with Monitoring

- 10000
(&)

& 1000 A

()

g 100 - —e—No Mon.
E 10 - / —=®— Monitored
(@)

§ 1 *AV T T T

= 0.1 3 5 6 8 10

Original plan length

Figure 5: Failure Detected by Monitoring

5.4 Failure Detection

The last situation arises when a world-state change ren-
ders the original planning problem unsolvable. In such
cases, monitoring will detect the problem, often fairly
quickly. In contrast, planning without monitoring will
continue to completion, generating a plan that is incor-
rect. Here monitoring is again required to produce a
correct result; in addition, it usually achieves that re-
sult faster than planning without monitoring. Figure 5
shows that there is a break in the data because no cases
of original length five led to failure under monitoring.

6 RBM in the Office-Gopher Domain

Having satisfied ourselves that the RBM approach ap-
peared not to require excessive overhead, we incorpo-
rated it into a mobile robot office gopher. Office gophers
inhabit dynamic environments, for which RBM is a po-
tentially valuable technique: meeting times and loca-
tions are changed, elevators and computer systems have
scheduled “down times”, tasks are issued, retracted, re-
issued, and revised. Our robot, Rosie, is a Nomad Scout
Beta 1.1 that resides in one of the computer science
buildings at the University of Pittsburgh. She is cur-
rently run via a laptop running Windows N'T, mounted
on her top surface. Plan generation is performed on a

(:operator pickup
:parameters ((object 7x) (location ?loc))
:precondition (:and (:neq ?x robot) (at 7x 7loc)
(at robot ?loc))
:effect (grasping 7x))

(:operator drop
:parameters ((object 7x))
:precondition (:and (:neq ?x robot) (grasping 7x))
:effect (:not (grasping 7x)))

(:operator move
:parameters ((location ?from) (location 7to))
:precondition (:and (ineq ?from ?to) (at robot ?from)
(connected ?from ?to))
:effect
(:and (at robot ?to)
(:not (at robot ?from))
(:forall (7x)
(:when (:and (grasping 7x) (object 7x))
(:and (at ?x 7to) (:not (at 7x ?from)))))))

Figure 6: Example Operators

Sparc 1 and the resulting plan is interpreted and trans-
mitted to the laptop, which then issues low-level sonar
and motion commands to Rosie via a serial port.

Rosie operated in several different environments that
we designed. A typical environment had seven rooms
connected by single hallway and various items (coffee,
copies, mail) positioned in different rooms. Figure 6
shows our encoding of the standard robot operators:
Move, Drop, and Pick-Up(Figure 6). Move is trans-
lated into low-level robot code during planning. Pick-
Up and and Drop are simulated in our current experi-
ments, since Rosie is not equipped with manipulators.
Additional operators include Prepare Meeting and
Supply-Food. A example of a preference rule is one
that expresses the preference for serving different types
of food at different times of the day.

For our initial experiments, we divided Rosie’s “day”
into only two segments: night (6pm to 8am) and day
(8am to 6pm). We assume that most tasks will be per-
formed during the day. Because there will presumably
be few tasks carried out at night, Rosie can also use
that period to perform active sensing of its environment.
This design is reminiscent of that used by Greenwald and
Dean for planning gate usage at airports [7].

We imagine that users (office workers) will typically
submit their their task requests for the next day before
leaving for the night, and planning begins. Subsequently,
the users can submit changes to those tasks, as well as to
request new changes. For instance, the user may decide
to change the start time for a meeting, thus requiring
the plan to be revised: not only will the time change,
but it may need to be held in a different room, and the
food to be served may change. Information can also be
input to the system about general world changes, such



as a scheduled elevator outage.

UCPOP supplemented with an RBM mechanism, as
described in Section 4, was able to generate correct plans
in times ranging from 2.3 seconds to over 5 hours. All
plans generated were actually run on Rosie to verify cor-
rectness. In a typical situation, Rosie is given the initial
state of rooms (free or busy), the presence or lack of ele-
vator availability, and the locations of food, and is then
asked to prepare a morning meeting. During planning
time, the initially unavailable elevator was made avail-
able, and the time for the meeting was changed from the
morning to the afternoon. The next morning, Rosie ex-
ecuted a plan that incorporated the elevator and served
doughnuts.?

This domain—and our robot—are clearly too simple
along a number of dimensions. Nonetheless, we believe
that these experiments provide an indication of the via-
bility of RBM for real-world robotic domains. In the of-
fice gopher domain, events change enough to merit mon-
itoring, yet it is not so volatile that oscillating conditions
present a problem. Resource-bounded monitoring led to
better plans when opportunities arose and the identifica-
tion of unattainable goals when failures were imminent,
saving both robot and human resources.

7 Conclusions

In the current paper, we have shown how rationale-based
monitoring can be adapted to causal-link planning and
applied in a mobile robot application. Using RBM, a
planning system can often generate plans that are more
efficient than those that would be produced without
monitoring; in fact, sometimes the failure to monitor
may produce incorrect plans that the robot would fruit-
lessly attempt to execute. We presented experimental
results demonstrating the use of RBM does not neces-
sarily lead to excessive overhead.

There are several important directions for future work.
We observed that a key factor influencing the cost of
monitoring is oscillating world-state conditions. It would
thus be useful to refine the monitoring approach to rec-
ognize those conditions that are prone to oscillation. An-
other issue involves the frequency of monitoring. In the
experiments reported here, monitored conditions were
checked at every planning cycle. Experiments we are
now conducting suggest that less frequent sensing may
further increase efficiency. Perhaps the most impor-
tant remaining question concerns generalizing the RBM
framework to fully interleaved planning and execution,
sometimes called “continuous planning”. If interleaved,
modifying a plan can have a substantial execution cost
not reflected in the ranking function of the best-first
search. We hinted at this above, with our example of
changing the time of a meeting: if you have already or-
dered morning food, then the caterer may charge you a

5 Actually, Rosie executed a plan that involved moving to
a spot with a “simulated elevator”, which was actually the
stairs (the CS building does not have an elevator). Similarly,
because Rosie does not have a gripping device, it moved to
the spot where the doughnuts are located and assumed a
human assistant would put them on board.

penalty for changing your order. A key research question
then, is how to take account of the penalties for modify-
ing a partially executed plan when deciding whether to
respond to a fired monitor. If full interleaving is possible,
then an additional topic, specific to robotic applications,
concerns the the potential for RBM to alleviate the prob-
lem of localization. Plan generation might begin before
an exact initial position is known, with the plan modified
as sensing narrows in on more precise coordinates.

Acknowledgments

This research has been supported by the National Sci-
ence Foundation, grant IRI-9619579, by the Air Force
Office of Scientific Research, Contract F49620-98-1-0436,
and by fellowship stipend support from the National
Physical Sciences Consortium and the National Security
Agency.

References

[1] Ronald C. Arkin.
Press, 1998.

[2] R. E. Fikes, P. E. Hart, and N. J. Nilsson. Learn-
ing and executing generalized robot plans. Artificial

Intelligence, 3(4):251-288, 1972.

[3] R. James Firby. Task networks for controlling con-
tinuous processes: Issues in reactive planning. In
Proceedings of the Second International Conference
on Al Planning Systems, pages 49-54, 1994.

[4] Erann Gat. Integrating planning and reacting in a
heterogeneous asynchronous architecture for control-
ling real-world mobile robots. In Proceedings of the
Tenth National Conference on Artificial Intelligence,
pages 802-815, 1992.

[5] Michael P. Georgeff and Felix F. Ingrand. Decision-
making in an embedded reasoning system. In Pro-
ceedings of the Fleventh International Joint Confer-
ence on Artificial Intelligence, pages 972-978, De-
troit, MI, 1989.

[6] Alfonso Gerevini and Lenhart Schubert. Accelerating
partial-order planners: Some techniques for effective
search control and pruning. Journal of Artificial In-

telligence Research, 5:95-137, 1996.

[7] Lloyd Greenwald and Thomas Dean. Solving time-
critical decision-making problems with predictable
computational demands. In Proceedings of the Sec-
ond International Conference on Al Planning Sys-

tems (AIPS), pages 25-30, Chicago, IL, 1994.
[8] J. Scott Penberthy and Daniel Weld. UCPOP: A

sound, complete, partial order planner for ADL. In
Proceedings of the Third International Conference
on Knowledge Representation and Reasoning, pages

103-114, Cambridge, MA, 1992.

[9] Manuela M. Veloso, Martha E. Pollack, and
Michael T. Cox. Rationale-based monitoring for
planning in dynamic environments. In Proceedings
of the Fourth International Conference on AI Plan-
ning Systems (AIPS-98), 1998.

Behavior-Based Robotics MIT



