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Abstract

We describe a framework for planning in dynamic
environments. A central question is how to fo-
cus the sensing performed by such a system, so
that it responds appropriately to relevant changes,
but does not attempt to monitor all the changes
that could possibly occur in the world. To achieve
the required balance, we introduce rationale-based
monitors, which represent the features of the
world state that are included in the plan rationale,
i.e., the reasons for the planning decisions so far
made. Rationale-based monitors capture informa-
tion both about the plan currently under develop-
ment and the alternative choices that were found
but not pursued. We discuss the plan transforma-
tions that may result from the firing of a rationale-
based monitor, for example when an alternative
choice is detected. We have implemented the gen-
eration of and response to rationale-based mon-
itoring within the Prodigy planner, and we de-
scribe experiments that show the feasibility of our
approach.

Introduction

Until recently, much of the work in AI planning has
been governed by a number of simplifying assumptions,
notably, that the target environment is static and deter-
minate. By static, we mean that the environment does
not change while a plan is being formed, or between
the time the plan is formed and the time at which it is
executed; moreover, during execution, the only changes
are those that are due to the actions specified in the
plan. By determinate, we mean that the planning agent
knows all the relevant facts about its environment, and
that the actions available to it all have definite out-
comes. A third important assumption has been that
the goals being planned for are categorical, i.e., they
are either satisfied or not, but there is no notion of par-
tial satisfaction.

Of course, in most real-world environments, these
assumptions are invalid, and techniques have con-
sequently been developed to relax some of them.
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Conditional planners (Peot & Smith 1992; Collins
& Pryor 1995) remove the need to assume that
the planning agent is omniscient, while probabilis-
tic planners (Goldman & Boddy 1994; Kushmerick,
Hanks, & Weld 1995) obviate the assumption that ac-
tions have deterministic outcomes. These techniques
have been combined in conditional, probabilistic sys-
tems such as C-Buridan (Draper, Hanks, & Weld
1994) and Weaver (Blythe 1998). Utility-based and
decision-theoretic planning systems, (e.g., (Drummond
& Bresina 1990; Haddawy & Suwandi 1994; Williamson
& Hanks 1996; Onder & Pollack 1997) move away from
the assumption of categorical goals. Finally, the work
on Markov decision processes, e.g. (Boutilier, Dean,
& Hanks 1995), can be seen as aimed at addressing
both the assumptions of determinacy and categoricity
of goals.

Less work has been done on removing the assumption
of a static environment. One approach has been to rely
on techniques for planning under uncertainty, treating
exogenous changes that can be partly anticipated in a
manner analogous to the way in which uncertain actions
are treated; this approach has been taken both within
a traditional planning framework (Blythe 1998), and
is also inherent in the MDP literature. Another body
of work, sometimes called “reactive planning” (Firby
1994; Gat 1992; Georgeff & Ingrand 1989), addresses
run-time system behavior, and deals with the problem
of dynamic environments by supplementing high-level
plans, such as those produced by classical planners,
with mechanisms for translating those plans into low-
level behaviors that are responsive to changes in the
world.

In this paper, we describe work aimed at addressing
planning in dynamic environments. We are concerned
with changes in the world that occur during planning it-
self. Indeed, once the assumptions of classical planning
are abandoned, it is often important to interleave plan-
ning and execution, and the separation between plan
time and execution time disappears. But even when
planning takes place distinct from and prior to execu-
tion, it may still be necessary to modify partial plans
in response to changes in the environment that are ob-
served during planning. An example is planning a va-



cation or a large-scale military operation. Even though
the planning may take place largely or even wholly in
advance of the execution, the planning process itself
may take anywhere from hours to days. During that
time, the planners may become aware of changes in the
world that affect the plans they are forming.

The challenge in designing planners for dynamic en-
vironments is to achieve the proper measure of sensitiv-
ity to changes in the environment. In general, it is too
costly to be responsive to every environmental feature
that the planning system knows about. The need to
balance sensitivity to environmental change against ap-
propriate stability of the plans being formed is strongly
reminiscent of the ideas that led to the design of the
TRMA architecture and filtering strategy (Bratman, Is-
rael, & Pollack 1988).

To achieve the needed balance, we introduce a mech-
anism called rationale-based monitoring. Planning is
strongly identified as a decision making process and
the planning system itself records the rationale for the
choices it makes. The planner then monitors only those
environmental changes that would affect the truth-value
of the planning rationale. We have implemented a ver-
sion of rationale-based monitoring within the Prodigy
system (Veloso et al. 1995), but the rationale-based
monitoring technique could readily be applied to other
planning systems as well. We describe controlled ex-
periments that demonstrate the feasibility of rationale-
based monitoring in dynamic environments.

Rationale-Based Monitoring

As just noted, the key idea underlying our work is to
perform sensing during planning, so that changes in the
world can influence the planning process. Sensing all
the features of the world is impossible. Ideally, one
would want to sense only the relevant or potentially rel-
evant features. We introduce the idea of rationale-based
monitors, which provide a means of focusing attention
on features of the world likely to affect the plan. When a
feature being monitored changes, we say that the mon-
itor fires. Deliberation can then be performed to decide
whether the plan under construction should be changed,
and if so, in what way. There are thus three major steps
to be performed in rationale-based monitoring:

e Monitor generation: Particular features of the world
must be identified as potentially relevant to the plan-
ning process. In our approach, monitors are gener-
ated dynamically during plan generation, and follow
directly from the plan rationale.

e Deliberation: When a monitor identifies a potentially
relevant change in the world state, the planner needs
to deliberate about whether the change warrants an
alteration of the plan being constructed.

e Plan transformations: If the planner decides to at-
tend to the detected changes of the world state, there
are several different ways in which the plan may be
transformed. In particular, parts of the plan may be
deleted because they have become unnecessary; new

goals may need to be added and current ones refined;
and prior decisions about how to achieve particular
goals may be changed.

In this paper, we focus on the first and third steps.
We are currently developing methods for deliberating
about whether to attend to a monitor that has fired.

Monitor Generation

The first stage of a rationale-based monitoring approach
involves deciding which features of the world state to
monitor. Planning in its essence is a decision making
process, and we view the plan rationale as the reasons
that support the planner’s decisions. The exact deci-
sions that a planner faces vary somewhat in form but
little in content among different classical planning al-
gorithms. Every planning algorithm must decide what
actions to use to achieve its goals, what objects to apply
each action to, and what new subgoals are introduced
with a new action.

Influence of the World State in Planning
Decisions

Each of the planning decisions may be influenced by the
planner’s current beliefs about the state of the world,
as now described.

Action selection: Given a goal (&, a planner needs to
decide what operator to use to achieve G. In general,
there may be several candidate operators, and a plan-
ner will create a different alternative plan for each.
An alternative is selected for expansion according to
the particular evaluation technique used.

Often, the decision to pursue one alternative over an-
other will be highly dependent on the current world
state. For example, assume that there are two oper-
ators O and O, that can achieve some goal g. If all
of the preconditions of Oy, and none of the precon-
ditions of O are satisfied in the world state, then a
reasonable search-control evaluation would prefer the
plan that uses O;.! Different existing planning sys-
tems will encode this type of preference in different
ways. For instance, in Prodigy it is embodied in the
use of conspiracy numbers (Blythe & Veloso 1992);
in partial-order causal link (POCL) systems such as
UCPOP (Penberthy & Weld 1992), it is a component

of most node-selection strategies.

A second influence of the world state arises in those
planning systems that distinguish between precondi-
tions, which may be adopted as subgoals, and usabil-
ity conditions (also known as “static preconditions”),

'In this paper, we follow the practice of many planning
systems and ignore the differential costs of different actions;
in subsequent work we will remove this assumption. Note
also that while the current example is extreme in assum-
ing that all and none of the preconditions of the competing
assumptions are satisfied, the basic principle holds in more
general situations.



whose achievability is outside the control of the plan-
ner. For instance, a planner for a transportation do-
main might have a usability condition for the oper-
ator “land helicopter in city C,” specifying that the
weather in C' be clear. If a usability condition for an
operator O is not true in the current state, then a
plan including O will not be further expanded by the
planner.

Step instantiation: A planner may need to decide
what resources will be used in performing an action.
This is typically implemented by means of parameter-
binding, though in slightly different ways for differ-
ent planners. In Prodigy, variable binding is a dis-
tinct decision that follows an action selection deci-
sion, to produce fully-instantiated preconditions. In
POCL planners such as UCPOP, some binding deci-
sions are made during operator selection (by means
of unification with the goal and/or as a side-effect
of step re-use), while other binding decisions occur
when threats are resolved by separation. In either
case, as with action selection, different binding de-
cisions will lead to different partial plans, and the
planning system must choose amongst these.

Again, this choice may be influenced by the planner’s
beliefs about the current world state. This can oc-
cur, for example, if the domain specification includes
functional constraints or advice for the selection of re-
sources. This information acts as control knowledge
that selects, prefers or rejects particular alternative
instantiations. The constraints can—and in many
cases do—refer to the world state. For example, in
a transportation environment, a sensible control rule
would prefer to load the trucks that are at the same
location as the packages to move.

New subgoals: When a new action is introduced into
a plan, it typically also introduces a set of new sub-
goals. To some extent, the question of what subgoals
are introduced is fixed: the planner must make sure
that each of the preconditions of the new action is
achieved. However, there are still two ways in which
the members of the set of “what must be achieved”
will depend upon the current state of the world:

e A reasonable thing for planners to do is to assume
that preconditions that are currently true in the
world do not need to be planned for. In Prodigy
this happens automatically as a result of means-
end analysis; in POCL planners it is achieved by
a preference for re-use of (i.e., link to) the initial
step.

e Planning systems which can handle universally
quantified preconditions expand them into finite
conjunctions involving all the literals that currently
satisfy the quantified literal. For instance, given a
precondition that all the packages in Pittsburgh be
loaded onto a truck, the planner would determine
which packages are known to be in Pittsburgh, and
would create a precondition of getting each such
package loaded onto a truck.

The current world state may influence planning de-
cisions in yet more ways: for instance, when steps in
the plan have conditional effects, the planner may in-
fer that these effects will become true if their triggering
conditions are currently true. For the current paper,
however, we will focus on the influences outlined above.

Plan-Based and Alternative-Based
Monitors

The generation of monitors follows directly from the
use of the world state in making plan decisions, as just
described. The monitors established during planning
fall into two broad classes:

Plan-based monitors: At each point in the planning
process, there is a current best plan (P) under consid-
eration. Plan-based monitors represent world-state
features that directly influence P. This includes,
for instance, preconditions of all the operators in P.
Some of these will be true when they are added to P;
they therefore must be monitored, because, should
they become false, P will fail unless additional plan-
ning is performed. Other preconditions will be ini-
tially false; should they become true, then the por-
tions of P that established them may become un-
necessary. These types of dependencies have been
recognized in the work on execution monitoring as
far back as the development of triangle tables (Fikes,
Hart, & Nilsson 1972). We are performing this mon-
itoring during the planning process—not just during
execution—and are also considering a wider set of
monitors and using them for a wider set of transfor-
mations.

Alternative-based monitors: We are particularly
interested in planning situations in which the planner
has the potential to form multiple alternative plans
to achieve its objectives. A novel aspect of our ap-
proach is that we not only monitor features of the
world that affect the current plan, but also features
of the world that play a role in the decision to select
that plan over alternative possibilities. For instance,
it may be important to monitor the preconditions of
some operator that was not selected: should they be-
come true, then it may pay for the planner to “change
its mind” and use that operator after all.

Plan-based and alternative-based monitors are
clearly related. Every time the planner needs to make
a decision among alternatives, it applies its evaluation
function and selects a particular candidate plan. The
selected plan gives rise to the plan-based monitors. At
the same time, the alternatives considered give rise to
alternative-based monitors. As the world state is dy-
namically changing, the planner remembers alternatives
that it judged less valuable, monitoring the world state
to see if that judgement should be changed.

Monitor Types

Within each class of monitors, we can identify several
monitor types; so far, we make use of three distinct



types:

Subgoal monitors: These encode all the precondi-
tions and bindings of operators that have been con-
sidered in the planning process so far, including the
operators in the current plan. The status of precon-
ditions and their bindings can provide rationales for
action selection, step instantiation, and new subgoal
decisions, as explained above. In general, the plan-
based subgoal monitors will be more fully instanti-
ated than the alternative-based ones.

Usability-condition monitors: These represent the
usability conditions of operators. Plan-based
usability-condition monitors are important, because
if one of them becomes false, the plan will need to be
revised, with the operator in question being replaced.
(Tmagine that the current plan involves landing a heli-
copter in Pittsburgh, and Pittsburgh becomes fogged
in.) Alternative-based usability-condition monitors
play a different role. If one of them represents a
currently false condition, then should that condition
become true, the planner may re-consider using the
operator that was initially unusable. (Imagine that
the plan to land in Washington, DC was preferred,
but Washington did not have clear weather when the
initial planning decision was made.)

Quantified-condition monitors. A third type of
monitor is generated by universally quantified pre-
conditions of operators considered during the plan-
ning process. Given a precondition with a univer-
sally quantified predicate P, a monitor will be estab-
lished to track the dynamics of the set denoted by P.
(TIf the precondition involves loading all the packages
currently in Pittsburgh, the world will be sensed to
notice when the number of packages in Pittsburgh
changes.) Plan-based quantified-condition monitors
help ensure plan correctness: e.g., if a new package is
delivered to Pittsburgh, the plan must be expanded
to ensure that it is loaded as well. Alternative-
based quantified-condition monitors suggest possible
changes in planning decisions. (If the precondition for
some alternative involves moving all the trucks now
on the loading dock, then if the number of trucks on
the loading dock goes to zero, the attractiveness of
that alternative may increase.)

Plan Transformations

Whenever a monitor detects that a potentially relevant
change in the world occurred, the planner may decide
to attend that change, and then transform the plan.
We organize plan transformations into three different
categories:

Add to plan: Sometimes a change in the world ne-
cessitates extending the current plan. Two types
of monitors can lead to this type of transformation.
First, a plan-based subgoal monitor may fire when a
condition C' that was believed true has become false.
Because C' was believed true, the planner will have

linked it to the world state, and not considered ac-
tions to achieve it. If it has now become false, then
(assuming the current plan is maintained), C' must
be added to the set of open conditions. Second,
a plan-based quantified-condition monitor may fire,
representing a change in the extension of predicate.
For example, suppose the quantified-condition moni-
tor is keeping tracking of the set of all packages at the
Pittsburgh depot. If a new member of that set is dis-
covered, then the precondition that gave rise to that
monitor may no longer be satisfied: if all the pack-
ages at the Pittsburgh depot must be loaded into the
truck, then the goal of loading the newly discovered
object must be added to the planner’s open condi-
tions.

Cut from plan: This transformation occurs in ex-
actly the opposite situations from those described
just above. When a portion of the current plan serves
to establish some condition C, it may become possi-
ble to cut it out, should C' become true.? Cuts may
result from the firing of plan-based subgoal monitors
and plan-based quantified-condition monitors: the
latter lead to cuts when the satisfied set is reduced.

Jump in plan: Where the previous two transforma-
tions result only from plan-based monitors, and can
be viewed as making improvements to the plan cur-
rently under consideration, the third may result from
any type of monitor, and can best be viewed revisit-
ing an earlier planning decision. Specifically, when-
ever any type of alternative-based monitor fires, it
may indicate that a previously rejected alternative
has now become more attractive (say, because some
of its subgoals have now become true). The planner
may then perform a “jump,” i.e., change its focus
of attention to the alternative. Note that plan-based
monitors can also suggest jumps. Plan-based subgoal
and universal-condition monitors can indicate that
the current plan is not as attractive as it was before
(say, because some of its subgoals, which had been
true, have now become false). Plan-based usability-
condition monitors always suggest jumps, since their
firing indicates that an operator in the plan is now
longer usable: an alternative must be sought.

These transformations capture the core of the
changes that occur when planning and sensing are in-
terleaved. We have been also investigating refinements
of these transformations, in particular in terms of a rich
taxonomy of goal transformations (Cox & Veloso 1998).

During plan generation, each monitor can be tagged
with the plan transformation(s) it may suggest. When a
monitor fires, deliberation can then determine whether
any of the suggested transformation should be per-
formed. Table 1 summarizes our discussion and shows
the transformations associated with each type of mon-
itor.

2The planner needs to determine that the affected por-
tion of the plan does not also play some other role.



Monitor Monitor World State Suggested
Class Type Change Transformations
Plan-Based Subgoal T—F {add,jump}
F—->T {cut}
Usability-condition | T — F {jump}
Quantified-condition | increased extension | {add,jump}
decreased extension | {cut}
Alternative-Based | Subgoal F—-T {jump}
Usability-condition F—-T {jump}
Quantified-condition | decreased extension | {jump}

Table 1: Monitor Generation.

Implementation

We have implemented planning with rationale-based
monitors within the Prodigy4.0 planner (Veloso et al.
1995). Table 2 sketches the overall algorithm.

Prodigy4.0 is a state-space nonlinear planner. On
its primary cycle it may do one of two things. It may
select a pending goal, i.e., one that is not satisfied in
the current state, and update the plan by adding a step
that achieves that goal by adding it to its tail plan (Step
3 in the algorithm), or it may select an applicable step,
i.e., one for which all of the preconditions are currently
satisfied, and add it to the end of a totally ordered head
plan (Step 4 in the algorithm). In the latter case, the
state changes that result from the applied action are
performed and produce the new planning state.

To incorporate rationale-based monitoring, two pri-
mary changes to the algorithm are needed, as shown in
boldface in Table 2. First, rationale-based monitors are
generated whenever the plan has been updated. Sec-
ond, sensing is performed to check the status of the
world conditions being monitored, and plan transfor-
mations are performed in response.

Signal-Handling Interrupts for Sensing

To incorporate sensing during planning in Prodigy, we
have relied on its interrupt-handling mechanism (Stone
& Veloso 1996). This mechanism is a useful part of the
Prodigy system, and has previously been used in a num-
ber of ways.> In our current implementation, changes
to the world state may be made during the planning
process; at the end of each planning cycle, the planning
process is interrupted and updates to the environment
are “sensed” and incorporated into the planner’s state.
We have also implemented a generalization, in which
sensing occurs only every n cycles, where n is a user-
specified parameter.

Currently, world-state changes can only be specified
as literals. Each literal is tagged as being satisfied in the
state or not. Multiple changes can be observed during
a single sensing operation.

3For example, Prodigy’s GUI relies on the interrupt-
handler to communicate user commands and display results
after each planning cycle.(Cox & Veloso 1997)

1. Terminate if the goal statement is satisfied in the
current state.

2. Compute the set of pending goals G, and the set
of applicable operators A. A goal is pending if it is a
precondition, not satisfied in the current state, of an
operator currently in the plan. An operator is applica-
ble when all its preconditions are satisfied in the state.

3. Either
Choose a goal ¢ from G
FExpand G, i.e., get the set O of relevant instan-
tiated operators that could achieve the goal G,
Perform action selection.

Perform step instantiation.
Add new step to tail plan.
Generate new monitors.
4. or
e Choose an operator A from A.
e Apply A: Add A to the head plan and get new
current state.

5. Sense for fired monitors, and perform plan-
ning transformations.

6. Go to step 1.

Table 2: A skeleton of Prodigy4.0’s planning algorithm
with rationale-based monitoring.

Monitor Generation in Prodigy

New monitors may be generated whenever Prodigy up-
dates the tail plan. A pending goal is selected, and
an operator is added to the plan to achieve it. The
goal unification with the effects of the operator provides
some initial bindings for the preconditions. The remain-
ing variables of the preconditions are then bound, and
new subgoals are added. Monitors are then created to
track the world state features that led to each of these
decisions.

The monitors are implemented as Prodigy signal-
handling functions. Thus, if a monitor is established
for some condition P, then the introduction of the lit-
eral P into the world state will cause that monitor to
fire at the end of the cycle following its introduction.
Table 3 provides the pseudo-code for our implemented
monitor generation algorithm.



e Let O be a selected or alternative instantiated step and
let B be the corresponding binding search node.

o Let pre(O) denote the regular preconditions of O.

o Let g-expr(0) denote the quantified preconditions of O
and let each precondition in g-expr(O) be of the form
p(z),Vz, s.t.f(x).

o Let U, Q, and 8 respectively denote the sets of Usabil-
ity, Quantified-condition, and Subgoal monitors.

e Let usability-condition-p be true for the usability con-
ditions.

for each precond p in pre(O)
if usability-condition-p(p)
then & = YU usability-monitor(B, p)
else § = SU subgoal-monitor(B, p)
for each precond p(z), Ve, s.t.f(z) in g-expr(O)
Q = QU quantified-condition-monitor(B, f)
for each expansion p(z;) s.t. f(#;) is true
S = SU subgoal-monitor(B, p(z;))

Table 3: Algorithm to generate monitors in Prodigy4.0.

Plan Transformations

When a monitor fires, it suggests a possible plan
transformation. We implemented most of the plans
transformations described above. The implementa-
tion did not requires changes to the Prodigy architec-
ture. This is because Prodigy allows control of the
planning search to be manipulated through declara-
tive structures, called control rules (Veloso et al. 1995;
Borrajo & Veloso 1996). Control rules enable heuristic
redirection of the search for operators to achieve goals,
for bindings to instantiate operators, and for the next
node to be expanded. The default is to perform depth-
limited search through planning decisions. But given
a control rule that selects a specific search node, this
default can easily be overturned.

Plan transformations are implemented as control
rules that lead to movement through the search tree.
The implementation within Prodigy depends upon its
distinction between the tail plan and the head plan,
introduced in the discussion of Table 2.

Prodigy adds new steps to the tail plan and recur-
sively plans for the preconditions of those steps. When
a step in the tail plan is found to have all of its precon-
ditions true in the state, that step can be applied (see
Step 4 in Table 2), i.e., moved to the head plan, and a
new state is computed.

Our implementation of plan transformation needs to
take care of two situations:

e Consider that the change detected refers to a precon-
dition of a step in the tail plan. Then

— If this precondition was already planned for, then
the planner cuts that unneeded plan.

— If this precondition has not been planned for, then
the planner automatically incorporates it into its
open preconditions through the computation of the
pending goals.

e Consider that the change detected refers to a pre-
condition of a step already in the head plan. Then
the planner backtracks to the node previous to the
application of the step, to do further planning.

Similarly, when an alternative-based monitor fires,
the planner selects the appropriate alternative node
from which to pursue the plan generation. Control
rules are generated dynamically to select the appropri-
ate change of focus in the search.

For example, Table 4 shows a control rule that is as-
sociated with a jump transformation and automatically
generated when a monitor fires. The rule is executed
only through the use of a “one-shot” function (it re-
turns t upon the first invocation and nil otherwise). If
the binding node (bnode) is still expandable, it will se-
lect that node as the node to pursue planning from.

bode is the specific node associated with the firing monttor.

(eval ‘(control-rule
, (gentemp "JUMP-2-READY-STEP-")
(if (and (one-shot ,done-var)
(candidate-node ,bnode)))
(then select node ,bnode))))

Table 4: Dynamically created control rule to perform a
jump transformation.

Experiments

Using the implementation described above, we designed
and performed a preliminary set of controlled experi-
ments to illustrate aspects of our approach.

Alternative-based subgoal monitors. We created
an artificial domain to test the generation of subgoal
monitors and the effect of the alternative-based ones.
The goal of this experiment was to illustrate the imple-
mentation showing that the basic idea is feasible, and,
more specifically, that the use of alternative-based mon-
itors can lead to better plans, compared to those that
would be formed if no monitoring occurred. The cost of
sensing in our simple experiments was not a significant
overhead, although we recognize that it may become
more of a factor if a large set of monitors is generated.
We thus are currently developing techniques to priori-
tize rationale-based monitors.

In this experiment, we created an artificial domain.
At a certain point in the planning process, we changed
the world state, and made true a condition that would
suggest a jump to a different partial plan.

The operators in our artificial domain are shown in
Figure 1. The operators fall into three classes. First,
there are n operators O1(x) ...0p(z), where each O;(x)
has two preconditions, g;+1 and a(z) and a single effect
gi- (Note that x ranges over a set By = {x1,..., 45}
of k possible bindings. Therefore there are & many in-
stantiated operators to achieve each goal g;.) Second,
operator Op41() has no preconditions and the effect



gn+1- Finally, operator O.(z) has no preconditions and
the effect a(z).*
operator Oy (z)

operator O;(x) operator Opn41()

i=1,..,n;2 € B pre: () pre: ()
pre: a(z) & git1 add: gn41 add:a(z)
add: g; del: () del: ()
del: ()

Figure 1: Experimental domain for alternative-based
monitors.

In each planning problem, we set the initial state to
be one in which only a(z1) is true, and set the goal
to be g1. By varying n, we can vary the complexity
and length of the solution, and by varying k, we vary
the number of possible bindings for z and therefore the
branching factor and the number of alternatives avail-
able. As an example, consider n = 3 and k& = 5. As
a(z1) is the only true a literal in the initial state, a
solution plan is O4(z1), Os(z1), Oz(21), O1(x1). I,
however, for example both gz and a(x3) become true
during the planning process, then Op(z5) becomes an
alternative shorter solution. The purpose of monitoring
is to observe such a change, and suggest a jump to the
shorter plan.

In the experiment reported here, we varied n, the
number of steps in a solution plan if the world state
does not change; n ranged from 1 to 30. We fixed k,
the number of binding possibilities for the planning op-
erators, to 2. During planning, two monitors fire mak-
ing true the literals g2 and a(zz). We vary the time
at which these two monitors fire during the planning
process, namely after 0, 10, and 20 planning steps. The
results are shown in Figure 2, which plots the total
planning time as a function n.

As can be seen, when the environment does not
change, the amount of time to generate a solution in-
creases with n. However, with the rationale-based mon-
itors, the planner can react to changing circumstances
and find a plan more quickly. As would be expected,
when the changes occur later (say, after 20 planning
cycles rather than 10), the savings to the planner is
reduced, because it has already performed significant
planning.

Alternative-based usability monitors. Generat-
ing and responding to rationale-based monitors can al-
low a planner to generate non-faulty plans. To show
the effect of usability monitors, we performed a simi-
lar experiment to the one above. By simply removing
the operator O. in the domain shown in Figure 1, a(x)
becomes a usability condition. In the initial state, all
(or a set) of a(xy) are satisfied in the initial state. For
example for k = 2, both a(z1) and a(z3) are satisfied.
In this new experiment, however, the usability mon-
itor is the only one that fires, detecting the deletion
of a(z1) from the state. As a is now an unachievable

*Note that a(z) is not a usability condition, because O
can achieve it.
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Figure 2: Alternative-based subgoal monitors: Plan-
ning performance with and without rationale-based
monitoring. The curves refer to different delays of the
firing of the monitors during the planning process.

predicate, the planner needs to jump to an alternative
where its usability condition is true. The final plans
generated are of length n in all situations, independent
of the alternative taken. However, if no monitoring is
done and the world changed, the plans generated are
faulty. Our experiments showed that the planner with
rationale-based monitoring produces the correct plan,
accounting therefore for the state dynamics while plan-
ning.

Plan-based quantified-condition monitors. An-
other interesting example is the use of quantified-
condition monitors, that once again allows for a planner
to avoid generating a faulty plan. We performed exper-
iments in several domains, in particular in a realistic
simple military domain.

Consider the previously introduced general for-
mulation of a universally-quantified precondition,
p(x),Ve,s.t.f(x). When our quantified-condition mon-
itors detect an additional value of z, e.g. x;, for which
f(z;) becomes true in the world, the planner adds a
new universal precondition to achieve p(z;). Without
the monitors and without p(x;) being true in the ini-
tial state, no step in the plan would be generated to
achieve p(#;). The plan would then be faulty. With
rationale-based monitors that use the universally quan-
tified expression in the operator definition to watch for
this event, the planner can react to the new information
to create a correct plan.

We have implemented a number of examples of quan-
tified condition monitors in the military domain of air
campaign planning. For instance, in our domain we can
have a top-level goal to make a particular river impass-
able. The operator to achieve this goal requires that all
of the river crossings (e.g., bridges) such that the cross-
ing enables troop movements, be destroyed. The plan-



ner posts subgoals to destroy all of the crossings known
in its state. A quantified-condition monitor is then cre-
ated to watch for additional crossings that enable such
movement. During planning, when our monitor trig-
gers upon the detection of a new river crossing, then
the planner correctly adds a new subgoal to destroy
the new crossing discovered. Similarly, if a crossing is
disabled, the planner correctly cuts any planning that
was done for that crossing.

Discussion and Conclusion

In this paper, we have presented our work on developing
a framework for fully integrated planning and execution
in dynamic environments. In this initial phase of this
work, we have concentrated on the problem of enabling
a planning system to deal with changes in the environ-
ment. A central concern has been with the question
of how to focus the sensing performed by the system,
so that it responds appropriately to relevant changes,
but is not overly taxed by attempting to monitor all
the changes that could possibly occur in the world. We
observed that planning is essentially a decision process,
and that many of the decisions made by planners de-
pend upon the current world state. Therefore, one way
to help achieve the right degree of sensitivity to the
world state is to have the planner focus on those changes
that have influenced its planning decisions so far.

We therefore developed the idea of rationale-based
monitors, which including both the selections made in
the plan under development and the alternatives con-
sidered. Rationale-based monitors encode features of
the world that the current plan depends on, as well
as features of the world that led to the rejection of al-
ternatives. When a rationale-based monitor fires, it can
therefore suggest that the current plan be modified (i.e.,
by adding new elements to it or cutting portions of it),
or it can suggest that the planner revisit one of its pre-
vious planning decisions, for instance, replacing one of
the operators used to achieve some goal.

We have implemented an initial version of rationale-
based monitoring within the Prodigy planner. We have
done controlled experiments in several domains, includ-
ing military and artificial domains. The results show
that planning with the rationale-based monitors can re-
duce the total planning and increase the correctness of
the plans generated.

With the monitor-based framework in hand, we can
now address a number of remaining, important ques-
tions. The one we find particularly critical involves
the question of meta-level deliberation. The firing of
a rationale-based monitor suggests an opportunity for
improving the plan being developed. Reasoning must
be performed to decide whether and/or which transfor-
mations should be applied. For example, alternative-
based monitors suggest that a previously rejected al-
ternative might be re-considered, but it is not neces-
sarily always the case that they should be. When a
plan-based subgoal monitor fires, it suggests that ei-
ther additional open goals need to be added or a dif-

ferent operator should be tried. We are thus currently
focusing on the development of deliberation strategies
for handling monitors.
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