
To appear in the IEEE Intl. Symposium on Computational Intelligence in Robotics and Automation, 1999Towards Focused Plan Monitoring: A Technique and an Application toMobile RobotsMartha E. Pollack�;y and Colleen McCarthy�Department of Computer Science� and Intelligent Systems ProgramyUniversity of PittsburghPittsburgh, PA 15260fpollack,colleen@cs.pitt.edugAbstractUntil recently, techniques for AI plan gener-ation relied on highly restrictive assumptionsthat were almost always violated in real-worldenvironments; consequently, robot designersadopted reactive architectures and avoided AIplanning techniques. Some recent research ef-forts have focused on obviating such assump-tions by developing techniques that enable thegeneration and execution of plans in dynamic,uncertain environments. In this paper, we dis-cuss one such technique, rationale-based mon-itoring, originally introduced by Veloso, Pol-lack, and Cox [9], and describe our use of it ina simple mobile robot environment. We reviewthe original approach, describe how it can beadapted for a causal-link planner, and provideexperimental results demonstrating that it canlead to improved plans without consuming ex-cessive overhead. We also describe our use ofrationale-based monitoring in a mobile roboto�ce-assistant project currently in progress.1 IntroductionUntil recently, techniques for AI plan generation re-lied on highly restrictive assumptions that were al-most always violated in real-world environments; conse-quently, robot designers adopted reactive architecturesand avoided AI planning techniques [1]. Some recentresearch e�orts have focused on obviating such assump-tions by developing techniques that enable the genera-tion and execution of plans in dynamic, uncertain envi-ronments. In this paper, we discuss one such technique,rationale-based monitoring(RBM), originally introducedby Veloso, Pollack, and Cox [9] (hereafter VPC), anddescribe our use of it in a simple mobile robot environ-ment.RBM is intended to help plan-generation systems per-form e�ectively in dynamic environments. As is well-known in the robotics community, changes in such envi-ronments may occur during plan generation and execu-tion. The motivation behind RBM is to identify thosefeatures of the environment that are most likely to im-pact the plan being formed or executed. The RBM

approach takes seriously the view that planning is adecision-making process. Thus, in the RBM frameworkthe rationale behind each plan decision is recorded sothat attention can be focused on those conditions thatare most likely to change a planning decision.The authors of the original paper on RBM describedthree processing stages: (1) generating monitors thatrepresent environmental features that are potentially rel-evant to the plan; (2) deliberating, whenever a monitor�res, about whether to respond to that monitor; and(3) transforming the plan as warranted. They also de-scribed a preliminary implementation of their approachin the Prodigy planning system. In this paper we adaptRBM for a causal-link planner, provide experimental re-sults to demonstrate its feasibility, and discuss its usein a mobile-robot o�ce-assistant project currently inprogress.2 RBM for RobotsMobile robots inevitably need to track changes in theirgoals and their environments; rationale-based monitor-ing provides a potential way of focusing their monitor-ing, assuming the robot agent is plan-based. Consider,for example, a mobile robot of the familiar \o�ce go-pher" type, whose tasks range from delivering co�ee,mail, and faxes to planning entire meetings and mak-ing arrangements for meals and accommodations. Sucha robot would require the ability to generate complexplans beyond the reactive level, and to adjust those plansas its environment changes.In general, fully interleaved planning and executionwould be desirable. However, existing techniques for fullinterleaving do not address the problem of automaticallygenerating focused monitor sets. 1 RBM, as so far devel-oped, facilitates monitoring during plan generation, butnot (yet) during plan execution. VPC note that manyplanning problems take place over a period of hours todays, including, for example, planning a vacation or alarge-scale military operation. During extended plan-ning, new information that a�ects plan decisions mayarrive and should be attended to.1Most reactive planning systems [5; 4; 3] rely on hand-encoding of monitoring actions.

In the mobile robot scenario, we view the robot's op-eration as being divided into sequential periods of time,where the optimal period for the time segments needsto be determined empirically in the target domain. (In-deed, the segments need not all have the same dura-tion: at night, for example, they may be much longerthan during the day.) While the robot is performingits activities during period i, it is also forming plans forfuture periods (i+1, i+2, . . .). During period i, it canalso accept requests for new tasks for future periods, andsimilarly, can receive information about actual and an-ticipated world changes that may impact the plans it isforming for future periods.2 Thus the robot might ini-tially form a plan for the next period to service orders tothe third oor before the second. If it learns that eleva-tor use will be restricted during the next period, it mightchange the order of the actions in its plans. If the restric-tion is then reversed, it might reconsider its initial plan.In the extreme case, attending to relevant changes maymean the di�erence between valid and invalid plans. Ifthe robot learns that the the elevator will be completelyout of service at the relevant time, then its initial planmay be useless unless modi�ed in response to this newcondition. Of course, changes such as these may also oc-cur during plan execution, and we hope in future workto extend the ideas behind RBM to full interleaving ofplanning and execution. For now, however, it is usefulto have a principled technique to enable plan generationto proceed in dynamic environments.3 An Overview of RBMAs mentioned earlier, RBM is based on the idea of plan-ning as decision making. In an RBM framework, therationale behind each decision is recorded and used asa basis for establishing monitors. There are clearly con-nections between the RBM approach and techniques forexecution monitoring that date all the way back to thedevelopment of triangle tables [2], originally used in theShakey the robot project at SRI. RBM generalizes ear-lier forms of monitoring, not only by making monitoringrelevant to plan generation, but also by considering awider set of types of monitor and of planning responses.3.1 State Dependent Planning DecisionsAn RBM planner must keep track of the planning deci-sions that depend on the current world state, and thusare subject to change. All planners make certain typesof decisions: they decide which actions to employ in aplan (action selection), which objects to apply those ac-tions to (parameter binding), and which new subgoalsare introduced by a particular action (subgoal introduc-tion). VPC identi�ed three types of monitors, repre-senting world-state conditions that can inuence plan-ning decisions, and we have added a fourth (preference-condition monitors).2Real-time sensing will also be required to make criticalchanges to plans underway for the current time period, but,at least for now, that would be handled by a di�erent mech-anism, perhaps involving hand-encoding of reactive controlmethods.

Subgoal monitors encode all the preconditions andbindings of operators that have been considered so far inthe planning process. The truth value of these conditionscan inuence decisions about action selection, parame-ter binding, and subgoal introduction. For instance, aparticular choice of action and parameter binding maybe preferred because the action's preconditions are cur-rently true under that binding.Usability-conditionmonitors represent any usabil-ity constraints for operators considered so far in theplanning process. In contrast to preconditions, usabil-ity conditions are intended to represent conditions thatthe agent either cannot or should not modify. Thetruth value of usability conditions can inuence deci-sions about action selection and parameter binding: aparticular action/parameter binding combination maybe deemed impossible, if the action's usability conditionsare currently false under that binding. UCPOP [8] andrelated causal-link systems have typically not supportedusability conditions, but because they are a useful con-struct, we implemented them for our experiments andour mobile robot application.Quanti�ed-condition monitors are derived fromthe universally quanti�ed preconditions in any operatorconsidered during planning. These monitors track theextension of the universally quanti�ed condition. For in-stance, if a plan includes a step of delivering a memo toall employees in a certain group, it is important to knowif someone has been added to or deleted from the group.Although quanti�ed-condition monitors are clearly im-portant and interesting, VPC only briey mention theirimplementation, and we have not yet implemented them.Preference-condition monitors represent user-speci�ed preference information, which may be indepen-dent of preconditions or usability conditions. Supposethe robot has an operator for supplying food from thecafeteria for a meeting. While both doughnuts and sand-wiches are acceptable, the user might specify a preferencefor doughnuts in the morning and sandwiches in the af-ternoon. The truth of the condition \meeting-time <noon" will then inuence action selection, but it is nei-ther a precondition nor a usability condition for supply-ing food. In the UCPOP system, such preference infor-mation can be directly implemented with user-speci�edsearch control rules.3.2 Monitor Generation and ResponseTo include rationale-based monitoring in a causal-linkplanner, two steps must be taken. First, monitors mustbe generated. This occurs throughout the planning pro-cess when new planning nodes are generated. Whenevera partial plan is extended by the addition of a new step, amonitor is generated for every precondition and usabilitycondition associated with that step. The current truthvalue of the monitored condition is stored, along witha pointer to the node(s) in the search space that relyon that condition. In addition, whenever a search con-trol rule that relies on a domain condition is triggered,a monitor is established for that condition.Second, when a condition being monitored changes, an

Loop until a solution is found1. For each monitor that �red since the last iteration2. Update the current state information.3. For each a�ected node N4. Make needed revisions to N .5. Recompute the ranking function for N .6. Select the next node for expansion, M .7. Make M consistent with the initial state.8. Expand M .Figure 1: The Top-Level Algorithmappropriate response must be taken. More speci�cally,when a monitor for some condition C �res, indicatingthat the truth value of C has changed, the a�ected nodesmust be reassessed and revised as necessary.3 The revi-sions to the plan depend upon the type of monitor andthe polarity of change (whether a true condition becamefalse or vice versa). For instance, consider the case inwhich a subgoal monitor indicates a condition C has be-come true. In the partial plans that include steps withprecondition C, any steps that only support the estab-lishment of C may be removed and replaced with a linkfrom the dummy initial step.Plan reassessment is straightforward in the causal-linkframework|indeed, much simpler than in the Prodigyimplementation of VPC. Recall that causal-link plannersperform a best-�rst search. At each iteration, they em-ploy a node-selection function, also called a ranking func-tion, to determine the current best partial plan, which isthen selected for subsequent expansion. Typically, nodeselection is a function of the number of steps alreadyin the plan, the number of open (unestablished) pre-conditions, and, sometimes, the number of threats [6].However, as mentioned above, user-de�ned search con-trol rules that rely on domain conditions can also beemployed. When a monitor �res during planning, theranking function must be recomputed for the a�ectednodes. The node with highest recomputed rank can thenbe selected for subsequent expansion, as is standard inbest-�rst search.4 Implementation in UCPOPWe implemented RBM in the UCPOP causal-link plan-ner [8], and used this in our mobile robot application.Figure 1 provides the top-level algorithm. As can beseen, generating and responding to monitors is tightlyinterwoven into the algorithm's search process.Two key data structures are added to the basicUCPOP system. The �rst simply records informationabout the current state. Whenever a monitor �res thisstate information is updated. The second added datastructure is the monitoring hash table, which recordsmonitored conditions, their current truth values, and3In this paper we assume that sensor values for the moni-tored conditions have already been converted to truth values.

pointers to the nodes that are relevant for each mon-itored condition. For subgoal, usability-condition, andquanti�ed-condition monitors, a node is relevant if it hasthe monitored condition as a link or aw. All nodes areconsidered to be relevant to a preference-condition mon-itor.During planning, the �rst step is to make any up-dates needed as a result of changes in the monitoredconditions. For each monitor that has �red, indicatinga change in condition C, the current state informationmust be updated (line 2), and all nodes relevant to Cmust be revised (lines 4-5). The revisions made dependon the type of monitor and the polarity of change, assummarized in Figure 2. Note that in all cases, theranking function must be recomputed for the relevantnodes. Plan expansion can then occur: the next nodeis selected (line 6) and its successors generated (line 8).Prior to expansion, however, the selected node must bechecked because its initial state (i.e., the e�ects of itsdummy initial step) may need to be updated to be madeconsistent with the true current state. To see why thisis required, suppose that at some point during planning,the monitor for some condition C �res, and assume thatN is a node that is not relevant for C. Then N will notbe immediately updated: updates in lines 4-5 will onlyapply to nodes that are relevant for C. Suppose thatlater N is selected for expansion. It is possible that oneof its successor nodes will be relevant for C, for instancebecause it contains an operator with C as a precondi-tion. To ensure that the successor nodes inherit correctinformation about the initial state, N must be made con-sistent with the true current state when it is selected forexpansion.For clarity, we have written the algorithm as if it ter-minates as soon as a solution is found. In practice, when-ever a process instantiating the planning algorithm is in-voked, it should remain alive until the beginning of thetime segment that includes execution of the generatedplans. That way, changes that occur after plan gener-ation, but prior to execution, can be handled appropri-ately.5 Feasibility ExperimentsTo explore the overhead of RBM, we conducted con-trolled experiments in which we had the planner gen-erate plans both with and without RBM, varying theamount of change in the environment. The experimentswere all conducted on a Sparc Ultra 1 workstation,usingUCPOP's built-in data collection routines to gather tim-ing results. We simulated changes to the environment bycreating a �le that is read on each planning cycle: eachline represents changes that have occurred since the pre-vious iteration. We performed initial experiments us-ing various standard planning domains, including thosein the UCPOP distribution suite and a set of vacation-planning problems that we encoded to investigate pref-erence rules. In this paper, we focus for space reasonson results from the MCD-Grid-World taken from theUCPOP suite. Results in other domains were consistentwith the results reported here.

MonitorType Polarityof Change RevisionSubgoal T ! F Update initial state; open themonitored condition; recom-pute h.F ! T Update initial state; removesteps and links that only es-tablish the monitored condi-tion; recompute h.Usability T ! F Update initial state; marknode as impossible.F ! T Update initial state; removemark as impossible; recom-pute h.Preference T ! F Update initial state; recom-pute h.F ! T Update initial state; recom-pute h.Figure 2: Revisions after Fired MonitorsIn the main experiment, we ran the planner, withand without monitoring on six di�erent problems fromthe MCD-Grid-World. The solutions to these problemsrange from two to ten steps long. With monitoring, wevaried the frequency of (simulated) change in the worldto model both rapidly changing and slowly changing en-vironments: we considered cases in which a change oc-curs in 0%, .05%, .1%, 1%, 5%, and 50% of the planningiterations, with monitoring occurring at every cycle.4We generated between �ve and twenty di�erent input�les for each condition, depending on plan length andrate of change; we report the average times taken bythe planner. To summarize, there are 42 experimentalconditions: six problems, each run �rst without moni-toring and then with monitoring for six di�erent rates ofchange.5.1 Case I: Identical PlansClearly, when the world never changes, the use of moni-toring will not alter the plan that is generated. However,even when the world is changing, the changes that occurmay not a�ect the validity or quality of the plan beingformed. Then the planner will generate the same planregardless of whether it uses monitoring.Figure 3 plots the mean time taken by the plannerwithout monitoring, and with monitoring for each rateof world change, for those cases in which the plans pro-duced were identical in all circumstances. The x-axisshows the length of the original plan, i.e., the one gen-erated without monitoring. The y-axis, which is loga-rithmic, plots mean time to �nd a solution. As can be4The input �les representing the changes were constructedas follows: when simulating change p% of the time, for eachline of the �le we generate a random number n and if n � p,we randomly select a world-state condition C and include Cand all its correlated conditions on that line. If n < p, weinstead specify that there have been no changes during theprevious iteration.

seen, RBM as implemented in the UCPOP system gener-ally incurs very little computational overhead. We note,however, that this result can be a�ected by oscillatingconditions. In a few cases, we saw the monitoring sys-tem taking much longer than average. Analysis of thesecases reveals that they included conditions whose truthvalues oscillated frequently.
0.1

1

10

100

1000

10000

2 3 5 6 8 10

Original Plan Length

M
ea

n
 C

P
U

 T
im

e
(s

ec
s)

No Mon.

0%

0.05%

0.10%

1%

5%

50%Figure 3: Identical Plans Produced5.2 Better PlansSometimes the world changes in a way that allows thegeneration of an improved (shorter) plan than would oth-erwise be possible. In such cases, what overhead there isin monitoring may be outweighed by the time saved ingenerating a shorter plan. This is precisely what we sawin our experiments. Unfortunately, though, for the cur-rent domain, only a small number of the randomly gen-erated cases fell into this category. We saw many moreinstances of monitoring leading to better plans in otherdomains, notably the TRAINS domains. In these otherdomains, monitoring again frequently took less time to�nd shorter plans than those found without monitoring.5.3 Correct PlansA more extreme case occurs when a change in the world\breaks" the plan being generated. In this situation,failure to monitor will lead to the generation of an in-correct plan. Monitoring prevents this problem, but itmay require extra time to produce a plan. Figure 4 plotsthe average times to generate a plan with and withoutmonitoring (averaging over all rates of change) . Some-times, the additional time is required because the correctplan is longer than the incorrect one. For instance, thepeak in Figure 4 for original plan length eight is due tothe fact that in one problem the length of a correct planrequires 14 (and not eight) steps. Oscillating conditionsagain increased mean time for some of the problems inthis category. Note that there is a data point missing fororiginal plan length of three in the �gure because none ofthe randomly generated input �les led to this particularcase.

0.1

1

10

100

1000

10000

2 3 5 6 8 10

Original plan length

M
ea

n
 C

P
U

 t
im

e
(s

ec
s)

No Mon.

MonitoredFigure 4: Correct Plans Produced with Monitoring
0.1

1

10

100

1000

10000

2 3 5 6 8 10

Original plan length

M
ea

n
 C

P
U

 t
im

e
(s

ec
s)

No Mon.

MonitoredFigure 5: Failure Detected by Monitoring5.4 Failure DetectionThe last situation arises when a world-state change ren-ders the original planning problem unsolvable. In suchcases, monitoring will detect the problem, often fairlyquickly. In contrast, planning without monitoring willcontinue to completion, generating a plan that is incor-rect. Here monitoring is again required to produce acorrect result; in addition, it usually achieves that re-sult faster than planning without monitoring. Figure 5shows that there is a break in the data because no casesof original length �ve led to failure under monitoring.6 RBM in the O�ce-Gopher DomainHaving satis�ed ourselves that the RBM approach ap-peared not to require excessive overhead, we incorpo-rated it into a mobile robot o�ce gopher. O�ce gophersinhabit dynamic environments, for which RBM is a po-tentially valuable technique: meeting times and loca-tions are changed, elevators and computer systems havescheduled \down times", tasks are issued, retracted, re-issued, and revised. Our robot, Rosie, is a Nomad ScoutBeta 1.1 that resides in one of the computer sciencebuildings at the University of Pittsburgh. She is cur-rently run via a laptop running Windows NT, mountedon her top surface. Plan generation is performed on a

(:operator pickup:parameters ((object ?x) (location ?loc)):precondition (:and (:neq ?x robot) (at ?x ?loc)(at robot ?loc)):e�ect (grasping ?x))(:operator drop:parameters ((object ?x)):precondition (:and (:neq ?x robot) (grasping ?x)):e�ect (:not (grasping ?x)))(:operator move:parameters ((location ?from) (location ?to)):precondition (:and (:neq ?from ?to) (at robot ?from)(connected ?from ?to)):e�ect(:and (at robot ?to)(:not (at robot ?from))(:forall (?x)(:when (:and (grasping ?x) (object ?x))(:and (at ?x ?to) (:not (at ?x ?from)))))))Figure 6: Example OperatorsSparc 1 and the resulting plan is interpreted and trans-mitted to the laptop, which then issues low-level sonarand motion commands to Rosie via a serial port.Rosie operated in several di�erent environments thatwe designed. A typical environment had seven roomsconnected by single hallway and various items (co�ee,copies, mail) positioned in di�erent rooms. Figure 6shows our encoding of the standard robot operators:Move, Drop, and Pick-Up(Figure 6). Move is trans-lated into low-level robot code during planning. Pick-Up and and Drop are simulated in our current experi-ments, since Rosie is not equipped with manipulators.Additional operators include Prepare Meeting andSupply-Food. A example of a preference rule is onethat expresses the preference for serving di�erent typesof food at di�erent times of the day.For our initial experiments, we divided Rosie's \day"into only two segments: night (6pm to 8am) and day(8am to 6pm). We assume that most tasks will be per-formed during the day. Because there will presumablybe few tasks carried out at night, Rosie can also usethat period to perform active sensing of its environment.This design is reminiscent of that used by Greenwald andDean for planning gate usage at airports [7].We imagine that users (o�ce workers) will typicallysubmit their their task requests for the next day beforeleaving for the night, and planning begins. Subsequently,the users can submit changes to those tasks, as well as torequest new changes. For instance, the user may decideto change the start time for a meeting, thus requiringthe plan to be revised: not only will the time change,but it may need to be held in a di�erent room, and thefood to be served may change. Information can also beinput to the system about general world changes, such

as a scheduled elevator outage.UCPOP supplemented with an RBM mechanism, asdescribed in Section 4, was able to generate correct plansin times ranging from 2.3 seconds to over 5 hours. Allplans generated were actually run on Rosie to verify cor-rectness. In a typical situation, Rosie is given the initialstate of rooms (free or busy), the presence or lack of ele-vator availability, and the locations of food, and is thenasked to prepare a morning meeting. During planningtime, the initially unavailable elevator was made avail-able, and the time for the meeting was changed from themorning to the afternoon. The next morning, Rosie ex-ecuted a plan that incorporated the elevator and serveddoughnuts.5This domain|and our robot|are clearly too simplealong a number of dimensions. Nonetheless, we believethat these experiments provide an indication of the via-bility of RBM for real-world robotic domains. In the of-�ce gopher domain, events change enough to merit mon-itoring, yet it is not so volatile that oscillating conditionspresent a problem. Resource-bounded monitoring led tobetter plans when opportunities arose and the identi�ca-tion of unattainable goals when failures were imminent,saving both robot and human resources.7 ConclusionsIn the current paper, we have shown how rationale-basedmonitoring can be adapted to causal-link planning andapplied in a mobile robot application. Using RBM, aplanning system can often generate plans that are moree�cient than those that would be produced withoutmonitoring; in fact, sometimes the failure to monitormay produce incorrect plans that the robot would fruit-lessly attempt to execute. We presented experimentalresults demonstrating the use of RBM does not neces-sarily lead to excessive overhead.There are several important directions for future work.We observed that a key factor inuencing the cost ofmonitoring is oscillating world-state conditions. It wouldthus be useful to re�ne the monitoring approach to rec-ognize those conditions that are prone to oscillation. An-other issue involves the frequency of monitoring. In theexperiments reported here, monitored conditions werechecked at every planning cycle. Experiments we arenow conducting suggest that less frequent sensing mayfurther increase e�ciency. Perhaps the most impor-tant remaining question concerns generalizing the RBMframework to fully interleaved planning and execution,sometimes called \continuous planning". If interleaved,modifying a plan can have a substantial execution costnot reected in the ranking function of the best-�rstsearch. We hinted at this above, with our example ofchanging the time of a meeting: if you have already or-dered morning food, then the caterer may charge you a5Actually, Rosie executed a plan that involved moving toa spot with a \simulated elevator", which was actually thestairs (the CS building does not have an elevator). Similarly,because Rosie does not have a gripping device, it moved tothe spot where the doughnuts are located and assumed ahuman assistant would put them on board.

penalty for changing your order. A key research questionthen, is how to take account of the penalties for modify-ing a partially executed plan when deciding whether torespond to a �red monitor. If full interleaving is possible,then an additional topic, speci�c to robotic applications,concerns the the potential for RBM to alleviate the prob-lem of localization. Plan generation might begin beforean exact initial position is known, with the plan modi�edas sensing narrows in on more precise coordinates.AcknowledgmentsThis research has been supported by the National Sci-ence Foundation, grant IRI-9619579, by the Air ForceO�ce of Scienti�c Research, Contract F49620-98-1-0436,and by fellowship stipend support from the NationalPhysical Sciences Consortium and the National SecurityAgency.References[1] Ronald C. Arkin. Behavior-Based Robotics MITPress, 1998.[2] R. E. Fikes, P. E. Hart, and N. J. Nilsson. Learn-ing and executing generalized robot plans. Arti�cialIntelligence, 3(4):251{288, 1972.[3] R. James Firby. Task networks for controlling con-tinuous processes: Issues in reactive planning. InProceedings of the Second International Conferenceon AI Planning Systems, pages 49{54, 1994.[4] Erann Gat. Integrating planning and reacting in aheterogeneous asynchronous architecture for control-ling real-world mobile robots. In Proceedings of theTenth National Conference on Arti�cial Intelligence,pages 802{815, 1992.[5] Michael P. George� and Felix F. Ingrand. Decision-making in an embedded reasoning system. In Pro-ceedings of the Eleventh International Joint Confer-ence on Arti�cial Intelligence, pages 972{978, De-troit, MI, 1989.[6] Alfonso Gerevini and Lenhart Schubert. Acceleratingpartial-order planners: Some techniques for e�ectivesearch control and pruning. Journal of Arti�cial In-telligence Research, 5:95{137, 1996.[7] Lloyd Greenwald and Thomas Dean. Solving time-critical decision-making problems with predictablecomputational demands. In Proceedings of the Sec-ond International Conference on AI Planning Sys-tems (AIPS), pages 25{30, Chicago, IL, 1994.[8] J. Scott Penberthy and Daniel Weld. UCPOP: Asound, complete, partial order planner for ADL. InProceedings of the Third International Conferenceon Knowledge Representation and Reasoning, pages103{114, Cambridge, MA, 1992.[9] Manuela M. Veloso, Martha E. Pollack, andMichael T. Cox. Rationale-based monitoring forplanning in dynamic environments. In Proceedingsof the Fourth International Conference on AI Plan-ning Systems (AIPS-98), 1998.

