Adjustable Autonomy for a Plan Management Agent

Martha E. Pollack "~
Ioannis Tsamardinos”
TDepartment of Computer Science
*Intelligent Systems Program and
University of Pittsburgh
Pittsburgh, PA 15260 USA
{pollack,tsamard}@cs.pitt.edu

Abstract
The Plan Management Agent (PMA) is an intel-

ligent software system that is intended to aid a
user in managing a potentially large and complex
set of plans. Currently under development, PMA
applies Al technology for modeling and reason-
ing about plans and processes to the development
of automated support for work activities. We
have developed and implemented algorithms for
reasoning about richly expressive plans, which in-
clude explicit temporal constraints, temporal un-
certainty, and observation actions and conditional
branches. We have also developed and imple-
mented an approach to computing the cost of a
new plan in the context of existing commitments.
The current version of PMA has a low level of au-
tonomy: 1t makes suggestions to its user, but it
does not directly act on her behalf. In this pa-
per, we first describe the PMA system, and then
briefly raise some design questions we will need to
address as we increase the level of PMA’s auton-
omy, and have it vary with the situation.

Introduction

The Plan Management Agent (PMA) is an intelligent
software system that is intended to aid a user in man-
aging a potentially large and complex set of plans.
Previous research in Artificial Intelligence—especially
in the subfields of plan generation and plan execution
systems—has led to the development of rich represen-
tations for modeling structured processes, as well as
algorithms for reasoning about such processes. Sys-
tems employing these representations and algorithms
have been used in a variety of applications, includ-
ing equipment malfunction handling (the PRS system)
(Georgeff & Ingrand 1989), air traffic control (dMars)
(Rao & Georgeff 1995), robot navigation (RAPs) (Firby
1996), and autonomous spacecraft (ESL and the Re-
mote Agent) (Muscettola et al. 1998). In PMA, we
are drawing on and extending the techniques of plan-
ning and execution systems, applying them to a new
domain: personal plan management. The key idea be-
hind PMA is to apply Al technology for modeling and
reasoning about plans and processes to the development
of automated support of work activities.

John F. Horty
Institute for Advanced Computer Studies
and Department of Philosophy
University of Maryland
College Park, MD 20742

horty@umiacs.umd.edu

Currently under development, PMA includes repre-
sentations and algorithms we have developed for rea-
soning about richly expressive plans, which include ex-
plicit temporal constraints, temporal uncertainty, and
observation actions and conditional branches. We have
also developed and implemented an approach to com-
puting the cost of a new plan in the context of existing
commitments. The current version of PMA has a low
level of autonomy: it makes suggestions to its user, but
it does not directly act on her behalf. For example, it
identifies conflicts among plans and suggests possible
resolutions of those conflicts, but it does not automat-
ically accept any of the suggested resolutions. PMA’s
usefulness will increase when it is given a greater de-
gree of autonomy. It should have the authority to make
some kinds of commitments and perform some kinds
of actions on behalf of its user. However, its autonomy
must be controllable and adjustable, and may vary with
the situation. We envision cases in which PMA needs
to perform deliberation to determine the degree of au-
tonomy appropriate in some situation: specifically, it
may reason about the potential costs and benefits of
its making a decision on behalf of its user. In this pa-
per, we first describe the PMA system, and then briefly
raise some design questions we will need to address in
making PMA an adjustably autonomous system.

Background

As mentioned above, PMA is an intelligent assistant,
providing tools to help its user manage plans and com-
mitments. It is thus related to two major classes of
software systems: personal electronic calendar systems
and workflow systems.

Commercially available electronic calendar systems,
published by major software companies, essentially pro-
vide glass interfaces to written calendars. They typi-
cally have advanced GUIs, and provide linkages to con-
tact databases and email; some also provide capabilities
for meeting scheduling, for example, automatically gen-
erating email to notify meeting participants, and auto-
matically selecting a time for the meeting based on the
participants’ responses. However, these systems suffer
from a highly impoverished representation for activities:
they can only model simple events and recurring simple

events. Simple events are blocks of time with a single
property—*“free” or “busy”; a “free” activity is allowed
overlap with other “free” activities, but a “busy” ac-
tivity cannot overlap with other activities. Recurring
simple events are simple events that recur at regular
intervals, e.g., every Tuesday from 4-5pm. Labels and
textual information can be attached to each event, but
these are not used in any sophisticated way by the sys-
tem; they are stored only for the human user’s informa-
tion.

Workflow systems (Georgakopoulos, Hornick, &
Sheth 1995; Nutt 1996; Mahling, Craven, & Croft 1995)
constitute another class of systems aimed at helping
users manage their routine activities. In contrast to
the personal calendar systems, workflow systems em-
ploy richly structured representations of activities (or
processes), and they use these representations to en-
sure that information and tasks flow to the appropriate
people in an organization in a timely fashion. Mod-
ern workflow systems support “document management,
imaging, application launching, and/or human coordi-
nation, collaboration, and co-decision” (Georgakopou-
los, Hornick, & Sheth 1995, p. 121). On the other hand,
they tend to have limited capabilities for handling un-
certainty, for replanning when a problem is detected,
and for reasoning about the relative value of alternative
ways to perform a given task. PMA is being designed to
include just these sorts of reasoning capabilities, some
of which have been previously developed in work on
plan generation and execution, and some of which we
are developing within the PMA project.

PMA is a joint project of research groups at the Uni-
versity of Pittsburgh and the University of Maryland.
Other efforts to apply Al plan generation and execution
technology to develop workflow-style systems include
the IWCM project at SRI International (Berry & My-
ers 1998) and the Enterprise Project at the Artificial
Intelligence Applications Institute (Drabble, Lydiard,
& Tate 1998; Stader & Jarvis 1998). Like PMA, the
IWCM project is relatively new, and comparisons be-
tween the projects are not yet possible. Although some
of the functionality of PMA overlaps with that of the
Enterprise project, the approaches taken in the two ef-
forts are rather different. For example, the Enterprise
Project relies on a different model of plan generation
(the O-Plan approach) and a different representation
for activities (the <I-N-OVA> model (Tate 1996)) than
we are using in PMA, and the techniques we are using
for tasks such as determining the compatibility of plans
and assessing the cost of a new plan are also quite dif-
ferent. As PMA is further developed, a more thorough
comparison of it and the Enterprise Project will become
valuable.

An Example PMA Interaction
To illustrate the behavior of PMA, we describe a sam-
ple interaction with it. PMA has knowledge of the
structured activities—the “plans” or “procedures”—
that its user typically performs. A PMA for an aca-

demic user would have a library containing descrip-
tions (templates) of activities such as holding a meeting,
teaching a class, attending a conference, overseeing the
editing of a paper, and so on, while a PMA for use in
aa physician’s office would know the steps involved in
carrying out diagnostic procedures, preparing a patient
for surgery, and handling insurance forms. The activity
of preparing a patient for surgery might include, say,
organizing a preliminary battery of tests, assembling
and scheduling the surgical team, booking the operat-
ing room, etc. And of course, many of these tasks would
themselves decompose into structured activities: carry-
ing out a single test might involve scheduling that test,
tracking the lab work, entering the results into the pa-
tient’s record, and calling the patient for follow-up work
if necessary.

Imagine that a physician (or nurse) specifies the goal
of performing a particular diagnostic test on a patient.
PMA immediately posts commitments to various tasks
pertaining to that goal in an internal knowledge base—
the “schedule”. It also updates the graphical display
that includes a calendar and to-do list. In this example,
the posted commitments might include scheduling the
test, obtaining the necessary background information
before the test date, reminding the patient 48 hours
before the test date, and so on. Once the user indi-
cates that the test has been scheduled for a certain
date—December 15, say—the temporal information as-
sociated with the related procedures will be updated
accordingly; for example, a calendar entry will then ap-
pear reminding the user to notify the patient on Decem-
ber 13. Furthermore, if this test is just one of a battery
of tests, and the scheduled December 15 date places
it too near another test with which it might interfere,
PMA will notice this conflict and notify the user, sug-
gesting an alternative schedule that avoids the conflict.
It may also suggest to the user that an operating room
should be scheduled now, even though the actual dead-
line for the reservation has not yet occurred, because
there is limited flexibility in the schedule to handle the
situation should the operating rooms become unavail-
able at the desired time.

This scenario illustrates the main capabilities that we
are building into PMA:

e The PMA user can commit to activities that have rich
temporal and causal structure. She does not need to
specify separate commitments to each component of
the activity.

e The PMA user can make partial commitments: for
instance, she can commit to performing a particu-
lar activity without yet specifying the exact time at
which it will occur, or she can specify that she wants
to commit to a particular goal, without yet specifying
exactly which plan she will use to achieve that goal.

e When the user extends her commitments (e.g., by
specifying a particular time or a particular plan for
a goal), PMA propagates the new commitment to all
affected parts of the activity. In the example above,

when the user specifies that the test should be sched-
uled for Dec. 15, a patient reminder is automatically

scheduled for Dec. 13.

o Whenever the user attempts to form a new commit-
ment, PMA performs temporal and causal reason-
ing to determine whether it is consistent with the
user’s previous commitments. If PMA determines
that certain additional constraints are required to
ensure consistency, it notifies the user of those addi-
tional constraints, which we call “forced constraints”.
If PMA determines that there is a conflict between
the new commitment and prior commitments, it sug-
gests ways to resolve the conflict.

e PMA can assess the cost of executing a plan in the
context of existing commitments, and notify the user
if the cost fails to exceed some specified threshhold.

e As time passes, PMA monitors the execution of the
user’s activities, and reminds the user when deadlines
are approaching. It also reasons about the tightness
of the schedule: for instance, if there is little slack at
some future periods, PMA may suggest taking early
action.

To date, we have implemented the first five capabilities,
but only for non-hierarchical activities.! The extension
of these capabilities to hierarchical activities, and the
implementation of execution monitoring, are part of our
ongoing effort.

System Description

An initial version of PMA has been constructed and im-
plemented on a Pentium Platform, using Allegro Com-
mon Lisp for Windows. Figure 1 illustrates the user’s
view of PMA.

The user interacts with PMA through three main
components: a calendar, a to-do list, and an activity
management window. The calendar lists all the fully
scheduled tasks to which the user has committed; by
fully scheduled, we mean tasks that have been assigned
a specific time of occurrence. (Note that we use the
term “activity” to refer to complete processes, such as
performing a diagnostic test, and use the term “task” to
refer to individual steps in an activity, such as “sending
the patient a reminder message”.) The to-do list shows
all tasks that the user has committed to, but has not
vet fully scheduled. Finally, the activity management
window allows the user to add a commitment to a new
activity, view the details of an existing commitment,
or delete an existing commitment. The details of an
activity can also be viewed by selecting a task in that
activity from the calendar or the to-do list. In either
case, the result is a pop-up window providing a descrip-
tion of the activity and details about constraints on it;
the user can then modify those constraints if desired.

' As of this writing, the cost-assessment calculation has
been successfully implemented, but not yet incorporated
into PMA. We plan to incorporate it in the very near future.

Earliest Start Time for Task T
Latest Start Time for Task T'
Earliest End Time for Task T'
Latest End Time for Task T'
Minimum Duration for Task T’

Maximum Duration for Task T

-~ O Ot &= W N =

Minimum Period of Separation between Tasks T} and
Ty

8. Maximum Period of Separation between Tasks 77 and
1,

Figure 2: Temporal Constraints for a Task

PMA has two primary knowledge bases. The first is
an activity library, containing templates for domain ac-
tivities. The second is the user’s schedule, a record of
the activities to which the user has committed, along
with all constraints on those activities. The user’s
schedule thus includes fully or partially instantiated ac-
tivity templates, along with supplemental constraints.

Activity templates are encoded using a standard
Al planning language augmented to allow conditional
branches and explicit temporal constraints. The latter
allow the user to specify constraints on the start and
end times and/or the duration of tasks. More specifi-
cally, the user can specify any or all of the constraints in
Figure 2. Of course, these constraints may interact—for
example, if all of constraints (1)-(4) are specified from
a task T, then items (5) and (6) for T can be derived.
We present the user with the full range of possibilities
because it is sometimes more natural to specify some
conditions than others. PMA checks that all input con-
straints, including temporal ones, are consistent with
one another.

Whenever a new constraint is added to an activity,
or a new activity is added to the user’s schedule, PMA
performs a consistency check. For this purpose, we
have developed a new algorithm, described in detail in
(Pollack, Tsamardinos, & Horty 1999). The algorithm
has three stages. In the first, it employs a Conditional
Simple Temporal Network (CSTN) to identify conflicts
among plans. CSTNs extend Simple Temporal Net-
works (Meiri 1992) to include branching nodes. After
conflicts have been identified, the second stage of our
algorithm uses an approach developed by Yang (1997)
to suggest a potential resolution of the identified con-
flicts. Yang’s approach is not guaranteed to generate
resolutions that are consistent with all the temporal
constraints allowed in our constraint language, so the
third stage of the algorithm involves re-using the CSTN
to check for consistency. If the proposed resolution is
determined to be inconsistent, then the algorithm back-
tracks and an alternative solution is proposed.

As a side-effect of consistency checking, constraints
on a single task or activity are propagated to other tasks

e

Calendar for February, 1999

Todo List

R T—T

Teaching, C53710
Teaching, C53710

Teaching, C53710

Planning Management Agent

My Schedule

— [Call Agent
[Buy Ticket
[Lodging Arrangements
[Pickup-Ticket

[CE3F10

= Weet Meeting |02/04/1939 |02/04/1939 _J
HEWACt wiSue |Preparation 10:00 10:00 -
Make-Travel-Plan i

5 View Activity
2 CE3710

o Cs37n Delete Activity

Activity Step Start By | End By | Done?

02/02/1955 [02/02/1939(= =}
©s3710 | Teaching | 1000 11-00

- 02/08/1595 D206/ 1958 =
Meet w/Bill| Meeting a1:00 02:00
Megling | 02/04/1999 [12/04/1959 =
Meet wBill|preparation| 10:00 10:00
Meet 02/04/1959 [02/04/1959(=
wiSue Meeting 10:00 12:00
=

sl 3

Lisp

Calendar

] Schedule | ToDo List

o CE3710

Reset = Meet w/Bill

[Meeting Preparation

[Meeting
3 Meet wiSue Help
Exit PMA

‘ BREAKFOINT F7 Sets breakpoints in the selected function so that BREAK will be called {for debugging) as the function is entered and exited

Figure 1: PMA: The User’s View

and activities in the user’s schedule. Additionally, when
a conflict is identified, our algorithm finds candidate
ways to resolve the conflict. These are suggested to the
user, who can select among them, or can retract the
new constraint or activity entirely.

An additional reasoning task performed by PMA in-
volves assessing the cost of a new potential commit-
ment. By “cost” we mean all types of resource usage,
including the user’s effort, and not just monetary cost.
In general, because activities may interact with one an-
other, the cost of one activity may vary, depending upon
the other activities to which the user has already com-
mitted. We have developed and implemented an ap-
proach to evaluating the cost of a potential option in the
context of existing commitments; details can be found
in (Horty & Pollack 1998). If activities have known val-
ues associated with them, then cost assessment can be
used to determine whether an activity is worth pursu-
ing. Our cost-assessment algorithm uses cost estimate
intervals: as soon as the new activity’s value is deter-
mined to lie outside the cost-estimate interval, it can in
principle immediately be accepted (if its value exceeds
the cost interval) or rejected (if the value is below the
cost interval). PMA will point this out to the user, but
will not accept or reject an option directly.

A final component of PMA, which we have yet to
implement, is an execution monitor, which will track
the execution of activities to which the user has com-
mitted. The execution monitor will warn the user when
her tasks are about to become due, reasoning about the
appropriate time at which to issue the reminder, tak-
ing account the temporal constraints associated with
the activity in question. Additionally, we hope to in-

clude probabilistic reasoning capabilities in the execu-
tion monitor, so that it can warn the user when the
likelihood of successly completing some activity drops
below a certain threshhold.

Adjustable Autonomy Issues

As mentioned earlier, PMA currently has a very low
level of autonomy. Although it can detect conflicts
among plans, and can suggest potential resolutions, it
never adopts a resolution directly, but instead leaves it
to the user to accept one of its suggestions. Similarly,
although it can compute an estimated cost for a new
activity and determine whether the activity has a value
that is greater (or less) than its cost, it never directly
adopts or rejects a new commitment for its user. Al-
though it will be able to determine when the likelihood
of succeeding at an activity has dropped below a certain
level, it will not, in the initial version, modify the set
of commitments to increase the probability of success.
PMA’s usefulness will increase when it is given a
greater degree of autonomy. It should be able to make
some kinds of commitments and perform some kinds of
actions on behalf of its user, and to defer to the user in
other situations. For example, we might want a PMA
for an faculty user might to schedule routine meetings
with students, and if the user specified a conflicting
appointment, we might want PMA to automatically
change the times of the student meetings (notifying the
student of course!). On the other hand, we would not
want PMA to change the times of some other meetings,
e.g., a meeting with the Dean, without first obtaining
the approval of its user. A key question is how PMA can
be made to recognize which commitments are strictly

under the control of the user, and which ones can be
directly modified by PMA. Can control be specified in
terms of the types of activities and/or their arguments,
or will the control status of each activity token need to
be specified individually, by the user?

In addition to modifying the user’s schedule—adding,
deleting, and changing commitments—we might also
want PMA to perform certain tasks on behalf of its
user. Again, using the example of a PMA for a faculty
member, suppose that the user is also an editor for a
journal. We may want PMA to directly perform some
of the tasks in the “edit paper” activity, for instance,
automatically updating the user’s tracking sheet as re-
views for the meeting as received. Again, the question
arises as to which tasks PMA should have authority to
perform, and how this information can be encoded.

In general, PMA’s authority may vary with certain
features of the current situation. For instance, when a
user is on vacation, she may want to grant PMA au-
thority to modify some (types of) commitments and/or
perform some (types of) tasks that she might otherwise
directly oversee. In general, PMA may need to per-
form deliberation to determine the degree of autonomy
it should adopt. More specifically, it may need to rea-
son about the potential costs and benefits of its making
a decision on behalf of its user, and only assume au-
tonomy when the potential benefits are high and the
potential are low. We speculate that some form this
calculation will be central in all adjustably autonomous
agents.

Acknowledgements This research has been sup-
ported by the National Science Foundations grants IRI-
9619579 and TRI-9619562 and by the Air Force Office
of Scientific Research contract F49620-98-1-0436.

References

Berry, P. M., and Myers, K. L. 1998. Adaptive pro-
cess management: An Al perspective. In Proceedings
of the Workshop Towards Adaptive Workflow System.
Available from http://www.ai.sri.com/berry/.

Drabble, B.; Lydiard, T.; and Tate, A. 1998. Work-
flow support in the air campaign planning process. In
Proceedings of the Workshop on Interactive and Col-
laborative Planning, AIPS9S.

Firby, R. J. 1996. Modularity issues in reactive plan-
ning. In Proceedings of the Third International Con-
ference on AI Planning Systems, 78-85.

Georgakopoulos, D.; Hornick, M.; and Sheth, A. 1995.
An overview of workflow management: From pro-
cess modeling to workflow autonomation infastruc-
ture. Distributed and Parallel Databases 3:119-153.

Georgeff, M. P.; and Ingrand, F. F. 1989. Decision-
making in an embedded reasoning system. In Proceed-
ings of the Eleventh International Joint Conference on
Artificial Intelligence, 972-978.

Horty, J. F., and Pollack, M. E. 1998. Option evalua-
tion in context. In Proceedings of the 7th Conference

on Theoretical Aspects of Rationality and Knowledge
(TARK-98), 249-262. San Francisco: Morgan Kauf-

mann.

Mabhling, D.; Craven, N.; and Croft, W. B. 1995.
From office automation to intelligent workflow sys-
tems. IFEE Frpert 10(3).

Meiri, 1. 1992. Temporal Reasoning: A Constraint-
Based Approach. Ph.D. Dissertation, UCLA.

Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams,
B. C. 1998. Remote agent: To boldly go where no Al
system has gone before. Artificial Intellience 103:5-47.

Nutt, G. J. 1996. The evoluation towards flexible
workflow systems. Distributed Systems Engineering

276-294.

Pollack, M. E.; Tsamardinos, I.; and Horty, J. F.
1999. Merging plans with quantitative temporal
branches, temporally extended actions, and condi-
tional branches. Submitted for publication; available
from the author’s Web page.

Rao, A. S., and Georgeff, M. P. 1995. BDI-agents:
From theory to practice. In Proceedings of the First
International Conference on Multi-Agent Systems.

Stader, J., and Jarvis, P. 1998. Intelligent support for
enterprise modelling. Technical Report ATAI-TR-220,
ATAI, Edinburgh, Scotland.

Tate, A. 1996. Representing plans as a set of con-
straints — the <I-N-OVA> model. In Proceedings of
the Third International Conference on Al Planning
Systems (AIPS96), 221-228. AAAT Press.

Yang, Q. 1997. Intelligent Planning: A Decomposition
and Abstraction Based Approach. New York: Springer.

