
Adjustable Autonomy for a Plan Management AgentMartha E. Pollacky;�Ioannis Tsamardinos�yDepartment of Computer Science�Intelligent Systems Program andUniversity of PittsburghPittsburgh, PA 15260 USAfpollack,tsamardg@cs.pitt.edu John F. HortyInstitute for Advanced Computer Studiesand Department of PhilosophyUniversity of MarylandCollege Park, MD 20742horty@umiacs.umd.eduAbstractThe Plan Management Agent (PMA) is an intel-ligent software system that is intended to aid auser in managing a potentially large and complexset of plans. Currently under development, PMAapplies AI technology for modeling and reason-ing about plans and processes to the developmentof automated support for work activities. Wehave developed and implemented algorithms forreasoning about richly expressive plans, which in-clude explicit temporal constraints, temporal un-certainty, and observation actions and conditionalbranches. We have also developed and imple-mented an approach to computing the cost of anew plan in the context of existing commitments.The current version of PMA has a low level of au-tonomy: it makes suggestions to its user, but itdoes not directly act on her behalf. In this pa-per, we �rst describe the PMA system, and thenbriey raise some design questions we will need toaddress as we increase the level of PMA's auton-omy, and have it vary with the situation.IntroductionThe Plan Management Agent (PMA) is an intelligentsoftware system that is intended to aid a user in man-aging a potentially large and complex set of plans.Previous research in Arti�cial Intelligence|especiallyin the sub�elds of plan generation and plan executionsystems|has led to the development of rich represen-tations for modeling structured processes, as well asalgorithms for reasoning about such processes. Sys-tems employing these representations and algorithmshave been used in a variety of applications, includ-ing equipment malfunction handling (the PRS system)(George� & Ingrand 1989), air tra�c control (dMars)(Rao & George� 1995), robot navigation (RAPs) (Firby1996), and autonomous spacecraft (ESL and the Re-mote Agent) (Muscettola et al. 1998). In PMA, weare drawing on and extending the techniques of plan-ning and execution systems, applying them to a newdomain: personal plan management. The key idea be-hind PMA is to apply AI technology for modeling andreasoning about plans and processes to the developmentof automated support of work activities.

Currently under development, PMA includes repre-sentations and algorithms we have developed for rea-soning about richly expressive plans, which include ex-plicit temporal constraints, temporal uncertainty, andobservation actions and conditional branches. We havealso developed and implemented an approach to com-puting the cost of a new plan in the context of existingcommitments. The current version of PMA has a lowlevel of autonomy: it makes suggestions to its user, butit does not directly act on her behalf. For example, itidenti�es conicts among plans and suggests possibleresolutions of those conicts, but it does not automat-ically accept any of the suggested resolutions. PMA'susefulness will increase when it is given a greater de-gree of autonomy. It should have the authority to makesome kinds of commitments and perform some kindsof actions on behalf of its user. However, its autonomymust be controllable and adjustable, and may vary withthe situation. We envision cases in which PMA needsto perform deliberation to determine the degree of au-tonomy appropriate in some situation: speci�cally, itmay reason about the potential costs and bene�ts ofits making a decision on behalf of its user. In this pa-per, we �rst describe the PMA system, and then brieyraise some design questions we will need to address inmaking PMA an adjustably autonomous system.BackgroundAs mentioned above, PMA is an intelligent assistant,providing tools to help its user manage plans and com-mitments. It is thus related to two major classes ofsoftware systems: personal electronic calendar systemsand workow systems.Commercially available electronic calendar systems,published by major software companies, essentially pro-vide glass interfaces to written calendars. They typi-cally have advanced GUIs, and provide linkages to con-tact databases and email; some also provide capabilitiesfor meeting scheduling, for example, automatically gen-erating email to notify meeting participants, and auto-matically selecting a time for the meeting based on theparticipants' responses. However, these systems su�erfrom a highly impoverished representation for activities:they can only model simple events and recurring simple



events. Simple events are blocks of time with a singleproperty|\free" or \busy"; a \free" activity is allowedoverlap with other \free" activities, but a \busy" ac-tivity cannot overlap with other activities. Recurringsimple events are simple events that recur at regularintervals, e.g., every Tuesday from 4-5pm. Labels andtextual information can be attached to each event, butthese are not used in any sophisticated way by the sys-tem; they are stored only for the human user's informa-tion.Workow systems (Georgakopoulos, Hornick, &Sheth 1995; Nutt 1996; Mahling, Craven, & Croft 1995)constitute another class of systems aimed at helpingusers manage their routine activities. In contrast tothe personal calendar systems, workow systems em-ploy richly structured representations of activities (orprocesses), and they use these representations to en-sure that information and tasks ow to the appropriatepeople in an organization in a timely fashion. Mod-ern workow systems support \document management,imaging, application launching, and/or human coordi-nation, collaboration, and co-decision" (Georgakopou-los, Hornick, & Sheth 1995, p. 121). On the other hand,they tend to have limited capabilities for handling un-certainty, for replanning when a problem is detected,and for reasoning about the relative value of alternativeways to perform a given task. PMA is being designed toinclude just these sorts of reasoning capabilities, someof which have been previously developed in work onplan generation and execution, and some of which weare developing within the PMA project.PMA is a joint project of research groups at the Uni-versity of Pittsburgh and the University of Maryland.Other e�orts to apply AI plan generation and executiontechnology to develop workow-style systems includethe IWCM project at SRI International (Berry & My-ers 1998) and the Enterprise Project at the Arti�cialIntelligence Applications Institute (Drabble, Lydiard,& Tate 1998; Stader & Jarvis 1998). Like PMA, theIWCM project is relatively new, and comparisons be-tween the projects are not yet possible. Although someof the functionality of PMA overlaps with that of theEnterprise project, the approaches taken in the two ef-forts are rather di�erent. For example, the EnterpriseProject relies on a di�erent model of plan generation(the O-Plan approach) and a di�erent representationfor activities (the <I-N-OVA> model (Tate 1996)) thanwe are using in PMA, and the techniques we are usingfor tasks such as determining the compatibility of plansand assessing the cost of a new plan are also quite dif-ferent. As PMA is further developed, a more thoroughcomparison of it and the Enterprise Project will becomevaluable.An Example PMA InteractionTo illustrate the behavior of PMA, we describe a sam-ple interaction with it. PMA has knowledge of thestructured activities|the \plans" or \procedures"|that its user typically performs. A PMA for an aca-

demic user would have a library containing descrip-tions (templates) of activities such as holding a meeting,teaching a class, attending a conference, overseeing theediting of a paper, and so on, while a PMA for use inaa physician's o�ce would know the steps involved incarrying out diagnostic procedures, preparing a patientfor surgery, and handling insurance forms. The activityof preparing a patient for surgery might include, say,organizing a preliminary battery of tests, assemblingand scheduling the surgical team, booking the operat-ing room, etc. And of course, many of these tasks wouldthemselves decompose into structured activities: carry-ing out a single test might involve scheduling that test,tracking the lab work, entering the results into the pa-tient's record, and calling the patient for follow-up workif necessary.Imagine that a physician (or nurse) speci�es the goalof performing a particular diagnostic test on a patient.PMA immediately posts commitments to various taskspertaining to that goal in an internal knowledge base|the \schedule". It also updates the graphical displaythat includes a calendar and to-do list. In this example,the posted commitments might include scheduling thetest, obtaining the necessary background informationbefore the test date, reminding the patient 48 hoursbefore the test date, and so on. Once the user indi-cates that the test has been scheduled for a certaindate|December 15, say|the temporal information as-sociated with the related procedures will be updatedaccordingly; for example, a calendar entry will then ap-pear reminding the user to notify the patient on Decem-ber 13. Furthermore, if this test is just one of a batteryof tests, and the scheduled December 15 date placesit too near another test with which it might interfere,PMA will notice this conict and notify the user, sug-gesting an alternative schedule that avoids the conict.It may also suggest to the user that an operating roomshould be scheduled now, even though the actual dead-line for the reservation has not yet occurred, becausethere is limited exibility in the schedule to handle thesituation should the operating rooms become unavail-able at the desired time.This scenario illustrates the main capabilities that weare building into PMA:� The PMA user can commit to activities that have richtemporal and causal structure. She does not need tospecify separate commitments to each component ofthe activity.� The PMA user can make partial commitments: forinstance, she can commit to performing a particu-lar activity without yet specifying the exact time atwhich it will occur, or she can specify that she wantsto commit to a particular goal, without yet specifyingexactly which plan she will use to achieve that goal.� When the user extends her commitments (e.g., byspecifying a particular time or a particular plan fora goal), PMA propagates the new commitment to alla�ected parts of the activity. In the example above,



when the user speci�es that the test should be sched-uled for Dec. 15, a patient reminder is automaticallyscheduled for Dec. 13.� Whenever the user attempts to form a new commit-ment, PMA performs temporal and causal reason-ing to determine whether it is consistent with theuser's previous commitments. If PMA determinesthat certain additional constraints are required toensure consistency, it noti�es the user of those addi-tional constraints, which we call \forced constraints".If PMA determines that there is a conict betweenthe new commitment and prior commitments, it sug-gests ways to resolve the conict.� PMA can assess the cost of executing a plan in thecontext of existing commitments, and notify the userif the cost fails to exceed some speci�ed threshhold.� As time passes, PMA monitors the execution of theuser's activities, and reminds the user when deadlinesare approaching. It also reasons about the tightnessof the schedule: for instance, if there is little slack atsome future periods, PMA may suggest taking earlyaction.To date, we have implemented the �rst �ve capabilities,but only for non-hierarchical activities.1 The extensionof these capabilities to hierarchical activities, and theimplementation of execution monitoring, are part of ourongoing e�ort.System DescriptionAn initial version of PMA has been constructed and im-plemented on a Pentium Platform, using Allegro Com-mon Lisp for Windows. Figure 1 illustrates the user'sview of PMA.The user interacts with PMA through three maincomponents: a calendar, a to-do list, and an activitymanagement window. The calendar lists all the fullyscheduled tasks to which the user has committed; byfully scheduled, we mean tasks that have been assigneda speci�c time of occurrence. (Note that we use theterm \activity" to refer to complete processes, such asperforming a diagnostic test, and use the term \task" torefer to individual steps in an activity, such as \sendingthe patient a reminder message".) The to-do list showsall tasks that the user has committed to, but has notyet fully scheduled. Finally, the activity managementwindow allows the user to add a commitment to a newactivity, view the details of an existing commitment,or delete an existing commitment. The details of anactivity can also be viewed by selecting a task in thatactivity from the calendar or the to-do list. In eithercase, the result is a pop-up window providing a descrip-tion of the activity and details about constraints on it;the user can then modify those constraints if desired.1As of this writing, the cost-assessment calculation hasbeen successfully implemented, but not yet incorporatedinto PMA. We plan to incorporate it in the very near future.

1. Earliest Start Time for Task T2. Latest Start Time for Task T3. Earliest End Time for Task T4. Latest End Time for Task T5. Minimum Duration for Task T6. Maximum Duration for Task T7. MinimumPeriod of Separation between Tasks T1 andT28. MaximumPeriod of Separation between Tasks T1 andT2 Figure 2: Temporal Constraints for a TaskPMA has two primary knowledge bases. The �rst isan activity library, containing templates for domain ac-tivities. The second is the user's schedule, a record ofthe activities to which the user has committed, alongwith all constraints on those activities. The user'sschedule thus includes fully or partially instantiated ac-tivity templates, along with supplemental constraints.Activity templates are encoded using a standardAI planning language augmented to allow conditionalbranches and explicit temporal constraints. The latterallow the user to specify constraints on the start andend times and/or the duration of tasks. More speci�-cally, the user can specify any or all of the constraints inFigure 2. Of course, these constraints may interact|forexample, if all of constraints (1)-(4) are speci�ed froma task T , then items (5) and (6) for T can be derived.We present the user with the full range of possibilitiesbecause it is sometimes more natural to specify someconditions than others. PMA checks that all input con-straints, including temporal ones, are consistent withone another.Whenever a new constraint is added to an activity,or a new activity is added to the user's schedule, PMAperforms a consistency check. For this purpose, wehave developed a new algorithm, described in detail in(Pollack, Tsamardinos, & Horty 1999). The algorithmhas three stages. In the �rst, it employs a ConditionalSimple Temporal Network (CSTN) to identify conictsamong plans. CSTNs extend Simple Temporal Net-works (Meiri 1992) to include branching nodes. Afterconicts have been identi�ed, the second stage of ouralgorithm uses an approach developed by Yang (1997)to suggest a potential resolution of the identi�ed con-icts. Yang's approach is not guaranteed to generateresolutions that are consistent with all the temporalconstraints allowed in our constraint language, so thethird stage of the algorithm involves re-using the CSTNto check for consistency. If the proposed resolution isdetermined to be inconsistent, then the algorithm back-tracks and an alternative solution is proposed.As a side-e�ect of consistency checking, constraintson a single task or activity are propagated to other tasks



Figure 1: PMA: The User's Viewand activities in the user's schedule. Additionally, whena conict is identi�ed, our algorithm �nds candidateways to resolve the conict. These are suggested to theuser, who can select among them, or can retract thenew constraint or activity entirely.An additional reasoning task performed by PMA in-volves assessing the cost of a new potential commit-ment. By \cost" we mean all types of resource usage,including the user's e�ort, and not just monetary cost.In general, because activities may interact with one an-other, the cost of one activitymay vary, depending uponthe other activities to which the user has already com-mitted. We have developed and implemented an ap-proach to evaluating the cost of a potential option in thecontext of existing commitments; details can be foundin (Horty & Pollack 1998). If activities have known val-ues associated with them, then cost assessment can beused to determine whether an activity is worth pursu-ing. Our cost-assessment algorithm uses cost estimateintervals: as soon as the new activity's value is deter-mined to lie outside the cost-estimate interval, it can inprinciple immediately be accepted (if its value exceedsthe cost interval) or rejected (if the value is below thecost interval). PMA will point this out to the user, butwill not accept or reject an option directly.A �nal component of PMA, which we have yet toimplement, is an execution monitor, which will trackthe execution of activities to which the user has com-mitted. The execution monitor will warn the user whenher tasks are about to become due, reasoning about theappropriate time at which to issue the reminder, tak-ing account the temporal constraints associated withthe activity in question. Additionally, we hope to in-

clude probabilistic reasoning capabilities in the execu-tion monitor, so that it can warn the user when thelikelihood of successly completing some activity dropsbelow a certain threshhold.Adjustable Autonomy IssuesAs mentioned earlier, PMA currently has a very lowlevel of autonomy. Although it can detect conictsamong plans, and can suggest potential resolutions, itnever adopts a resolution directly, but instead leaves itto the user to accept one of its suggestions. Similarly,although it can compute an estimated cost for a newactivity and determine whether the activity has a valuethat is greater (or less) than its cost, it never directlyadopts or rejects a new commitment for its user. Al-though it will be able to determine when the likelihoodof succeeding at an activity has dropped below a certainlevel, it will not, in the initial version, modify the setof commitments to increase the probability of success.PMA's usefulness will increase when it is given agreater degree of autonomy. It should be able to makesome kinds of commitments and perform some kinds ofactions on behalf of its user, and to defer to the user inother situations. For example, we might want a PMAfor an faculty user might to schedule routine meetingswith students, and if the user speci�ed a conictingappointment, we might want PMA to automaticallychange the times of the student meetings (notifying thestudent of course!). On the other hand, we would notwant PMA to change the times of some other meetings,e.g., a meeting with the Dean, without �rst obtainingthe approval of its user. A key question is how PMA canbe made to recognize which commitments are strictly



under the control of the user, and which ones can bedirectly modi�ed by PMA. Can control be speci�ed interms of the types of activities and/or their arguments,or will the control status of each activity token need tobe speci�ed individually, by the user?In addition to modifying the user's schedule|adding,deleting, and changing commitments|we might alsowant PMA to perform certain tasks on behalf of itsuser. Again, using the example of a PMA for a facultymember, suppose that the user is also an editor for ajournal. We may want PMA to directly perform someof the tasks in the \edit paper" activity, for instance,automatically updating the user's tracking sheet as re-views for the meeting as received. Again, the questionarises as to which tasks PMA should have authority toperform, and how this information can be encoded.In general, PMA's authority may vary with certainfeatures of the current situation. For instance, when auser is on vacation, she may want to grant PMA au-thority to modify some (types of) commitments and/orperform some (types of) tasks that she might otherwisedirectly oversee. In general, PMA may need to per-form deliberation to determine the degree of autonomyit should adopt. More speci�cally, it may need to rea-son about the potential costs and bene�ts of its makinga decision on behalf of its user, and only assume au-tonomy when the potential bene�ts are high and thepotential are low. We speculate that some form thiscalculation will be central in all adjustably autonomousagents.Acknowledgements This research has been sup-ported by the National Science Foundations grants IRI-9619579 and IRI-9619562 and by the Air Force O�ceof Scienti�c Research contract F49620-98-1-0436.ReferencesBerry, P. M., and Myers, K. L. 1998. Adaptive pro-cess management: An AI perspective. In Proceedingsof the Workshop Towards Adaptive Workow System.Available from http://www.ai.sri.com/berry/.Drabble, B.; Lydiard, T.; and Tate, A. 1998. Work-ow support in the air campaign planning process. InProceedings of the Workshop on Interactive and Col-laborative Planning, AIPS98.Firby, R. J. 1996. Modularity issues in reactive plan-ning. In Proceedings of the Third International Con-ference on AI Planning Systems, 78{85.Georgakopoulos, D.; Hornick, M.; and Sheth, A. 1995.An overview of workow management: From pro-cess modeling to workow autonomation infastruc-ture. Distributed and Parallel Databases 3:119{153.George�, M. P., and Ingrand, F. F. 1989. Decision-making in an embedded reasoning system. In Proceed-ings of the Eleventh International Joint Conference onArti�cial Intelligence, 972{978.Horty, J. F., and Pollack, M. E. 1998. Option evalua-tion in context. In Proceedings of the 7th Conference

on Theoretical Aspects of Rationality and Knowledge(TARK-98), 249{262. San Francisco: Morgan Kauf-mann.Mahling, D.; Craven, N.; and Croft, W. B. 1995.From o�ce automation to intelligent workow sys-tems. IEEE Expert 10(3).Meiri, I. 1992. Temporal Reasoning: A Constraint-Based Approach. Ph.D. Dissertation, UCLA.Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams,B. C. 1998. Remote agent: To boldly go where no AIsystem has gone before. Arti�cial Intellience 103:5{47.Nutt, G. J. 1996. The evoluation towards exibleworkow systems. Distributed Systems Engineering276{294.Pollack, M. E.; Tsamardinos, I.; and Horty, J. F.1999. Merging plans with quantitative temporalbranches, temporally extended actions, and condi-tional branches. Submitted for publication; availablefrom the author's Web page.Rao, A. S., and George�, M. P. 1995. BDI-agents:From theory to practice. In Proceedings of the FirstInternational Conference on Multi-Agent Systems.Stader, J., and Jarvis, P. 1998. Intelligent support forenterprise modelling. Technical Report AIAI-TR-220,AIAI, Edinburgh, Scotland.Tate, A. 1996. Representing plans as a set of con-straints { the <I-N-OVA> model. In Proceedings ofthe Third International Conference on AI PlanningSystems (AIPS96), 221{228. AAAI Press.Yang, Q. 1997. Intelligent Planning: A Decompositionand Abstraction Based Approach. New York: Springer.


