
Integrating Reinforcement Learning, Bidding and Genetic Algorithms

Dehu Qi
Lamar University

Computer Science Department
PO Box 10056

Beaumont, Texas, USA
dqi@cs.lamar.edu

Ron Sun
University of Missouri-Columbia

CECS Department
201 EBW

Columbia, Missouri, USA
rsun@cecs.missouri.edu

Abstract

This paper presents a GA-based multi-agent reinforce-
ment learning bidding approach (GMARLB) for perform-
ing multi-agent reinforcement learning. GMARLB inte-
grates reinforcement learning, bidding and genetic algo-
rithms. The general idea of our multi-agent systems is as
follows: There are a number of individual agents in a team,
each agent of the team has two modules: Q module and CQ
module. Each agent can select actions to be performed at
each step, which are done by the Q module. While the CQ
module determines at each step whether the agent should
continue or relinquish control. Once an agent relinquishes
its control, a new agent is selected by bidding algorithms.
We applied GA-based GMARLB to the Backgammon game.
The experimental results show GMARLB can achieve a su-
perior level of performance in game-playing, outperforming
PubEval, while the system uses zero built-in knowledge.

1 Introduction

How a multi-agent system can be developed in which
agents cooperate with each other to collectively accomplish
complex tasks is a key issue in building multi-agent sys-
tems. In this paper, we will look into a GA-based multi-
agent reinforcement learning approach with bidding that
learns complex tasks. We integrate three mechanisms: re-
inforcement learning, bidding mechanisms and genetic al-
gorithms. That is, the learning of individual agents and the
learning of cooperation among agents is completely simul-
taneous and thus interacting. This approach extends exist-
ing work, in that it is not limited to bidding alone. For ex-
ample, not just using bidding alone to form coalitions [7] or
bidding alone as the sole means for learning (as in [2]). Nei-
ther is it a model of pure reinforcement learning [6] [8]. Fur-
thermore, it is not a pure evolutionary system [9] [4] [20]. It

is the combination and the interaction of the three aspects:
reinforcement learning, bidding and evolution.

2 The Algorithms and the Architecture

2.1 The GMARLB System

In our system, the multi-agent system (team) takes ac-
tions based on environment information received. Each
team is composed of several member agents. Each mem-
ber receives all environment information and can take action
based on it. In any given state, only one member of the team
is in control. The action of the whole team is chosen by the
member-in-control. In the next state, the member-in-control
will decide to continue to control or relinquish control. If
the member-in-control decides to give up control, the new
member-in-control will be chosen from all other members
in that team through the bidding process. The member who
has the highest bid will be the new member-in-control. In
other words, the member which will more likely benefit the
whole will have more chances to be chosen as the member-
in-control. A snapshot of a team with 5 members is shown
in Figure 1.

The member agent learns to deal with its environment
through the reinforcement learning. The member-in-control
receives a reward from the environment based on its actions.
During the control exchange process, the current member-
in-control exchanges the reward with the next member-in-
control. This is also a form of communication among mem-
bers.

We start our system from randomly initialized teams. Af-
ter a number of episodes, we apply genetic algorithms to
these teams. With the help of genetic algorithms, informa-
tion not only is exchanged between members in a team, but
also is exchanged between teams. The communications be-
tween members are not only through reward exchange, but
also through crossover among members.



Member

Member

Member

Member

Member

Member-in-control

Other Members

Figure 1. A snapshot of a team has 5 mem-
bers. Only one member is in control in each
state. The members communicate with each
other through bidding.

2.1.1 The Multi-Team Algorithm

The first method is a regular genetic algorithm. We train a
batch of teams as the initial population. After a number of
episodes, we apply crossover and mutation to these teams.
The new population is composed of the currently best teams
and the newly generated teams. We call this method as the
multi-team algorithm.

In the multi-team algorithm, we randomly generate a set
of teams and train them for a number of training episodes.
In the training process, the agent learns by playing against
itself. The performance of the Q and CQ module, which
will be discussed in detail in section 2.2, is improved by
the reinforcement learning. In the crossover and mutation
steps, teams exchange useful information to improve their
performance. Only the best teams are chosen for crossover
and mutation in the hope that the offspring are better than
the parents. The detail of crossover and mutation operator
will be discussed later. Teams are chosen by using tourna-
ment selection. The detail of the multi-team algorithm is as
follows:

1. Randomly generate a set of teams. The number of teams is
n.

2. Train each team for a number of episodes.

3. Perform crossover and mutation to generate new teams:

(a) Selectm best teams by using tournament selection.

(b) Generaten-mnew teams by crossover. The crossover
rate (the percentage of the weights that have been ex-
changed between two members) isα.

i. γ percent of crossover is based on the weight ex-
change at the corresponding position.

ii. 100-γ percent of crossover is based on the weight
exchange at a random position.

(c) Apply mutation on these newly generated teams by
randomly mutating selected teams. The mutation rate
(the percentage of the weights that have been mutated
in a member) isβ.

4. Replace the population with the selected teams and the newly
generated teams.

5. Go to step 2.

2.1.2 Tournament Selection

For selecting the best teams, we use the tournament selec-
tion algorithm, as following:

1. Randomly divide all teams into several groups.

2. In each group, evaluate each group member’s fitness value.

3. Select the best performer in each group to form a new set.

4. Repeat step 1 untilmmembers are remained, where m is the
number of members we needed.

In our experiments, the fitness value is the winning per-
centage when a member playing against the benchmark
agent. For tournament selection, the higher the fitness value
of a member, the higher the chance for that member to be
selected. However, this algorithm is not simply selecting
the bestm members. For example, if the best two members
are assigned into the same group, the second best mem-
ber won’t be chosen. Members ranked underm still have
a chance to be selected.

2.1.3 The Single-Team Algorithm

In the multi-team algorithm, because the mutation and
crossover are done randomly, in some cases, the perfor-
mance of a newly generated team is worse than that of
an old team. Therefore, we propose a new algorithm:
the single-team algorithm. In the single-team algorithm,
crossover and mutation are only applied in one and only
one team. If the new team is worse than the old team, the
new team is discarded and the old team is restored.

2.2 Details of the Reinforcement Learning with
Bidding

Each member in each team is a reinforcement learning
agent. For reinforcement learning, we used the Q-learning
algorithm.

The Q-learning algorithm is modified for our multi-agent
systems. Each member(agent) in the team (multi-agent sys-
tem) has two modules: the Q module and the CQ module.
In our experiments, both modules are implemented by back-
propagation neural networks. Each member can select ac-
tions to be performed at each step, which is done by the Q
module in the agent. For each member, there is also a con-
troller CQ, which determines at each step whether the agent



should continue or relinquish control. Once a member re-
linquishes its control, to select the next agent, it conducts a
bidding process among members (with regard to the current
state). Based on the bids, it decides which member should
take over from the current point on (as a “subcontractor”),
and take the bid as its own reward.

Each member decides on its best course of actions based
on the total reinforcement that it expects to receive. Each
member’s CQ module tries to determine whether it is more
advantageous to give up or to continue, in terms of maxi-
mizing the total reinforcement that it will receive. (When it
gives up, it receives a bid as its reinforcement, which rep-
resents an estimate of future reinforcement by subcontrac-
tors.) Likewise, each member (its Q module) tries to de-
termine which action to take at each step (when it decides
to continue), based on total reinforcement that it expects to
receive. So, together, each member decides both types of
actions based on reinforcement. Furthermore, cooperation
among members is formed through the afore-described mu-
tually sharing of reinforcement: members utilize each other
when such utilization leads to higher reinforcement.

Let states denote the actual observation by a member at
a particular moment. Assume reinforcements and costs are
associated with current state,g(s). In each member, there
are the following two modules:

• Individual action module Q: each Q module performs ac-
tions and learns through Q-learning. Each Q module tries
to receive as much reward and incur as little cost as possible
before it is forced to give up (including whatever it receives
at the last step).

• Individual controller CQ: Each CQ module learns when the
member should continue and when the member should give
up. The learning is accomplished through (separate) Q-
learning. Each CQ tries to determine whether it is more ad-
vantageous to terminate the member or to let it continue, in
terms of maximizing its future reinforcement, which is also
the overall (discounted) reinforcement.

The overall algorithm is as follows:

1. Observe the current states.

2. The currently active Q/CQ pair (member agent) takes charge.
If there is no active pair when the system first starts, go to
step 5.

3. The active CQ selects and performs a control action based
on CQ(s, ca) for different ca. If the action chosen by CQ
is end, go to step 5. Otherwise, the active Q selects and
performs an action based onQ(s, a) for differenta.

4. The active Q and CQ perform learning based on the rein-
forcement received (see the learning rules later). Go to step
1.

5. The bidding process determines the next pair of Q/CQ (mem-
ber) to be in control. The member that relinquished control
performs learning based on the winning bid (see the learning
rules later).

6. Go to step 1.

When a member gives up control, bidding goes as fol-
lows: each member submits its bid, and the member with
the highest bid value wins. However, during learning, for
the sake of exploration, a random selection of bids is con-
ducted based on the Boltzmann distribution:

prob(k) =
ebidk/τ

∑
l e

bidl/τ

whereτ is the temperature that determines the degree of
randomness in bid selection. That is, the higher a bid, the
more likely the bidder will win. The winner will then sub-
contract from the current member and the current member
takes the chosen bid as its own reward.

We dictate that the bid a member submits must be its best
Q value (for the current state); in other words, each mem-
ber is not free to choose its own bids. A bid is fully deter-
mined by a member’s experience with regard to the current
state: how much reinforcement (reward and cost) the mem-
ber will accrue from this point on if it does its best. We
call this an ”open-book” bidding process, in which there is
no possibility of intentional over-bidding or under-bidding.
(However, on the other hand, due to lack of sufficient ex-
perience, a member may have a Q value that is higher or
lower than the correct Q value, in which case over-bidding
or under-bidding can occur). A bid submitted by a mem-
ber in this way represents the expected (discounted) total
reinforcement from the current point on, which is the to-
tal reward minus the total cost (including possibly its own
profit as part of the cost). Note that this total represents not
only what will be done by this member but also what will be
done by subsequent members (subcontractors) later, due to
the subsequent bidding processes (the learning process that
takes this into account will be explained next). So, a mem-
ber, in submitting a bid, takes into account both its own
reinforcement and gains from subsequent subcontracting to
other members, on the basis of its own experience thus far.

Thus, overall, the members interact and cooperate with
each other through bidding as well as individual reinforce-
ment learning. With thisdual process, the whole multi-
agent system learns to form action sequences to facilitate
learning. Cooperation among members is forged through
bidding and subsequent sharing of reinforcement: a mem-
ber calls upon another member when such an action leads
to higher reinforcement.

3 Experimental Results

3.1 Experiment Setup

One of research in artificial intelligence is programming
a computer that can play board games. Board game do-



mains such as Chess [5], Check [4], GO [3], and Backgam-
mon [17] have been popular since they have finite state
spaces with well-defined rules. Since it is usually impos-
sible to search exhaustively the state space, artificial intel-
ligence research in game domains has primarily worked on
solutions that can play a game comparable to or better than
a human player.

To evaluate our multi-agent player, we play our player
against two machine players: a benchmark player and
Tesauro’s PUBEVAL [19]. The benchmark player is a sin-
gle agent, which has the same structure as the Q module in
a member. The benchmark player is the best player from 15
candidates after a number of training episodes. In our ex-
periments, we use the benchmark player to test the perfor-
mance of our team players. The training time for the bench-
mark player is the same as that of the team player. For ex-
ample, if the team player has been trained for 4,000 games,
the benchmark player is the best single agent player from 15
candidates after 4,000 games training. On the other hand,
PUBEVAL is a public machine player by Tesauro and it is
a good evaluator for backgammon machine players. PUBE-
VAL uses a linear function to evaluate the board. Every
board will get a point from the linear function. PUBEVAL
will move the checker to the board that leads to the maxi-
mum possible point.

Our backgammon player is a GA-based multi-agent rein-
forcement learning team. As mentioned before, we use the
back-propagation(BP) neural network to implement the Q-
learning algorithm. The initial weights for BP networks are
randomly generated. The BP networks trained on backgam-
mon use an expanded scheme to encode the local informa-
tion. For a player’s checkers, a truncated unary encoding
with five units is used to encode each checker’s position (1-
24, on the bar and off the board).

For encoding opponent’s information, TD-Gammon’s
encoding scheme [17] is used. For each checker’s position,
a truncated unary encoding with four units is used. The
first three units are encoded three cases: one checker, two
checkers and three checkers, while the fourth unit encodes
the number of checkers beyond 3. A total of 96 units is
used to encode the information at location 1-24. In addi-
tion, 2 units are used to encode the number of opponent’s
checkers on the bar and off the board.

This encoding scheme thus uses 75 units for itself and
98 units for an opponent. In addition, this encoding scheme
uses 12 units to encode the dice number and an additional
16 units to encode the player’s first move, for a total of 201
input units.

The output encoding scheme uses 16 units to encode the
checker. Among these units, 1 to 15 are the checker num-
bers, while 0 means no action. The hidden units of the BP
network for the module Q are 40 and the hidden units of
the BP network for controller CQ are 16. In the subsequent

experiments, our team is composed of 5 members.
The initial parameter settings are as follows: the Q value

discount rate is 0.95, the learning rate for reinforcement
learning is 0.5, and the temperature is 0.50. The mutation
rate is 0.05 and the crossover rate is 0.20. Eighty percentage
of crossover is the weights exchanging at the corresponding
position and twenty percentage of crossover is the weights
exchanging at the random position.

3.2 Experimental Results

We implemented both the multi-team algorithm and the
single-team algorithm. For the multi-team algorithm, 15
teams are randomly generated at the beginning. After 200
games training, 5 teams are selected for next generation. By
mutation and crossover of these 5 teams, 10 new teams are
generated. Plus the 5 selected systems, the new population
will be trained for another 200 games.

The weights are crossed over in two ways: between
the corresponding positions and between random positions.
Two teams are randomly chosen and one member is chosen
from each team. Sixteen percent of the weights of these two
chosen members is crossed over at the corresponding posi-
tion and 4 percent of the weights is crossed over at random
position.

For the single-team algorithm, the team is formed by se-
lecting the best 5 single agents after 1000 games training.
The team is tested after training. If its performance is bet-
ter than the old team, the crossover will be done within that
team and the new team will be tested. Otherwise the old
team will be restored and the old team will be crossed over
again.

Similar to the multi-team algorithm, weights are crossed
over in two ways: between corresponding positions and be-
tween random positions. Two members are chosen from
the team. Sixteen percent of weights of these two chosen
members is crossed over at the corresponding position and
4 percent of weights is crossed over at random position.

During the training, after 200 games, the team is tested
by playing against the benchmark agent. The test results of
the multi-team algorithm and the single-team algorithm for
4,000 games are shown in Figure 2(a) and 2(b). Both algo-
rithms’ performances against the single agent show that the
GMARLB system has an overwhelming advantage over the
single agent. Between these 2 algorithms, the multi-team al-
gorithm has a better average winning percentage when com-
pared to the single-team algorithm. And the best winning
percentage for the multi-team algorithm is 92, while that
of the single-team algorithm is 88. However, the training
time needed for the single-team algorithm is much shorter
than the multi-team algorithm. In the multi-team algorithm,
we need to train 15 teams but only one team is needed in
the single-team algorithm. The single-team algorithm has a



much better winning percentage/time ratio.

400 800 1200 1600 2000 2400 2800 3200 3600 4000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Multi-Team Algorithm

w
in

ni
ng

 p
er

ce
nt

ag
e

Iteration

400 800 1200 1600 2000 2400 2800 3200 3600 4000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Single-Team Algorithm

w
in

ni
ng

 p
er

ce
nt

ag
e

Iteration

Figure 2. The winning percentage for (a)Multi-
team algorithm (b)Single-team algorithm
playing against the benchmark agent.

We also test our multi-team algorithm player with the
benchmark agent in different game situations: full game,
race game, and bearing-off game. The test results are shown
in Figure 3.

In the less complicated situations (the race game and the
bearing-off game), the advantage of the multi-agent system
over the single agent system is not as large as that of the full
game.

We continue to train multi-agent systems for the full
game. The result after 400,000 games is shown in Figure 4.
The highest average winning percentage is 58. The average
winning percentage is the average of 5 runs, in which each
run includes 50 games played against PUBEVAL every 200
iterations.

All experiments were running on HP workstations (HP-
UX). The average training time for 200 games of a team is
30 minutes.

4 Analysis and Discussions

4.1 Member Analysis

We also test the performance of the team playing against
its members. The results are in Table 1 and Table 2. All
experiment results are for the multi-team algorithm with
encoding scheme 1. The performance is measured by the
winning percentage when a member played against its team
in 50 games.

From the experimental results, the performance of the
best team is better than the average performance of the
team. For the best team, performance of the whole team
may not be better than that of its best member at the be-
ginning. But after enough training, the team beats its best

5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Multi-Agents vs. Signle Agent for Full Game
(Encode Method 1)

 Average
 Maximum
 Minimum

W
in

ni
ng

 P
er

ce
nt

ag
e

Iteration

5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Multi-Agents vs. Signle Agent for Race Game
(Encode Method 1)

 Average
 Maximum
 Minimum

W
in

ni
ng

 P
er

ce
nt

ag
e

Iteration

5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Multi-Agents vs. Signle Agent for Bearing-off Game
(Encode Method 1)

 Average
 Maximum
 Minimum

W
in

ni
ng

 p
er

ce
nt

ag
e

Iteration

Figure 3. The winning percentage for multi-
team algorithm playing against the bench-
mark agent in (a) Full Game (b) Race Game
(c) Bearing-Off Game

0 100000 200000 300000 400000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Multi-Agents vs. PubEval for Full Game
(Encode Scheme 1)

 Average
 Maximum
 Minimum

W
in

ni
ng

 P
er

ce
nt

ag
e

Iteration

Figure 4. The winning percentage for multi-
team algorithm playing against PUBEVAL in
full game.



Iteration
Members in the best team
play against the best team
Average Best Worst

100,000 0.456 0.62 0.38
200,000 0.46 0.52 0.36
300,000 0.456 0.5 0.38
400,000 0.444 0.48 0.40

Table 1. Members in the best team vs the best
team. All data are winning percentage of a
member playing against its team in 50 games.

member. While in the worst team, the performance of the
worst team is not as good as its best member. We believe
the reason is that the Q module in the best team is better
than that of the worst team. In other words, the best team
has better cooperation than the worst team.

Iteration
Members in the worst team
play against the worst team
Average Best Worst

100,000 0.48 0.56 0.32
200,000 0.476 0.58 0.42
300,000 0.46 0.54 0.38
400,000 0.46 0.52 0.36

Table 2. Members in the worst team vs the
worst team. All data are winning percentage
of a member playing against its team in 50
games.

4.2 Comparison with Other Methods

There has been a great deal of work in the backgammon
game. The best machine player so far is Tesauro’s TD-
Gammon [15] [16] [17]. TD-Gammon used the TD rein-
forcement learning algorithm [14] to learn from itself. TD-
Gammon started from random initial weights but achieved
a very strong level of play. Tesauro’s 1992 TD-Gammon
beat Sun Microsystems’ Gammontool and his own Neu-
rogammon 1.0, which trained on expert knowledge. His
1995 player incorporated a number of hand-crafted expert-
knowledge features, including concepts like existence of a
prime, probability of blots being hit, and probability of es-
caping from behind the opponent’s barrier. This new player
achieved the world master player level. Since the best
player by Tesauro is not public, we can only use his PUBE-
VAL, which is close to the best, to evaluate our player.

Pollack et al [10] [11] [18] used feed-forward neural net-
work to develop a backgammon player called HC-Gammon.
The neural network does not have an error back-propagation
learning part. The player is first generated by random
weights and then the network is mutated. The mutated
player plays a few games against the original player. If the
mutated player wins more than half of games, it survives for
next generation. The best player generated by this method
wins about 45 percent of games when played against PUBE-
VAL.

Sanner [12] used the ACT-R theory of cognition [1] to
train a backgammon player called ACT-R-Gammon. ACT-
R is an empirically derived cognitive architecture intended
to model the data from a wide range of cognitive science ex-
periments. ACT-R-Gammon achieved 40 winning percent-
age when played against PUBEVAL. However, since it used
hand-coding of high-level function to facilitate the learning,
we do not include this method in our comparison table.

The comparison with other backgammon players is in
Table 3.

Our
Player

TD-
BackGammon

HC-
Gammon

Winning
Percent-
age

51.2
[56]

59.25 40
[45]

Iteration 400,000
games

More
than
1,000,000
games

100,000
genera-
tions

Table 3. Comparisons with other backgam-
mon players. The number is the average
of winning percentage of some runs when
played against PUBEVAL. The number in
brackets is the highest winning percentage.

Among those backgammon players, HC-Gammon has
the shortest time to reach 40 winning percentage when play-
ing against PUBEVAL. Our players reach 50 winning per-
centage in a shorter time. TD-gammon has a slighter better
winning percentage. However, it has hand-crafted heuristic
codes to improve performance.

4.3 Discussions

Cooperation in multi-agent systems.Backgammon is
a game based on random numbers (dice numbers), so it
is impossible to use the look ahead method as is usually
done in other games. Rather than relying on the ability
to look ahead, to work out the future consequences of the



current state, players of backgammon rely more on judge-
ment to accurately estimate the value of the current board
state, without calculating the future outcome. That makes
the backgammon unusual in comparison with the other
games, such as chess and GO. Although our program did
not achieve the same level as TD-Gammon, it achieves a su-
perior level with much less training time and starting from
scratch. The cooperation among agents (through bidding)
helps to simplify the learning process.

Although the best team does not necessarily includes all
the best members in the population, it beats other teams be-
cause it has better cooperation among agents. We believe
CQ modules are very important for our multi-agent systems.

Hierarchical reinforcement learning. This work also
makes some interesting connections to hierarchical rein-
forcement learning [13]. Our approach amounts to building
three-level hierarchies automatically through agent compe-
tition (bidding), without relying on extra knowledge or as-
sumptions about domains. The lower layer is a neural net-
work, the middle layer is reinforcement learning with bid-
ding, and the upper layer is the genetic algorithm. All 3
components in our system, GA, RL, and bidding, are impor-
tant. Missing any component leads to poorer performance.

Co-evolution.The agent in this learning system has two
roles: teacher and student. The teacher’s goal is to correct
the student’s mistakes, while the student’s goal is to satisfy
the teacher and avoid correction. Each agent can be either
teacher or student, which depends on its performance in the
current stage. The self-learning and self-teaching among
agents help our backgammon player to achieves a superior
level with zero built-in knowledge.

5 Conclusions

In sum, in this work, we developed a GA based bidding
approach for performing multi-agent reinforcement learn-
ing, to form action sequences to deal with a complex sit-
uation: the backgammon game. The experimental results
show the advantage of the bidding system over the single
reinforcement learning, the pure GA approach, and the bid-
ding reinforcement learning system without GA. The ex-
periment shows the GA-based bidding system can achieve
a superior level of performance in game-playing programs
while the system uses zero built-in knowledge. The result of
the experiments suggests that the bidding system may work
well in general complex problems.

References

[1] J. R. Anderson and C. Lebiere.The atomic components of
thought. Lawrence Elbaum Associates, Mahwah, NJ, 1998.

[2] E. B. Baum. Manifesto for an evolutionary economics of
intelligence.Neural Networks and Machine Learning, pages
285–344, 1998.

[3] B. Bouzy and T. Cazenave. Computer go: An ai oriented
survey.Artificial Intelligence, 132:39–103, 2001.

[4] D. B. Fogel. Evolving a checkers player without relying on
human expertise.Intelligence, ACM Press, (Summer):21–
27, 2000.

[5] F. Hsu, T. Anantharaman, M. Cambell, and A. Newatyzk.
A grandmaster chess machine. Scientific American,
263(4):44–50, 1990.

[6] J. Hu and M. P. Wellman. Multiagent reinforcement learn-
ing: Theoretical framework and an algorithm. InProceed-
ings of the Fifteenth International Conference on Machine
Learning (ICML-98), Madison, WI, 1998.

[7] S. Ketchpel. Forming coalitions in the face of uncertain re-
wards. InProceedings of AAAI, 1994.

[8] P. Maes, R. H. Guttman, and A. G. Moukas. Agents that buy
and sell.Communications of the ACM, 42(3):81–91, 1999.

[9] A. G. Moukas and G. Zacharia. Evolving a multiagent in-
formation filtering solution in amalthaea. pages 394–403,
Marina del Rey, CA, 1997. ACM Press.

[10] J. Pollack and A. Blair. Coevolution of a backgammon
player. InProceedings of the Fifth Artificial Life Confer-
ence. MIT Press, 1996.

[11] J. Pollack and A. Blair. Co-evolution in the successful learn-
ing of backgammon strategy.Machine Learning, 32:225–
240, 1998.

[12] S. Sanner, J. Anderson, C. Lebiere, and M. Lovett. Achiev-
ing efficient and cognitively plausible learning in backgam-
mon. InProceedings of the Seventeenth International Con-
ference on Machine Learning (ICML-2000), pages 823–830.
Morgan Kaufmann, 2000.

[13] R. Sun and T. Peterson. Multi-agent reinforcement learning:
Weighting and partitioning.Neural Networks, 12(4-5):127–
153, 1999.

[14] R. S. Sutton. Learning to predict by the methods of temporal
differences.Machine Learning, 3:9–44, 1988.

[15] G. Tesauro. Practical issues in temporal difference learning.
Machine Learning, 8:257–277, 1992.

[16] G. Tesauro. Td-gammon, a self teaching backgammon
program, achieves master-level play.Neural Computing,
6(2):215–219, 1994.

[17] G. Tesauro. Temporal difference learning and td-gammon.
Communications of ACM, 38(3):58–67, 1995.

[18] G. Tesauro. Comments on ’co-evolution in the success-
ful learning of backgammon strategy.’.Machine Learning,
32:241–243, 1998.

[19] G. Tesauro and T. Sejnowski. A parallel network that learns
to play backgammon.Artificial Intelligence, 39:357–390,
1989.

[20] X. Yao and Y. Liu. From evolving a single neural net-
work to evolving neural network ensembles. In M. J. Pa-
tel, V. Honavar, and K. Balakrishnan, editors,Advances in
the Evolutionary Synthesis of Intelligent Agents, pages 383–
428. MIT Press, Cambridge, MA, 2001.


