Appears in the 7th Conference on Theoretical Aspects of Rationality and Knowledge (TARK), 1998

Evaluating Options in a Context

John F. Horty™ Martha E. Pollack?
Philosophy Department and Department of Computer Science
Institute for Advanced Computer Studies and Intelligent Systems Program
University of Maryland University of Pittsburgh
College Park, MD 20742 Pittsburgh, PA 15260
horty@umiacs.umd.edu pollack@cs.pitt.edu

1 Introduction

The theory of rational choice, as formulated in the economic and philosophical literature, assumes that agents
evaluate alternative actions by reference to a probability distribution over their possible outcomes together
with a utility function defined on those outcomes: in the simplest case, the agent combines probability and
utility into a notion of expected utility defined over actions, and then chooses some action whose expected
utility is maximal. A good deal of attention has been devoted to the structure of those utility functions
that might actually be thought to underlie human decision making [9], and the more applied literature on
decision analysis has focused on the task of eliciting such preference information from humans [8]. When we
attempt to build artificial agents that are capable of making rational decisions, we likewise need to provide
them with techniques for evaluating the options they encounter.

Our approach to this problem—the rational evaluation of options—differs in two important ways from
that of classical decision theory. First, while decision theory assumes that the utility of an outcome is given
as part of the background setting, we note that the overall desirability of an option presented to an agent
is often not immediately apparent; and we are explicitly concerned with the mechanism through which it
might be discovered. We focus, in particular, on the case in which the option presented to an agent has a
known benefit, but requires some effort—the execution of a plan—for its achievement. In order to evaluate
the overall desirability of the option, the agent thus has to arrive at some assessment of the cost involved in
achieving it.

Second, we insist that the task of evaluating an option should be computationally realizable; and in
particular, our work here is developed within the theoretical framework first articulated in [2], and then
further elaborated in [3, 16], according to which it is best to view a resource-bounded agent as operating
always against the background of some current set of intentions, or plans. In contrast to standard decision
theory, where actions are evaluated in isolation, we develop a model in which the options presented to an
agent are evaluated against a background context provided by the agent’s current plans—commitments to

future activities, which, at any given point, may themselves be only partially specified. The interactions

*Supported by National Science Foundation grant IRI-9619562.
tSupported by National Science Foundation grants IRI-9258392 and IRI-9619579, and by the Air Force Office of Scientific
Research Contract F49620-98-1-0436.



between the new option and the background context can complicate the task of evaluating the option,
rendering it either more or less desirable in context than it would have been in isolation.

As an example, suppose an agent is already committed to going to the airport tomorrow afternoon to
catch a plane, but has not yet decided whether to get there by taxi or by taking the airport shuttle van. Given
this background context, the agent might then have to evaluate the newly presented option of attending a
lunch time meeting tomorrow. If the meeting is to be held on campus, and is likely to run late, a decision
to attend may rule out the possibility of taking the van. Assuming that the van costs less than the taxi,
the new option would then be less desirable in context that it would have been in isolation; the benefit of
attending the meeting must be at least great enough to compensate for the difference in cost between taxi
and van to make it worthwhile. On the other hand, suppose the meeting is to be held at an airport hotel.
In this case, the background context reduces the cost associated with the new option, increasing its overall
desirability, since the agent is already committed to going to the airport: the agent might rationally choose
to attend the meeting, since he is going to the airport anyway, even if this option is not one the agent would
have decided to pursue in isolation.

The present paper begins the task of providing a theoretical and computational analysis of the reasoning
involved in situations like this, where a new option must be evaluated within the context provided by
a background plan. We believe that the approach developed here has some applicability in the analysis of
human choice. However, because we are primarily concerned with the design of artificial agents, we represent
both the agent’s background context and the new options it might encounter using a well-understood plan
formalism familiar from artificial intelligence (AT). Our approach to evaluating the desirability of new plans
can thus be dovetailed with computational accounts of plan generation.

We limit our attention in this paper to a very restricted setting, in which all plans are primitive (not
hierarchical) and complete, and all actions have deterministic outcomes. In this simple setting, the only ways
in which one plan can influence the cost of another is by allowing or blocking the possibility that separate
steps might be merged into one. (In the airport story, for instance, when the meeting is held at the airport,
the step of getting to the meeting can be merged with the step of getting to the airport, which is already part
of the agent’s background plan.) Although our restriction to this special case prevents us from considering
many of the more interesting ways in which plans might interact, even this very simple setting is sufficiently
rich to allow us to illustrate the shape of our theory, and we defer a detailed treatment of more complicated

plan interactions to subsequent work.

2 Primitive plans

Basic concepts

We represent primitive plans using a standard formalism [13, 20, 15], in which a plan consist of a set of steps,
temporal constraints on those steps, and causal links, which record dependency relations among steps. As
usual, we assume a set of action types, defined in terms of preconditions and effects (for clarity, we limit
our attention only to propositional preconditions and effects). The plan steps are instances of the action
types. The planning literature tends to concentrate on qualitative temporal constraints, specifying only the
relative order of steps (but see [1]). In contrast, we also allow for quantitative constraints, which associate
steps with actual time points. To this end, we model time as a totally ordered set of moments {mq, m1,...},

where m; < m; if and only if + < j, and we assume here that each step occupies a single moment of time.



Definition 1 (Primitive plan) A primitive plan P is a triple of the form (S, O, £), with these components
defined as follows: § is a set of steps of the form §;, each associated with a time indicator ¢;; O is a set of
ordering constraints, of the form ¢; = ¢;, t; < t;, t; = my, or t; < my, where ¢; and t; are time indicators
associated with steps belonging to § and my is a moment; £ is a set of causal links of the form (5;, @, S;),

where () is an effect of the step S; and a precondition of the step 5.

We assume a function Type associating each step S; with Type(S;), its action type. We require O to contain
a temporal constraint of the form ¢; < t; whenever there is a link {(S5;, @, S;) in £. And we suppose that
an entailment relation I is defined on the temporal constraint language, allowing us to draw out implicit
consequences (for example, {t; = m,t; < t;} Ft; < m), and providing us, also, with a notion of consistency
for a set of temporal constraints.

To illustrate, let us consider the plan of buying a shirt at the mall, which might be represented in the
current framework as Py = (81, 01, L1), where & = {51, 52,53, 54}, O1 = {t1 < t3,t2 < t3,13 < l4,t3 =
me}, and L1 = {{51, 4, S3), {S2, B, S3), (53, C, S4)}. Step Sy represents an action of going to the mall and
that Sz is an action of bringing one’s wallet (which, we suppose, includes a credit card); Sy thus has as its
effect the statement A, representing the proposition that the agent is at the mall, and S5 the statement B,
representing the proposition that the agent has its credit card. The step S5, then, represents the action of
actually buying the shirt; it requires A and B as preconditions and generates C' as an effect, representing the
proposition that the agent has the shirt. Finally, S4 is a dummy step representing the achievement of the
goal, taking C' as its precondition and generating no effects. The links (S, 4, S3) and (S, B, S3) represent
the fact that S7 and S; are performed for the purpose of establishing the various preconditions of S5 (in the
process of plan generation, their presence would block the insertion of another step that might interfere with
these preconditions), and likewise the link (S35, C, S,) indicates that S3 is performed in order to achieve the
goal state. Of the temporal ordering constraints, the first three are qualitative constraints inherited from
the causal links, while the fourth is a quantitative constraint specifying that S3 must be performed precisely
at me (the moment, perhaps, that the shirt is on sale).

We will say that a plan is scheduled when each of its steps has been assigned a specific moment of
execution. In this paper, we prohibit schedules with concurrent actions, although, importantly, two steps of

the same action type can be merged—assigned to the same moment of execution.

Definition 2 (Schedule, scheduled and schedulable plans) A schedule for a plan P = (§,0, L) is a
set of constraints O such that: (1) there is a constraint of the form ¢; = m in O for each S; in S; (2) OUO
is consistent; and (3) Type(S;) = Type(S;) whenever O U O F t; = t;. The plan P is said to be scheduled
whenever there exists a set of constraints @ C O such that O is a schedule for the plan; P is said to be

schedulable whenever there exists a schedule for it.

As an example, the constraint set 0= {t1 = m3,ty = mu,l3 = mg, s = m7} is a schedule for the plan Py
above, showing that this plan is schedulable. Of course, a plan whose ordering constraints are themselves
inconsistent cannot be scheduled, but even a plan whose ordering constraints are consistent may nevertheless
fail to be schedulable, since its only consistent linearizations may be those in which type distinct steps are
assigned to the same moment. Schedulability is thus a stronger requirement than mere consistency of
temporal constraints.

We focus in this paper on plans that are complete, in the sense that no further planning is needed in order

to guarantee the preconditions of their various steps, although additional scheduling may still be required.

Definition 3 (Complete plans) Let P = (S, 0, L) be a plan. A precondition A of a step S; from § is
established whenever there is some link (S;, A4, S;) in £. A link (S;, A, 5;) from £ is threatened whenever



there is both an action Sj; in & with effect =4 and a schedule @ for P such that QU O t; <t <t;. The
plan P is complete just in case each precondition of each step from § is established and no link from £ is
threatened.

This definition of plan completeness is equivalent to the standard notion from the literature, except that it
replaces the idea of temporal consistency with the stronger notion of schedulability.
In order to assess the desirability of a new option against a background context, we need to be able to

reason about the plans that are formed when two others are combined, as follows.

Definition 4 (Union of plans) Given plans P = (S, 0, L) and P’ = (8,0, L'}, the union of the two
plansis PUP =(SUS, QU O, LU L.

Note that the union of two independently schedulable plans might not be schedulable, since their temporal
constraint sets may not even be jointly consistent; also, the union of two complete plans might not be
complete, since steps in one may threaten links in the other. If the union of two complete plans can be
made complete and schedulable simply through the addition of ordering constraints, we say that the plans

are strongly compatible.

Definition 5 (Strong compatibility) Let P = (S,0, L) and P’ = (S, O, L’} be complete plans. Then
P and P’ are strongly compatible just in case there is a temporal constraint set @" such that (SUS', O U
O'UO", LUL') is complete and schedulable.

As an example, consider the plan Py = (83,03, L2), where S; = {S5,5}, Oz = {t5 < ts}, and L3 =
{(S5, D, 56} }, and where the step S5 has D and —A as effects. (Intuitively, Pz might represent the plan of
going home, with D representing the proposition that the agent is at home, and = A, of course, the proposition
that the agent is no longer at the mall.) Then P and the previous P; are strongly compatible, as shown by
the constraint set 0" = {t3 < t5}, since (S; U S, 01 UO2 U O”, L1 U Ly) is complete and schedulable.

The notion of strong compatibility defined here is, in fact, a very strong notion, since it does not allow
either of two compatible plans to be modified in any way, but only supplemented with additional scheduling
information, in order for their joint execution to be guaranteed. This notion is not, however, the strongest
available. A stronger notion is that of perfect compatibility, where two complete plans P and P’ are defined
as perfectly compatible just in case their union P UP’ is itself complete and schedulable. It is easy to see that
Py and P3, though strongly compatible, are not perfectly compatible, since the joint plan P; U P allows for
schedules in which S5 occurs between S; and Ss, threatening the link {57, A, S3).

Semantics

Eventually, we will want to interpret a plan as specifying a set of allowed futures—intuitively, those futures
consistent with an execution of the plan. (An interpretation along these lines can be developed within the
general logical framework of branching time [18, 19].) For reasons of space, however, we restrict ourselves in
this paper to a simpler account, in which complete and scheduled plans, rather than futures, are taken as
the points in the semantic space, and more abstract plans are associated with sets of these.

We begin by adapting the notion of refinement [10] from the plan generation literature.

Definition 6 (Refinement; C ) Let P = (5,0, L) and P’ = (&', O, L') be plans. Then P’ is a refinement
of P (PCP')justincase SC S and O C O and £ C L.



Letting II represent the set of complete and scheduled plans, we define the semantic interpretation of a plan

as follows.

Definition 7 (Interpretation; v[P]) The interpretation of a plan P is the set of its complete and scheduled
refinements: »[P] = {P’': PC P} NIL

The idea, of course, is that a plan is to be interpreted as the set of ways in which it might be carried out,

and so it is natural to define a plan as consistent whenever there is some way in which it can be carried out.
Definition 8 (Plan consistency) A plan P is consistent just in case v[P] # 0.

Note that a complete plan is consistent just in case it is schedulable, and that an incomplete plan is consistent

just in case it has a complete and schedulable refinement.

3 Evaluation of options

For the purposes of this paper, we define an option as a complete plan that is presented to an agent for
acceptance or rejection. This terminology may seem peculiar, since it is often natural to think of an option
as something more along the lines of a goal state—having a new shirt, say. Nevertheless, even when the
value of an option lies entirely in the achievement of some goal state, sensible reasoning demands that goal
states and their means of achievement—in this case, a trip to the mall—must be evaluated together.

We suppose that an agent evaluates each new option P against the background of a context C, some plan
to which it is already committed, and that the process of evaluation proceeds as follows. First, the agent
determines whether P is compatible with C—where, for the purposes of this paper, we will assume that the
concept of compatibility can be usefully approximated through our notion of strong compatibility—and if
not, P is rejected. Of course, this policy of immediately rejecting incompatible options is a considerable
simplification. More realistically, an agent faced with an incompatible option P could explore either local
revisions to the plan that might guarantee compatibility, or else alternative plans for achieving the goal that
P aims at; and if the goal is valuable, the agent might also consider modifications of his background context.
However, we cannot examine these more sophisticated alternatives in the present paper.

Assuming compatibility, then, the agent should accept the new option just in case its benefit outweighs
its cost in the context. Again, we simplify by supposing that the benefit of the option P—represented here
as 3(P)—is both apparent and independent of context (in the most natural case, this benefit will derive
from the goal state at which the plan is directed). All that remains to be specified, then, is the cost of the

new option P in the context C.

Cost 1n 1solation

We begin by defining the cost of a plan in isolation. We take as given a function Cost mapping action types
into real numbers representing their costs, and assume that the function is extended to the steps of a plan
in the natural way: Cost(S;) = Cost(Type(S;)).

Next, we introduce an auxiliary notion of point cost, defined only for complete, scheduled plans—the
points in the semantic space. Where P = (S, 0, L) is such a plan, we partition the plan steps into sets of
actions forced (by the temporal constraints) to occur at the same moment, taking [S;] = {S; : O Ft; = ¢;}
for each S; € 8. We then let [P] represent the set of these equivalence classes: [P] = {[S;] : S; € S}. It

follows from our definition of a schedule that steps in the same equivalence class will necessarily represent



actions of the same type; these type-identical steps performed at the same moment are to be thought of as
collapsing into a single merged step. We therefore define the point cost of the plan itself as the sum of the

costs assigned to the merged steps it contains:

Point-cost (P) = Z Cost(S;).
[Si]e[P]
Given this auxiliary notion, it is now natural to define the cost of an arbitrary consistent plan as the
point cost of the least expensive way in which it might be carried out, that is, the least expensive point in

its semantic interpretation.

Definition 9 (Cost of a plan; x(P)) Where P is a consistent plan, the cost of P is the point cost of its
least expensive complete and scheduled refinement: «(P) = min{ Point-cost(P') : P! € v[P]}.

It is easy to see that x(P) = Point-cost(P) whenever P is itself a complete and scheduled plan, and that
k(Pg) = 0 for the null plan Py = (B, 3, §).

Cost In context

Having defined the cost of a plan in isolation, we now turn to our central task of defining the cost of a new
option P in the context of a background plan C. Qur treatment of this concept is simple: we take the cost
of the new option in context to be its marginal cost—the cost of carrying out P along with C, less the cost

of carrying out C alone.

Definition 10 (Cost of a plan in a context; x(P/C)) Where the plans C and P are strongly compatible,
the cost of P in the context C is k(P /C) = k(P UC) — &(C).

It follows immediately from this definition that the cost of a plan in the null context is identical to its cost
in isolation: x(P/Py) = k(P). It is also worth noting that the cost of a plan in any context that already
includes that plan as a component is zero: &(P/P UC) = 0.

This definition can be illustrated with a case in which the cost of a new option is actually affected by the
background context. Suppose the agent’s background context is simply the plan to buy a shirt at the mall,
represented by our earlier Py, and imagine that the agent is presented with the new option of going to the
mall for some swim goggles. More exactly, we can take the new option as the plan Pz = (Ss, O3, L3}, where
83 = {57, 58,59, S10}, O3 = {t7 < tg,ts < tg,t9 < t10}, and L3 = {{S7, 4, So), (Ss, B, S9), {So, E, S10) }-
Here, the steps S7 and Sg again represent actions of going to the mall and bringing one’s wallet, steps
sharing the respective types of 57 and S; from the background plan P;p; the step Sg represents the action
of purchasing the goggles; Sqo is again a dummy step representing goal achievement; and the statement F
represents the proposition that the agent has swim goggles. Let us suppose that these various steps carry
the following costs: each of 53, 53, Sg, and Sy carries a cost of 1, since both carrying a wallet and making a
purchase are easy to do; each of 57 and S7 carries a cost of 10, since any trip to the mall is abhorrent; and
5S4 and S79, as dummy steps, both carry a cost of 0.

Given this information, it is clear that x(Py) = 12—the cost of the agent’s background plan is 12.
Presumably, then, the benefit of this background plan must be at least 12—we must have 3(Py) > 12—or
the agent would not have adopted it. Suppose, however, that 3(P3) = 2. Tt is clear also that «(Ps3) = 12,
so that, considered in isolation, the new option would not be worth pursuing. On the other hand, it is
easy to see that x(Ps U Py) = 13, since the least expensive execution of the joint plan, in which both

the steps 57 and S7 as well as the steps S3 and Sg are merged, carries a cost of 13. Therefore, we have



k(P3/P1) = k(P3UP1) — k(P1) = 1. Even though the new option would not be worth pursuing in isolation,
it is worth pursuing in context, since its benefit is greater than its cost in context.

As this example shows, the cost of a plan in context may be less than its cost in isolation, but it is also
possible for the cost is context to be greater. Our earlier taxi/van story already illustrates this possibility, but
it is worth noting that it also arises even in the more restricted framework of complete, strongly compatible
plans. In this setting, a plan in context will have a higher cost than it has in isolation if the background plan
contains steps that might be merged if it were performed in isolation, but the new option blocks that merge
possibility. For instance, suppose the agent already intends to purchase a shirt and some swim goggles at
the mall, and is now considering an option of seeing a movie. Suppose further that the movie begins soon,
leaving time to make only one of the purchases, and that the mall stores are closed after the movie lets out.
Then attending the movie, in this context, has an extra cost, since it means an additional trip to the mall
to carry out the already intended plans. Just as in the taxi/van story, the present example illustrates a case
in which a new option is more expensive in context than in isolation because its adoption would rule out the

most efficient executions of the background plan.

Cost estimates

Although the notion of cost as the least expensive method of execution is defined for any consistent plan,
we do not necessarily assume that the agent knows the true cost either of his background plan or of any new

options under consideration. Instead, the agent may only estimate the cost of its plans.

Definition 11 (Cost estimate for a plan) Where P is a consistent plan, a cost estimate for P is an

interval of the form € = [e7, e*], where e~ and et are nonnegative real numbers such that e~ < k(P) < €™.

Cost estimates, so defined, accurately bound the actual cost of a plan, and are thus related to the interval
measures of plan cost used in the decision-theoretic plan generation literature [21, 7, 6].

We now show that, under certain coherence conditions, a cost estimate for a plan in context can be
derived from a cost estimate for the context together with a cost estimate for the plan and context combined.
Assume that P and C are strongly compatible plans, and that ec = [¢;,¢}] and epuc = [67_>ua€}|—>uc] are
cost estimates for the plans C and P U C respectively. We know from the definition of a cost estimate that
€z < ¢& and epue < e}i;uc, but the definition tells us nothing about the relations among the intervals ec¢
and epyc themselves. Nevertheless, it is reasonable to conclude that ¢, < €5 -, since the least expensive
execution of the compound plan P U C cannot be less costly than the least expensive execution of C, one
of its components; and similarly, 62_ < e}i;uc. We characterize the pair of estimates e¢ and epyc as jointly
coherent just in case these two conditions hold: ¢, < €5, and ef < e}i;uc.

As long as ¢¢ and epye are jointly coherent we can derive a cost estimate ep/c = [67_,/C, 6;;/(:] for the plan
P in the context C in the following way. Given joint coherence, the end points of the intervals ez and epy¢

can stand in only two possible ordering relations:

— et <= +
(1) e <e¢ <epue < €pucs

— <= + <ot
(2) ¢ <pue <€ < Guee

In either case, it is clear that e}",/c should be defined as e}i;uc — ¢z, the maximum possible distance between

points in epyc and ec. In case (1), we know that e . should likewise defined as e5 ., — 62_, the minimum

P/C
possible distance. In case (2), it is reasonable to take 67_>/c as 0, since we know, even when the low estimate

for executing P UC is less than the high estimate for executing C, that the true cost of executing P UC can



be no less than the true cost of executing C. Combining cases (1) and (2), we can therefore take €pc a8

max|0, €5, — €], leading to the following general definition.

Definition 12 (Cost estimate for a plan in context) Where the plans P and C are strongly compat-
ible, let ec = [ez,€}] and epuc = [eguc,e}",uc] be a pair of jointly coherent cost estimates for the plans C
and P UC. Then the cost estimate for the plan P in the context C is the interval epje = [67_,/C, 6;;/(:], where
€pjc = max[0, €5, — e/ ] and e}",/c =ehue — € -

It follows immediately from this definition that (P /C), the true cost of P in the context C, lies within the
derived interval €p/c; and it is also easy to see that the derived interval ¢p;c narrows monotonically as the
intervals ez and epy¢ are narrowed.

The derived interval estimate of cost in context is useful because, in many cases, it allows an agent
to accept or reject an option without calculating its true cost. Suppose, for example, that an agent with
background plan C is considering the new option P with benefit 3(P); and imagine that the agent has assigned
estimated costs ¢¢ and epyc to the plans C and P UC, from which it derives the estimate ep/c = [67_,/C, 6;;/(:]
for the cost of P in the context C. Then if 3(P) > 6;;/(:, the agent is justified in adopting the new option,
since the cost in context of the option is necessarily less than its benefit; and likewise, the agent is justified
in rejecting the option if 3(P) < 67_,/C, since its cost in context is necessarily greater than its benefit. If
67_>/c < B(P) < 6;;/(:, there are two subcases to consider. First, if it happens that 67_>/c = 6;;/(:, then, since we
know that x(P/C) lies within the interval ep /¢, it follows that 3(P) = «(P/C), and so the agent is justified

either in accepting or rejecting the option. If 67_>/c <e€ on the other hand, the agent’s interval estimates

+

P/C
do not provide enough information to determine whether the option should be adopted or rejected. In this
last case, and only this case, the agent is forced to refine his estimates further before making a rational
decision, narrowing his cost estimates for C and P U C, and thereby also narrowing his derived estimate for

P in the context of C.

4 Reasoning procedures

We now present some algorithms through which the process sketched in Section 3 of evaluating a new option
P against the background of a context C might actually be accomplished.

As explained earlier, the first step of the process is determining whether P is, in fact, strongly compatible
with the context C. This problem has been studied in [22], which develops a constraint satisfaction procedure
to determine plan compatibility. This algorithm, COMBINE, takes as input two plans—which, in our case,
would be P and C—identifies all the threats between them, constructs a constraint satisfaction problem
(CSP) representing the threat resolution alternatives, and then solves the CSP to find some set of resolutions.
This set of resolutions is equivalent to the constraint set (' in our Definition 5 of strong compatibility, so
that a solution to the CSP guarantees strong compatibility between P and C. If the CSP has no solution,
so that strong compatibility fails, the algorithm indicates this by returning a failure value, and, in the
current treatment, the new option is rejected. Again, this immediate rejection of incompatible options is
an oversimplification, but one that we adhere to in this paper. Note that the COMBINE algorithm was not
designed for temporally grounded plans, but we are developing a generalization of it that can handle such
plans [17].

Our focus in this paper is on the second step in the reasoning process, in which the agent computes the
cost estimate for plan P in context C. Given an option P that is compatible with C, we might next appeal

to the OPTIMAL MERGE algorithm [22], which uses a dynamic programming approach to find an optimally



merged plan, that is, one with minimum cost. This cost is precisely x(P UC), which could then be combined
with an exact value for £(C) to yield an exact value for x(P/C). The option P could then be accepted or
rejected depending on the relation between «(P/C) and 3(P).

In general, however, it may not be necessary to compute the exact value of (P /C); instead, as suggested
earlier, an agent may be able to accept or reject a new option only on the basis of an interval estimate of its
cost in context. The remainder of this section develops an algorithm to implement this idea—evaluating a
new option by estimating its cost in context, and then progressively refining the estimates where necessary.
Such an approach may prove to be efficient if, as we suspect, it can frequently terminate in realistic cases
without the need to compute an exact cost in context. In addition, the algorithm presented here displays
anytime performance, producing cost estimates of monotonically increasing accuracy. Thus, if the agent
“runs out of time” in evaluating an option, and is forced to a decision before shrinking the cost range
sufficiently, the agent can at least make an informed decision; it can determine, for example, how much it
stands to lose. Finally, by reasoning about incomplete plans and estimated costs, the algorithm matches our

intuitions about deliberation in dynamic environments.

Stepsets

Given our current restriction to complete plans, the only factor influencing plan cost is step merging. To
support reasoning about possible step merges, we therefore introduce the notion of a stepset. A stepset

clusters steps in a plan that share the same type.

Definition 13 (Stepset of a plan) Where P = (S, O, L} is a consistent plan, a stepset for P is a partition
M = {[S1],...,[Sn]} of S subject to the restriction that Type(S;) = Type(S;) for any steps S; and S;

belonging to the same equivalence class [Sy].

Because type-equivalence is a necessary but not sufficient condition for placing two steps in the same equiv-
alence class, a given plan may have several different stepsets. Consider a plan P with only two steps, both
of which are the same type. Plan P will have one stepset in which its two steps are clustered, and another
in which they are not. Intuitively, the former corresponds to all schedules for P in which its two steps are
merged, while the latter corresponds to those in which they are not. In fact, the temporal constraints in P
may prevent the merging of its two steps; that is, there may be no schedules for P that merge its steps. In
that case, we will say that the stepset that places the two steps in same equivalence class is not feasible.

Let us make these notions precise. We will say that a schedule for a plan P corresponds to a particular
stepset for P whenever the step merges determined by the schedule agree with those of the stepset. Let
P ={S8,0,L) be aplan, and let M be a stepset for P and O be a schedule for P. Then O corresponds to
M provided that for any steps S; and S5; in S, S; and S; are in the same equivalence class in M if and only
if Okt =t.

As already noted, not every stepset will have a schedule that corresponds to it. Let M = {[S1],...,[S]}
be a stepset for the plan P = (S, 0, L£). Then we define the stepset constraints associated with M—written,
Const(M )—as that set containing ¢; = ¢; whenever [5;] = [9;], and ¢; # ¢; whenever [S;] # [S;]. The stepset
M is then defined as feasible just in case the plan (S, O U Const(M), L) is complete and schedulable.

Stepsets represent only decisions about which steps in a plan are to be merged, neglecting any other
information about the order of steps or the exact times of their performance. On the other hand, stepsets
do capture all the information that is necessary for computing plan cost: since cost depends only on step

merging, all of the scheduled plans that correspond to a particular stepset will have the same cost. Given a



stepset M, we can therefore introduce a notion of stepset cost for M, written SSCost(M), as follows:

SSCost(M) = Z Cost(S;).
[S:]eM

The stepset cost for M represents the cost of any scheduled plan corresponding to M.

The stepsets based on a plan P can be organized into a lattice, as follows. The top element of the
lattice is the minimally merged stepset Minmerge(P), defined as the partition {[S1],...,[Sa]} in which each
equivalence class [9;] is identified with the unit set {5;}. The bottom element of the lattice is the maximally
merged stepset Mazmerge(P), defined as the partition {[S1],...,[9]}, in which each equivalence class [S;] is
identified with the set {S; : Type(S;) = Type(S;)} containing all steps sharing the type of S;. We can then
define one stepset as below another in the lattice if it results from increased merging. More exactly, where
M and M’ are elements of the lattice, we define M < M just in case: for each [9;] in M’ there is an [5;] in
M such that [S;] C [S;]. We can then define the down successors of a stepset M as those stepsets that are
below M in the lattice and contain exactly one fewer member; and we can define the up successors of M as
those stepsets that are above M in the lattice and contain exactly one more member. The down successors
of M are those stepsets that can be obtained from M by merging two of its members, and the up successors
of M are those stepsets from which M can be obtained through the merge of two members.

We can assume that these various stepset concepts are implemented as the following functions: SScosT(M)
calculates the stepset cost of a stepset M; MINMERGE(P) and MAXMERGE(P) form the minimally and max-
imally merged stepsets of the plan P; DowN-SuccEssors(M) and UP-SUCCESSORS(M ) return the down
successors and up successors of the stepset M in the relevant lattice; and FEASIBLE(M,P) determines
whether M is a feasible stepset for plan P. All but the last of these functions are trivial. Feasibility requires
checking whether (S, O U Const(M), L) is complete and schedulable. We do this by casting the problem as
a constraint satisfaction one, in which the constrained variables are the steps in &, and their domains are
moments of execution: that is, a solution to the CSP problem consists of an assignment of a time point to
each step. Two sets of constraints must be observed: the temporal constraints in O U Const(M), and the
threat-avoidance constraints that derive from £. Although in the worst case, solving a CSP is computation-
ally intractable, there are a number of powerful techniques that are known to work very well in practice, and

in fact, have recently been applied to large planning and scheduling problems [5, 11, 12, 4].

The algorithm

We now present our algorithm, depicted in Figure 1, for evaluating an option P in the context C, under
the assumption that the two plans are strongly compatible. The algorithm works with two stepset lattices,
based on the plans C and P UC. In a fashion somewhat reminiscent of the candidate-elimination algorithm
[14], our algorithms maintains, for each lattice, an upper frontier containing the highest nodes in the lattice
not yet known to be infeasible, and similarly a lower frontier. It then systematically attempts to establish
the feasibility or infeasibility of the nodes in the frontiers, refining the cost estimates for the plans C and
P UC, and using them to update the derived cost estimate for P in the context C. After each refinement,
the derived estimate of cost in context is compared with the benefit of P; if 3(P) is outside the range of the
current estimate, the algorithm then terminates with a recommendation to either accept or reject P.

In more detail, the algorithm begins by calling the procedure INITIALIZE(P,C), which has the following
effects. Where Q ranges over the plans C and P UC, it assigns to the variables Uppergy and Lowerg sets
containing the minimally and maximally merged stepsets for Q. Next, the variables 65 and €y, representing

upper and lower cost estimate bounds for the plan Q, are assigned the stepset costs of these minimally and



procedure EVALUATE-OPTION(P,C) return Accept or Reject
INITIALIZE(P, C)
loop
if CgHERENT(eZ’,eC__, ehuer€puc) then
€pjc max[0, €5 o — €/ ]
+ + ~
€pjc < €puc ~ ¢
if o[P] > e}",/c then
return Accept
end if
if o[P] < €3 then
return Reject
end if
o= ot
1f67,/c = e then
return Accept or Reject
end if
end if
Call either REFINE(C) or REFINE(P U ()
end loop

Figure 1: EVALUATE-OPTION(P, ()

maximally merged stepsets. Finally, the variables Actua@ and Actualy are set to false: these are simply
flags indicating whether the upper and lower cost estimate bounds for the plan Q are based on stepsets
known to be feasible.

After initialization, the algorithm enters its main loop, first checking whether the current cost estimates
for C and P UC are jointly coherent, that is, whether ¢, < e7 . and 62_ < e}",uc. This is required because
subsequent refinement of the estimates ¢z and epyc¢ may lead to a temporary loss of joint coherence. In
that case, the estimate ep;¢ cannot be updated until coherence has been restored by further refiment steps.
When ¢¢ and epye are jointly coherent, the algorithm applies Definition 12 to update the estimate ep/¢,
and then carries out the reasoning procedure described at the end of Section 3: it compares the benefits
of the new option with the current estimate of its cost in context, and accepts or rejects the new option
if the current estimate is narrow enough to allow it to do so. Otherwise, if the current estimate of cost in
context is not narrow enough to justify a decision—or if the current cost estimates for C and P U C are not
jointly coherent—the algorithm tightens the cost estimates for C and P U C, by calling either REFINE(C) or
REFINE(P UC), and then repeats the loop.

We have left the decision about which estimate to refine (e¢ or epyc) nondeterministic in the algorithm,
thereby decoupling the control heuristics from the algorithm itself. A similar decoupling has proven to be
useful in the analysis of many Al algorithms. This tactic has two advantages. First, it simplifies the base
algorithm; see [20] for an example of this applied to classical plan generation. Second, it allows for separate,
focused investigation of heuristics for efficient control, something we are now exploring in our ongoing work.
Recent work in decision-theoretic plan generation [6] has analyzed the use of interval-based utility estimates
in finding optimal plans, and there is potential for the transfer of this analysis to our framework. However,
we defer consideration of this issue to subsequent work.

The procedure REFINE(Q)—where Q ranges over C and P U C—is itself straightforward, simply calling
either REFINE-DowN(Q) or REFINE-UP(Q), again, nondeterministically choosing between them.



procedure REFINE-DOWN(Q)
if Actualy = F then
Select a maximal cost element M from Upper 4
Delete M from Upperg
Add DOWN-SUCCESSORS(M) to Upperg
if FEASIBLE(M, Q) then
Actua@ « T
€ « SScosT(M)
else
if Actua@ = F then
65 — Argmazy; ¢ UppeTQSSCOST(U)
end if
end if
end if

Figure 2: REFINE-DowN(Q)

The two refinement procedures are similar, and we first describe REFINE-DOwWN(Q). Essentially, what
it does is select a node M from the upper frontier, and check its feasibility. The nodes are selected in
decreasing order of cost. Thus, if M is found to be feasible, its cost is less than that of any previously
examined feasible node; hence the current upper bound on the cost estimate, 65, can be set to the cost
of M. What if M is found to be infeasible? Both C and P U C are consistent; the latter is a consequence
of the strong compatibility of P and C. Thus, regardless of whether Q is C or P U C, its stepset lattice
is guaranteed to contain at least one feasible node. If a feasible node has not yet been found—that is, if
Actuall;, = F—we know that some feasible element exists whose stepset cost is less than that of M, and so
65 can be set to reflect the highest stepset cost of the remaining elements. Again, this can only lower the
value of 65. However, if a feasible point has already been found, we have no guarantee of finding another,
and so determining that M is infeasible does not lead to updating the value of 65.

After examining M, the procedure removes it from the upper frontier, and replaces it with its down-
successors, so that they can be considered in subsequent iterations.

The procedure REFINE-UP(Q), presented in Figure 3, is in some ways a dual to REFINE-DowN(Q): it
refines the lower bound ej of the cost estimate for the plan Q, working from the lower frontier. It differs,
however, in its behavior when a feasible node is found. The reason for this is that the first feasible node
found represents x(Q), the true cost of Q: because the procedure selects nodes in increasing order of cost,
the first feasible node it finds necessarily corresponds to the least expensive schedule for @, which is the true
cost of Q. Therefore, immediately upon finding a feasible node, REFINE-UP(Q) sets the upper bound 65 to
€g, narrowing the estimate to a point.

One final comment about the algorithms concerns the initial lines of both REFINE-UP(Q) and REFINE-
Down(Q), which require that Actualg = F. This is simply a bookkeeping condition: because REFINE-
Upr(Q) sets both €g and 65 to the exact cost of @ at the same time as it sets Actualé =T, this condition

blocks additional calls to either procedure from producing any further effect.



procedure REFINE-UP(Q)
if Actualy = F then
Select a minimal cost element M from Lowerg
Delete M from Lowerg
Add Up-Successors(M) to Lowerg
if FEASIBLE(M, Q) then
Actualg < T
€g ¢ SScosT(M)
65 —€g
else
€g & Argming e p,yper, SSC0OST(U)
end if
end if

Figure 3: REFINE-UP(Q)

5 Conclusion

In this paper, we have developed the foundations of a theory of rational choice that takes seriously the view
that agents make decisions in the context of their existing plans. A central goal of our work is to ensure that
the theory we develop is computationally viable, and we have framed our approach in terms of models of
planning developed in the Al literature. The overall picture we have is one in which an agent maintains a set
of commitments, some of which, at any given time, will be only partially specified. A new option for action
must then be evaluated taking into account interactions between that option and the background context.
Recognizing that agents have computational resource limits, we have developed an account that does not
require the agent always to compute the exact cost of an option in context; instead, we have shown how
estimates of option cost can support rational choice.

Here we have only provided details for a very restricted case of the general problem, and it is clear
that the theory must be extended along a number of dimensions. Some such extensions are relatively
straightforward. For example, we have discussed only cost savings that result from merging of type-identical
steps, but sometimes it is also possible to merge steps of different types that both achieve the particular
conditions required in the current context. Also, we have discussed only plans that involve a single, albeit
possibly merged, action at a time, but have not here considered plans with true concurrency: two or more
steps of different types performed at the same moment.

Other generalizations will require more significant extensions to the theory as we have developed it in
the paper. Most notably, we have dealt here only with complete, primitive plans. Handling incomplete plans
requires extending the algorithms for cost computation, because the cost of an incomplete plan depends
not just on possible ways of scheduling it, but also on possible ways of completing it. Similarly, handling
hierarchical plans requires reasoning about possible decompositions. In both cases, then, methods for plan
generation must be interwoven with the cost computation process.

Finally, we have focused our attention in this paper on new options that are at least strongly compatible
with the background context. Although this is a reasonable starting point, it is clearly important to generalize
the theory so it can handle other situations. We are currently examining weaker notions of compatibility, for
instance, situations in which the union of the new option and the background context results in threats that

cannot be resolved with just ordering and linking constraints, but instead require the introduction of new



plan steps. In this case, the computation of plan cost must take into account the cost of the threat-repair

steps. A further generalization, hinted at in Section 3, would cover situations of true incompatibility between

a background context and a new option.

References

(1]

[2]

[16]

Fahiem Bacchus and Froduald Kabanza. Planning for temporally extended goals. In Proceedings of the
13th National Conference on Artificial Intelligence, 1996.

Michael E. Bratman. [Intention, Plans and Practical Reason. Harvard University Press, Cambridge,

MA, 1987.

Michael E. Bratman, David J. Israel, and Martha E. Pollack. Plans and resource-bounded practical
reasoning. Computational Intelligence, 4:349-355, 1988.

Amedeo Cesta, Angelo Oddi, and Stephen F. Smith. Profile-based algorithms to solve multiple capac-
itated metric scheduling problems. In Proceedings of the Fourth International Conference on Artificial
Intelligence Planning Systems (AIPS-98), pages 214-223, 1998.

C. Cheng and S. F. Smith. Generating feasible schedules under complex metric constraints. In Proceed-

ings of the 12th National Conference on Artificial Intelligence (AAAI-94), 1994.

Richard Goodwin and Reid Simmons. Search control of plan generation in decision-theoretic planners. In
Proceedings of the Fourth International Conference on Artificial Intelligence Planning Systems (AIPS-
98), pages 94-101, 1998.

P. Haddawy, A. Doan, and R. Goodwin. Efficient decision-theoretic planning: techniques and empirical
analysis. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, 1995.

Ronald A. Howard and James E. Matheson, editors. The Principles and Applications of Decision
Analysis. Strategic Decision Group, Menlo Park, CA, 1984.

Daniel Kahneman and Amos Tversky. Prospect theory: an analysis of decision under risk. Econometrica,

47:263-291, 1979.

Subbarao Kambhampati, Craig A. Knoblock, and Qiang Yang. Planning as refinement search: A unified
framework for evaluating design tradeoffs in partial-order planning. Artificial Intelligence, 76(1-2):167-
238, 1995.

Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic, and stochastic
search. In Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAT), Portland,
OR, 1996.

Henry Kautz and Bart Selman. The role of domain-specific knowledge in the planning as satisfiability
framework. In Proceedings of the Fourth International Conference on Artificial Intelligence Planning

Systems (AIPS-98), pages 181-189, 1998.

David McAllester and David Rosenblitt. Systematic nonlinear planning. In Proceedings of the Ninth
National Conference on Artificial Intelligence, pages 634-639, Anaheim, CA, 1991.

Tom M. Mitchell. Machine Learning. McGraw-Hill Co., Inc., New York, 1997.

J. Scott Penberthy and Daniel Weld. UCPOP: A sound, complete, partial order planner for ADL. In
Proceedings of the Third International Conference on Knowledge Representation and Reasoning, pages

103-114, Cambridge, MA, 1992.

Martha E. Pollack. The uses of plans. Artificial Intelligence, 57:43-68, 1992.



[17] Martha E. Pollack, Toannis Tsamardinos, Jun Hu, and John F. Horty. Merging temporally grounded
plans. In preparation.

[18] Arthur Prior. Past, Present and Future. Oxford University Press, New York, 1967.

[19] Richmond Thomason. Indeterminist time and truth-value gaps. Theoria, 36:264-281, 1970.

[20] Daniel S. Weld. An introduction to least commitment planning. AI Magazine, 15(4):27-61, 1994.
[21]

21] Mike Williamson and Steve Hanks. Optimal planning with a goal-directed utility model. In Proceedings
of the Second International Conference on Artificial Intelligence Planning Systems, pages 176-181, 1994.

[22] Qiang Yang. Intelligent Planning: A Decomposition and Abstraction Based Approach. Springer, New
York, 1997.



