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� The goals presented to the agent are categorical, i.e., they are either achieved or not, andthere is no notion of partial satisfaction.� The agent is the only source of change in the environment: there are neither exogenous eventsnor other agents.� The goals presented to the agent remain unchanged throughout the process of planning andexecution.� The actions that the agent can perform can be modeled as instantaneous state transducers:they have neither temporal extent, nor �xed times of occurrence.These assumptions have several key consequences. First, if they hold, there is no need tointerleave planning and execution, because the agent has all the knowledge it needs at planningtime. Second, in such circumstances, a plan can always be executed successfully: everything isguaranteed to go \according to plan," and replanning is thus unnecessary. Third, because the goalsare all known at the outset, and remain �xed throughout the planning and execution process, thereis no notion of planning problems competing with one another for the planning agent's attention.In short, these assumptions preclude the need for active management of the planning process: thereis no need to decide which planning or replanning tasks to attend to when, or how much detail toinclude in a plan now and how much to defer until later.Of course, most of these assumptions|which were introduced, after all, only to delimit atractable domain for initial investigation|fail to hold in the kinds of realistic situations in whichplanning is called for. Consequently, a number of researchers in AI have explored techniques forextending the classical planning paradigm, relaxing some of its overly strong assumptions. Tech-niques now exist for generating conditional plans with branches whose performance is keyed to theoutcome of sensing actions [Peot and Smith, 1992, Collins and Pryor, 1995], removing the need toassume omniscience (the �rst assumption). Representations of actions with probabilistic outcomeshave been developed and used in systems that generate plans whose probability of success exceeds agiven threshold [Kushmerick et al., 1995, Goldman and Boddy, 1994], eliminating the assumptionof deterministic actions (the second assumption). These extensions have been combined in proba-bilistic, conditional planning systems [Draper et al., 1994, Blythe, 1998, Onder and Pollack, 1999].The assumption of categorical goals (Assumption 3) has been removed in utility-based and decision-theoretic planning systems, which can generate plans for goals with rich, time-dependent utilityfunctions [Williamson and Hanks, 1994, Haddawy and Hanks, 1998]. Work on modeling planningas a (fully or partially observable) Markov decision process (MDP) [Boutilier et al., 1999] can beseen as aimed at simultaneously removing the �rst assumption.Other recent work has addressed the assumption of a static environment (the fourth and �fthassumptions). One approach has been to rely on techniques for planning under uncertainty, foldingexogenous changes into the predicted outcomes of actions [Blythe, 1996, Hanks et al., 1996]; this isalso the approach used in the MDP framework. Another body of work, often called \reactive plan-ning" or plan-execution systems [Firby, 1994, Firby, 1996, Gat, 1992, George� and Ingrand, 1989],2



addresses run-time system behavior, and deals with the problem of dynamic environments by sup-plementing high-level plans, such as those produced by classical planners, with mechanisms fortranslating those plans into low-level behaviors that are responsive to changes in the world. Forthe most part, however, this work has concentrated on the e�ective execution of current activities,but has not provided su�cient consideration to issues of managing future commitments. Work ondeliberation scheduling [Horvitz, 1997, Zilberstein and Russell, 1996, Greenwald and Dean, 1994,Dean and Boddy, 1988], also gives up Assumption 5, and develops techniques for deciding whichgoals to attend to when. But to date these techniques have had somewhat limited applicability,and they have not been applied speci�cally to questions of deciding how much detail to includein plan, nor to managing the process of replanning|although in principle deliberation schedulingtechniques could be applied to such problems, if we could accurately model the costs and bene�tsof individual plan expansion and replanning tasks. Finally, while there has been recent work ondeveloping planners that reason about rich temporal constraints [Bacchus and Kabanza, 1996], ithas again focused primarily on the problem of generating plans for a �xed goal, to be subsequentlyexecuted in a static environment.In sum, while the planning community has made signi�cant progress on developing plan genera-tion mechanisms that do not require the strong assumptions made in earlier work, it has continued,for the most part, to focus on the problem of plan generation. Certain exceptions exist, as noted inthe previous paragraph, but the majority of research done continues to focus on algorithms for moree�cient plan generation. Yet, when the assumptions of classical planning are abandoned, it be-comes important not only to rethink plan generation algorithms, but also to consider a wider rangeof reasoning processes that are involved in managing plans in dynamic, multi-agent environments.2 An ExampleWe can illustrate the types of reasoning required in plan management with a simple example ofkind of reasoning that humans seem to be capable of performing on a daily basis.Suppose you have a class to teach next Monday morning, and sometime the week before, youdecide to prepare your lecture for that class over the weekend. You don't yet decide exactly whenyou will prepare the lecture, because your other weekend plans aren't �xed yet, but you are con�dentthat you will �nd some time over the weekend for lecture-preparation. On Friday, before you leavethe o�ce for the weekend, you decide on the general topic for the lecture, so that you can bringhome the books you'll need to do the lecture preparation. Saturday morning you decide to spendthe day running errands and to go to a movie that evening; you will prepare your lecture sometimeSunday. However, Saturday afternoon, you receive a phone call from a friend, informing you thatshe has an extra ticket to the football game on Sunday afternoon. You are not sure whether youwill be able to �nish your lecture Sunday morning. You could attempt to do that, and only usethe football ticket if you are successful. However, you realize that this is unfair to your friend, whocould �nd someone else with whom to go to the game if you let him know today. You thereforerevise your plans, and decide not to go to the movie, but instead to begin preparing your lectureSaturday evening. If you don't �nish, you'll still have Sunday morning to complete it, before going3



to the football game.Although this scenario might appear frivolous, there are two important reasons for trying tounderstand the reasoning processes that support it and similar cases. The �rst is as an exercise incognitive science: the ability to manage one's activities in a dynamic environment is an essentialcomponent of human cognitive capacity, and thus worth exploring as part of the e�ort to understandthe human mind. The second is as a prerequisite to designing better computational tools. It isgenerally agreed that intelligent autonomous agents would be extremely useful in applicationsranging from military to industrial to educational. But for many of these applications, the agentsinvolved will need to be able to perform the kinds of plan management reasoning illustrated in ourexample.So let's consider the kinds of reasoning tasks that are involved. The intelligent agent|\you"in this story|must be capable of performing (at least) the following reasoning tasks:Plan Generation: You certainly need to be able to perform classic plan generation. In the story,for instance, you need to recognize that a precondition for preparing the lecture at home isthat you have the materials you need at home; therefore you need to plan to bring them homewith you.Commitment Management: Intuitively, at least, it seems that agents don't just generate newplans, but they also commit to them. By committing to a plan P , an agent tends to rule outnew options that would con
ict with P . Having committed to teach your class on Monday,you will in general rule out activities that preclude your teaching that class. But commitmentis not absolute: in the current story, you do abandon your commitment to go to the movies,in order to be able to attend the football game. Agents need to be able to reason about therelative strength of their commitments, to decide which, if any, they are willing to give up.Environment Monitoring: In a dynamic environment, many events may occur which eitherindicate a problem with your existing commitments or suggest a new opportunity. However,in general you will not be able to attend to all of these, but must somehow focus on those thatare potentially most relevant and signi�cant. In the current story, you attend to the invitationto attend the football game. But there are plenty of other potential opportunities that youignore (and that we've therefore left out of the story), such as the call from a telemarketero�ering you a new credit card, and the \for-sale" signs you see posted in front of neighborhoodhouses.Alternative Assessment: Once you have determined that the environment presents a new op-portunity, you need to be able to assess the costs and bene�ts of the options with which youare presented, and you need to do this taking account of the context in which those optionswill be performed. Going to the football game not only provides the bene�t of enjoying thegame, but also incurs a cost, since it requires you to skip the movie you had planned to see.Plan Elaboration: In dynamic environments, agents often have commitments to partially spec-i�ed plans, and may even begin executing those plans before they are complete. However,4



there are constraints on what must be elaborated when. You need by Friday afternoon tohave elaborated your lecture plan enough to determine which books and papers to carry homewith you. On the other hand, you can defer your decision about exactly when to prepareyour lecture. But once until you receive the phone call about the football tickets, you need tomake a �rmer commitment to the lecture preparation time, in order to ensure you can bothcomplete the preparation and attend the game.Meta-Level Control: For some activities, you will want to do a lot of careful planning, whilefor others, you may be willing to live with a less-than-optimal solution. For example, youmay not bother to spend the time to determine the minimal-distance route that allows youto carry out all your errands.Coordination with Other Agents: When environments have multiple agents in them, a widerange of issues arise involving the coordination of your own plans with those of the otheragents. In our story, you decide not to adopt the wait-and-see plan of going to the moviesand then starting your lecture preparation Sunday morning, going to the football game onlyif you've completed the preparations. This plan is unacceptable because it has a negativeimpact on your friend's plan to �nd someone with whom to attend the football game.Reasoning tasks such as these have been the focus of our work on plan management. In theremainder of this paper, we will brie
y describe the challenges posed by these tasks, and will sur-vey some of the work we have done to date in addressing them. Our discussion will necessarilybe informal and will rely on numerous examples; the reader can consult the papers we cite fortechnical details. We will omit discussion of three of plan management tasks listed: plan gen-eration, about which a huge amount has already been written; meta-level control, for which werefer the reader to [Dean and Boddy, 1988, Russell and Wefald, 1991, Greenwald and Dean, 1994,Zilberstein and Russell, 1996, Horvitz, 1997]; and coordination issues, which are discussed in thepaper by Grosz, Hunsberger, and Kraus in this same volume [Grosz et al., ]. After sketching ourapproach to individual reasoning processes, we will address the question of integrating these ap-proaches, by describing a plan management system we are developing.3 Commitment ManagementOur earliest work on plan management was done a decade ago, in collaboration with MichaelBratman and David Israel. It addressed the signi�cance of commitment for resource-boundedagents in dynamic environments [Bratman et al., 1988, Pollack, 1992]. Building on earlier workby Bratman [Bratman, 1987], who had argued that commitment to future plans helps a resource-bounded agent frame its subsequent reasoning and thereby limit the amount of computationalresources it requires, we developed an architecture later called IRMA: the Intelligent Resource-Bounded Machine Architecture, depicted in Figure 1. The key idea in IRMA is that agents should,in general, bypass full-
edged deliberation about new options that con
ict with their existingcommitments, unless those options can be easily recognized as potentially special in some way. To5



achieve this balance between commitment to existing plans and sensitivity to particularly importantnew options, we postulated within IRMA a �ltering mechanism with two components: the �rstchecks the compatibility of a new option against existing plans, while the second checks whetherthe new option is prima facie important enough to warrant deliberation even under incompatibility.
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edged deliberation. It may also sometimesperform wasted reasoning, i.e., engage in deliberation about a new option that results in a decisionto maintain the status quo. Nonetheless, an IRMA agent may attain a better overall level ofperformance than an agent who attempts full-
edged deliberation about every option it faces,because the time costs associated with such deliberation would typically result in signi�cant misseddeadlines and opportunities.Our initial implementation of an IRMA-based agent showed the feasibility of the concept, butour experimentation was limited to a simple, highly abstract domain (the Tileworld) [Pollack and Ringuette, 1990].Similar results were found by other researchers [Kinny and George�, 1991, Kinny et al., 1992]. Welater generalized the testbed to include multiple agents, and we found preliminary evidence thatthe IRMA notion of �ltering could also be a useful mechanism for facilitating agent coordination[Ephrati et al., 1995], but again, our experiments were limited to an abstract domain. However,many of the ideas in IRMA are included in the dMARS systems developed at the Australian Arti�-cial Intelligence Institute by Michael George� and his colleagues [Rao and George�, 1995]; dMARShas been used in a variety of real-world applications ranging from space shuttle malfunction han-dling to air tra�c control to air combat simulation. We are also using a �ltering mechanism in ourPlan Management Agent (PMA), described later in this paper. Although we have modi�ed ourview of the exact nature of �ltering|we no longer view compatibility as an all-or-nothing prop-erty, but instead reason about the compatibility of various layers of a hierarchical plan|we stillsubscribe to the view that it is important for resource-bounded agents in dynamic environments tomaintain fairly stable sets of commitments, which guide and focus their subsequent reasoning andactions. 6



4 Environment MonitoringThe theory of �ltering, as embodied in IRMA, suggests a way of screening out options that havealready come to your attention. In fact we believe that an agent's commitments play an evenstronger role: they tend to restrict the range of options that the agent attends to in the �rst place.For instance, when you wake up on a typical weekday morning, you already have a plan for theday|go to work, go to the gym, pick up the kids at school, etc.|and you do not spend a lotof time seriously considering con
icting alternatives, such as taking a spur-of-the-moment trip toHawaii. It's not just that these options arise and then are �ltered out, it's rather that in generalthe options don't even arise in the �rst place.So what's involved in monitoring \the right" features of the environment? As far back asthe STRIPS planning system, researchers suggested that if an agent was engaged in plan-basedbehavior, the plan itself could provide guidance about what to monitor. Thus triangle tables[Fikes et al., 1972], which map the existing state of the world to preconditions of steps in the plan,probably represent the earliest approach to execution monitoring. A more recent example is theSAGE system for information gathering, which also bases its decision of what to monitor on thestructure of its current plans [Knoblock, 1995].In our own work [Veloso et al., 1998], done jointly with Manuela Veloso and Michael Cox, wehave argued that an agent should carefully monitor not only environmental features that a�ect theplans it holds, but also features of the plans it has rejected during prior reasoning. More speci�cally,we view planning as a decision-making process, during which the rationale behind each decisionshould be recorded. Plan rationales will often include references to conditions that resulted in therejection of an alternative plan, in favor of the one that was actually adopted.For instance, suppose that you plan to use frequent 
ier miles on an airplane ticket that costs$800. If an airline price war then erupts, and the price of the ticket drops substantially, say to $200,you might prefer to change your plan and pay for the ticket, saving your frequent 
ier miles for amore expensive 
ight. Note that the change in price will not a�ect the success of your plan|youstill could 
y with the ticket you hold. But the rationale for your original decision to use frequent
ier miles was that the 
ight was expensive; this rationale now no longer holds. Rationale-basedmonitoring can thus not only prevent the failure of previous plans, but can also lead to higher-quality plans.Rationale-based monitoring is a three-stage process involving (i) generating monitors that rep-resent environmental features that a�ect plan rationale; (ii) deliberating, whenever a monitor�res, about whether to respond to that monitor; and (iii) transforming the plan as warranted.In [Veloso et al., 1998], we described a preliminary implementation of this approach in the Prodigyplanning system [Veloso et al., 1995]; more recently, with Colleen McCarthy, we have adapted theidea to a partial-order causal-link planner [Pollack and McCarthy, 1999].However, approaches to monitoring that are based on the agents' existing plans are necessarilyincomplete. Although, as we have suggested, agents do not attend to every feature of their envi-ronment, neither do they attend only to environmental features directly related to their previousplanning episodes. You don't typically consider taking a trip to Hawaii every morning, even if your7



morning newspaper always carries advertisements for airlines, but once in a long while, you justmight entertain this possibility|especially if you live in Pittsburgh and it's early March. A theoryof how that happens has not yet been formulated.5 Alternative AssessmentSuppose that a new option has arisen, that you have attended to it, and that you have determinedthat it is worth deliberating about. In order to perform this deliberation, it is necessary for you toassess the costs and bene�ts of the option. Moreover, this assessment must be done taking accountof the context of your existing commitments: in our running example, you need to recognize thatattending the football game will require you to give up the movie you'd planned to see. In thiscase, the context increases the cost of your new option, relative to its cost if done in isolation. Butcontext can also decrease the cost of a new option|for example if some of the steps required forthe new option can be merged with steps you already intend.The theory of rational choice, as formulated in the economic and philosophical literature[Je�rey, 1983, Keeney and Rai�a, 1993], provides a richly developed model of alternative assess-ment. In this theory, agents are seen as evaluating alternative actions by reference to a probabilitydistribution over their possible outcomes together with a utility function de�ned on those outcomes:in the simplest case, the agent combines probability and utility into a notion of expected utilityde�ned over actions, and then chooses some action whose expected utility is maximal.However, classical decision theory does not completely address certain challenges that arise indesigning alternative assessment procedures for agents in dynamic environments. We have beendeveloping a framework that does [Horty and Pollack, 1998], and it di�ers from classical decisiontheory in two important ways. First, where decision theory assumes that the utility of an outcomeis given as part of the background setting, we observe that the overall desirability of an optionpresented to an agent is often not immediately apparent; we are explicitly concerned with themechanism through which it might be discovered. In particular, we have so far concentrated on thecase in which the option presented to the agent has a known bene�t, but requires some e�ort|theexecution of a plan|for its achievement. In order to evaluate the overall desirability of the option,the agent thus has to arrive at some assessment of the cost involved in achieving it.Second, we require that our theory accommodate the fact that agents have computational re-source bounds. Towards this end, we cast it within the theoretical framework that models resource-bounded agents as always operating against the background of some current set of intentions, asdiscussed above in the section on Commitment Management. In contrast to standard decisiontheory, where actions are evaluated in isolation, we develop a model in which the options presentedto an agent are evaluated against a background context provided by the agent's current plans|commitments to future activities, which, at any given point, may themselves be only partiallyspeci�ed.At the center of our approach is a speci�cation of the cost of a new option in context, which wetake simply to be its marginal cost. That is, the cost of carrying out a new plan P in the context ofexisting commitments C is simply the cost of carrying out both P and C, less the cost of carrying8



out C alone: �(P=C) = �(P [ C)� �(C); where � denotes the cost function, and P=C denotes P inthe context of C.To use this de�nition, we need to de�ne the cost of a plan. We do this by assuming thatprimitive actions have speci�c costs, and that the cost of a complete, fully scheduled plan is thesum of the costs of all the distinct steps in it. The requirement that we only count distinct steps isimportant, because if an agent can merge steps of the same type, it only incurs the cost of a singlesuch step. Consider the example depicted in Figure 2. For instance, if while running your errands,you drive to the mall to buy a new shirt, and at the same time drive to the mall to buy sneakers, youonly incur the cost of one trip to the mall. In traditional plan generation, this would be handledby a step re-use function. When a new plan is added to an existing context of commitments,explicit consideration of step merging becomes crucial. For further discussion of step merging,including algorithms for e�cient merging, see [Yang, 1997]. We associate the cost of an incompleteor unscheduled plan with the cost of the least expensive way in which it might be carried out; i.e.,the cost of an arbitrary plan P is the cost of the least expensive fully scheduled, complete plan Qsuch that Q is a re�nement of P , where re�nements are de�ned as in [Kambhampati et al., 1995].Although we have de�ned the notion of the cost of a plan as the least expensive method ofexecuting it, we do not necessarily assume that a planning agent knows the true cost either of itsbackground plan or of any new options under consideration. Instead, the agent may only have anestimate of the cost of its plans. We view estimates as intervals that bound the true cost of a plan;they are thus related to the interval measures of plan cost used in the decision-theoretic plan genera-tion literature [Williamson and Hanks, 1994, Haddawy et al., 1995, Goodwin and Simmons, 1998].We have developed an algebra for reasoning about cost estimates: in particular, it speci�es how tosubtract estimates, so that an estimate of �(P=C) can be derived from estimates of �(P [ C) and�(C), according to the de�nition above. The derived interval estimate of cost in context is usefulbecause, in many cases, it allows an agent to accept or reject an option without calculating its spe-ci�c cost, as illustrated in Figure 3. Suppose that an agent with background plan C is consideringa new option P with bene�t �(P). Suppose further that given its estimated costs (intervals) for Cand P it is able to derive a estimated cost interval for P=C. If the agent knows that the bene�tof P is greater than the upper bound of this interval, then he is justi�ed in adopting it, since P 'scost in context is necessarily less than its bene�t; likewise, the agent is justi�ed in rejecting P ifits known bene�t is less than the lower bound of the estimated interval of its cost in context. It isonly when the bene�t is inside the interval that the agent is forced to re�ne its estimates furtherbefore making a rational decision. We have developed anytime algorithms for this re�nement step,which, again, we are using in PMA.6 Plan ElaborationWe have already seen that in dynamic environments, planning and execution will often be inter-leaved. Agents must therefore be able to decide how much detail to include in their plans now andwhen to add more detail. This question has largely been ignored in the AI literature, althoughBlythe's work [Blythe, 1998] is a notable exception. With Nilufer Onder, we have so far been inves-9



tigating a restricted form of it [Onder and Pollack, 1999, Onder, 1999]: given that a large numberof contingencies may arise during the execution of a plan in a dynamic, uncertain environment,which contingencies should be dealt with when the plan is initially formed, and which should bedeferred and dealt with on an as-needed basis at execution time?To address this question, we associate a contingency with the failure of an action in a plan tohave its desired outcome. In our running example, you plan to write your lecture Saturday evening,but you recognize the possible failure of this action: you may not be able to complete the lecture ontime. You therefore create a contingency plan, to complete it Sunday morning before the footballgame, if need be.In general, when the agent determines that a generated plan includes an action that may fail,there are three approaches to improving it. Corrective repair involves planning a response if thefailure should occur. Preventive repair involves enhancing the plan to include steps that lessen thelikelihood of the failure. (In conformant planning, su�ciently many steps are added to guaranteethat the plan will succeed, regardless of the action's outcome [Goldman and Boddy, 1996].) Finally,replacement involves modifying the plan, to remove the potentially problematic action and replaceit with an alternative.To decide which contingencies to focus on, we rely on two facts: �rst, contingencies in a planmay have unequal probability of occurrence; and second, a plan may have multiple goals, each ofwhich has some associated value. It therefore makes sense to focus on those repairs that will havethe greatest expected positive impact on the plan. To compute this, we �rst determine the valueof all the goals that the agent will fail to achieve if some contingency C occurs, and then weightthis by the probability of C's occurrence. Subtracting this value from the optimal value of the plangives us the expected value of the plan under the contingent failure. Next, we estimate the expectedvalue of the plan that will result if we perform a certain type of repair. The di�erence between thesetwo numbers gives us the expected value of performing the repair. We have developed algorithmsfor performing these computations, as well as for doing the actual process of generating contingentplans, and have also developed a number of heuristics to increase the e�ciency of this process.Of course, in reality the importance of having contingency plans will also depend on the likelydi�culty of replanning \on-the-
y" for particular contingencies: even if a contingency is relativelylikely to occur and to a�ect high-value goals, if it is extremely easy to correct during plan execution,it may not be necessary to plan in advance for it. This issue will be dealt with in later work.7 Integration in PMA: The Plan Management AgentEach of the individual reasoning processes described above is important, but it is also important tobe able to integrate these processes with one another. To explore the challenge of integration, aswell as to build a realistic platform on which to experiment with our ideas, we have been buildingPMA: the Plan Management Agent [Pollack et al., 1999]. PMA is an intelligent software systemthat is intended to aid a user in managing a potentially large and complex set of plans. It is thusrelated to two major classes of software systems: personal electronic calendar systems and work
owsystems. 10



Commercially available electronic calendar systems, published by major software companies,essentially provide electronic interfaces to written calendars. They typically have advanced GUIs,and provide linkages to contact databases and email; some also provide capabilities for automatedmeeting scheduling. However, these systems su�er from a highly impoverished representation foractivities: they can only model simple events and recurring simple events. Simple events are blocksof time with a single property|\free" or \busy"; a \free" activity is allowed overlap with other\free" activities, but a \busy" activity cannot overlap with other activities. Recurring simple eventsare simple events that recur at regular intervals, e.g., every Tuesday from 4-5pm. Labels and textualinformation can be attached to each event, but these are not used in any sophisticated way by thesystem; they are stored only for the human user's information.Work
ow systems [Georgakopoulos et al., 1995, Nutt, 1996, Mahling et al., 1995] constitute an-other class of systems aimed at helping users manage their routine activities. In contrast to per-sonal calendar systems, work
ow systems employ richly structured representations of activities(or processes), and they use these representations to ensure that information and tasks 
ow to theappropriate people in an organization in a timely fashion. Modern work
ow systems support \docu-ment management, imaging, application launching, and/or human coordination, collaboration, andco-decision" [Georgakopoulos et al., 1995, p. 121]. On the other hand, they tend to have limitedcapabilities for handling uncertainty, for replanning when a problem is detected, and for reasoningabout the relative value of alternative ways to perform a given task. PMA is being designed toinclude just these sorts of reasoning capabilities, using the techniques discussed above.PMA is a joint project of our research groups at the University of Pittsburgh and the Universityof Maryland, and includes the e�orts of Ioannis Tsamardinos and Carl Anderson. Other e�orts toapply AI plan generation and execution technology to develop intelligent work
ow-style systemsinclude the IWCM project at SRI International [Berry and Myers, 1998] and the Enterprise Projectat the Arti�cial Intelligence Applications Institute [Drabble et al., 1998, Stader and Jarvis, 1998].Like PMA, the IWCM project is relatively new, and comparisons between the projects are not yetpossible. Although some of the functionality of PMA overlaps with that of the Enterprise project,the approaches taken in the two e�orts are quite di�erent.To illustrate the behavior of PMA, and show how it includes the types of reasoning processesalready discussed, we describe a sample interaction with it. PMA has knowledge of the structuredactivities|the \plans" or \procedures"|that its user typically performs. For instance, a PMAfor use in a physician's o�ce would know the steps involved in carrying out diagnostic procedures,preparing a patient for surgery, and handling insurance forms. The activity of preparing a patient forsurgery might include, say, organizing a preliminary battery of tests, assembling and scheduling thesurgical team, booking the operating room, etc. Many of these tasks would themselves decomposeinto structured activities: carrying out a single test might involve scheduling that test, tracking thelab work, entering the results into the patient's record, and calling the patient for follow-up workif necessary.Imagine that a physician (or nurse) speci�es the goal of performing a particular diagnostic teston a patient. PMA immediately posts commitments to various tasks pertaining to that goal inan internal knowledge base|the \schedule." It also updates the graphical display that includes11



a calendar and to-do list. In this example, the posted commitments might include scheduling thetest, obtaining the necessary background information before the test date, reminding the patient 48hours before the test date, and so on. Once the user indicates that the test has been scheduled for acertain date|December 15, say|the temporal information associated with the related procedureswill be updated accordingly; for example, a calendar entry will then appear reminding the userto notify the patient on December 13. Furthermore, if this test is just one of a battery of tests,and the scheduled December 15 date places it too near another test with which it might interfere,PMA will notice this con
ict and notify the user, suggesting an alternative schedule that avoidsthe con
ict. It may also suggest to the user that an operating room should be scheduled now,even though the actual deadline for the reservation has not yet occurred, because there is limited
exibility in the schedule to handle the situation should the operating rooms become unavailableat the desired time.This scenario illustrates the main capabilities that we are building into PMA:� The PMA user can commit to activities that have rich temporal and causal structure. Shedoes not need to specify separate commitments to each component of the activity.� The PMA user can make partial commitments: for instance, she can commit to performinga particular activity without yet specifying the exact time at which it will occur, or she canspecify that she wants to commit to a particular goal, without yet specifying exactly whichplan she will use to achieve that goal.� When the user extends her commitments (e.g., by specifying a particular time or a particularplan for a goal), PMA propagates the new commitment to all a�ected parts of the activity.In the example above, when the user speci�es that the test should be scheduled for Dec. 15,a patient reminder is automatically scheduled for Dec. 13.� Whenever the user attempts to form a new commitment, PMA performs temporal and causalreasoning to determine whether it is consistent with the user's previous commitments. IfPMA determines that certain additional constraints are required to ensure consistency, itnoti�es the user of those additional constraints, which we call \forced constraints." If PMAdetermines that there is a con
ict between the new commitment and prior commitments, itsuggests ways to resolve the con
ict.� PMA can assess the cost of executing a plan in the context of existing commitments, andnotify the user if the cost fails to exceed some speci�ed threshold.� As time passes, PMA monitors the execution of the user's activities, and reminds the userwhen deadlines are approaching. It also reasons about the tightness of the schedule: forinstance, if there is little slack at some future periods, PMA may suggest taking early action.The initial version of PMA has been implemented on a Pentium platform, using Allegro CommonLisp for Windows. To date, we have implemented the �rst �ve capabilities just listed, using themethods discussed earlier in the paper, but so far they are only implemented for non-hierarchical12



plans. The extension of these capabilities to hierarchical activities, and the implementation ofexecution monitoring, are part of our ongoing e�ort. Our knowledge base so far contains plans foran academic user, rather than a medical one. Figure 4 illustrates the user's view of PMA.8 ConclusionsAs the strong assumptions of classical planning are being abandoned, the possibility of constructingpowerful, autonomous agents is increasing. We have argued however, that better planners, whichcan generate plans for dynamic, uncertain, multi-agent environments, are not enough. There's moreto life than plan generation! Autonomous agents in dynamic, multi-agent environments also need tobe able to manage the plans they generate. They need to determine which planning problems andopportunities to consider in the �rst place. They need to be able to weigh alternative incompleteplans, and to decide among competing alternatives. They need to be able to form incomplete plansnow, adding detail later, and they thus need to be able to decide how much detail to include nowand when to add more detail. They need to be able to integrate plans with one another, and todecide when to treat an existing plan as an in
exible commitment and when, instead, to considermodi�cations of it. And they need to be able to do all this in a way that comports with the inherentbounds on their computational resources.We have described some of the challenges inherent in these reasoning tasks, and sketched someof the work we have done to address them. We also described PMA, the Plan Management Agent,a system we are developing to ground our theoretical work, by providing us with a platform forintegrating our techniques and exploring their value in a realistic problem.But we have only scratched the surface and there remains a lot more work to be done onmodeling and developing computational techniques for plan management in dynamic, multi-agentenvironments.AcknowledgementsWe would like to thank our students who have participated in various aspects of the work describedhere: Colleen McCarthy, Nilufer Onder, and Ioannis Tsamardinos (University of Pittsburgh), andCarl Anderson (University of Maryland). We also thank our other collaborators on the papers citedhere, and our colleagues who provided feedback on several versions of this talk that were given inthe last year. Our work has been supported by the Air Force O�ce of Scienti�c Research, con-tract F49620-98-1-0436 (to Pollack), and by the National Science Foundation, grants IRI-9619579(Pollack) and IRI-9619562 (Horty). 13
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Figure 4: PMA: The User's View
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