
Appears in the 7th Conference on Theoretical Aspects of Rationality and Knowledge (TARK), 1998Evaluating Options in a ContextJohn F. Horty�Philosophy Department andInstitute for Advanced Computer StudiesUniversity of MarylandCollege Park, MD 20742horty@umiacs.umd.edu Martha E. PollackyDepartment of Computer Scienceand Intelligent Systems ProgramUniversity of PittsburghPittsburgh, PA 15260pollack@cs.pitt.edu1 IntroductionThe theory of rational choice, as formulated in the economic and philosophical literature, assumes that agentsevaluate alternative actions by reference to a probability distribution over their possible outcomes togetherwith a utility function de�ned on those outcomes: in the simplest case, the agent combines probability andutility into a notion of expected utility de�ned over actions, and then chooses some action whose expectedutility is maximal. A good deal of attention has been devoted to the structure of those utility functionsthat might actually be thought to underlie human decision making [9], and the more applied literature ondecision analysis has focused on the task of eliciting such preference information from humans [8]. When weattempt to build arti�cial agents that are capable of making rational decisions, we likewise need to providethem with techniques for evaluating the options they encounter.Our approach to this problem|the rational evaluation of options|di�ers in two important ways fromthat of classical decision theory. First, while decision theory assumes that the utility of an outcome is givenas part of the background setting, we note that the overall desirability of an option presented to an agentis often not immediately apparent; and we are explicitly concerned with the mechanism through which itmight be discovered. We focus, in particular, on the case in which the option presented to an agent has aknown bene�t, but requires some e�ort|the execution of a plan|for its achievement. In order to evaluatethe overall desirability of the option, the agent thus has to arrive at some assessment of the cost involved inachieving it.Second, we insist that the task of evaluating an option should be computationally realizable; and inparticular, our work here is developed within the theoretical framework �rst articulated in [2], and thenfurther elaborated in [3, 16], according to which it is best to view a resource-bounded agent as operatingalways against the background of some current set of intentions, or plans. In contrast to standard decisiontheory, where actions are evaluated in isolation, we develop a model in which the options presented to anagent are evaluated against a background context provided by the agent's current plans|commitments tofuture activities, which, at any given point, may themselves be only partially speci�ed. The interactions�Supported by National Science Foundation grant IRI-9619562.ySupported by National Science Foundation grants IRI-9258392 and IRI-9619579, and by the Air Force O�ce of Scienti�cResearch Contract F49620-98-1-0436.

between the new option and the background context can complicate the task of evaluating the option,rendering it either more or less desirable in context than it would have been in isolation.As an example, suppose an agent is already committed to going to the airport tomorrow afternoon tocatch a plane, but has not yet decided whether to get there by taxi or by taking the airport shuttle van. Giventhis background context, the agent might then have to evaluate the newly presented option of attending alunch time meeting tomorrow. If the meeting is to be held on campus, and is likely to run late, a decisionto attend may rule out the possibility of taking the van. Assuming that the van costs less than the taxi,the new option would then be less desirable in context that it would have been in isolation; the bene�t ofattending the meeting must be at least great enough to compensate for the di�erence in cost between taxiand van to make it worthwhile. On the other hand, suppose the meeting is to be held at an airport hotel.In this case, the background context reduces the cost associated with the new option, increasing its overalldesirability, since the agent is already committed to going to the airport: the agent might rationally chooseto attend the meeting, since he is going to the airport anyway, even if this option is not one the agent wouldhave decided to pursue in isolation.The present paper begins the task of providing a theoretical and computational analysis of the reasoninginvolved in situations like this, where a new option must be evaluated within the context provided bya background plan. We believe that the approach developed here has some applicability in the analysis ofhuman choice. However, because we are primarily concerned with the design of arti�cial agents, we representboth the agent's background context and the new options it might encounter using a well-understood planformalism familiar from arti�cial intelligence (AI). Our approach to evaluating the desirability of new planscan thus be dovetailed with computational accounts of plan generation.We limit our attention in this paper to a very restricted setting, in which all plans are primitive (nothierarchical) and complete, and all actions have deterministic outcomes. In this simple setting, the only waysin which one plan can in
uence the cost of another is by allowing or blocking the possibility that separatesteps might be merged into one. (In the airport story, for instance, when the meeting is held at the airport,the step of getting to the meeting can be merged with the step of getting to the airport, which is already partof the agent's background plan.) Although our restriction to this special case prevents us from consideringmany of the more interesting ways in which plans might interact, even this very simple setting is su�cientlyrich to allow us to illustrate the shape of our theory, and we defer a detailed treatment of more complicatedplan interactions to subsequent work.2 Primitive plansBasic conceptsWe represent primitive plans using a standard formalism [13, 20, 15], in which a plan consist of a set of steps,temporal constraints on those steps, and causal links, which record dependency relations among steps. Asusual, we assume a set of action types, de�ned in terms of preconditions and e�ects (for clarity, we limitour attention only to propositional preconditions and e�ects). The plan steps are instances of the actiontypes. The planning literature tends to concentrate on qualitative temporal constraints, specifying only therelative order of steps (but see [1]). In contrast, we also allow for quantitative constraints, which associatesteps with actual time points. To this end, we model time as a totally ordered set of moments fm0;m1; : : :g,where mi < mj if and only if i < j, and we assume here that each step occupies a single moment of time.

De�nition 1 (Primitive plan) A primitive plan P is a triple of the form hS;O;Li, with these componentsde�ned as follows: S is a set of steps of the form Si, each associated with a time indicator ti; O is a set ofordering constraints, of the form ti = tj , ti < tj , ti = mk, or ti < mk, where ti and tj are time indicatorsassociated with steps belonging to S and mk is a moment; L is a set of causal links of the form hSi; Q; Sji,where Q is an e�ect of the step Si and a precondition of the step Sj .We assume a function Type associating each step Si with Type(Si), its action type. We require O to containa temporal constraint of the form ti < tj whenever there is a link hSi; Q; Sji in L. And we suppose thatan entailment relation ` is de�ned on the temporal constraint language, allowing us to draw out implicitconsequences (for example, ftj = m; ti < tjg ` ti < m), and providing us, also, with a notion of consistencyfor a set of temporal constraints.To illustrate, let us consider the plan of buying a shirt at the mall, which might be represented in thecurrent framework as P1 = hS1;O1;L1i, where S1 = fS1; S2; S3; S4g, O1 = ft1 < t3; t2 < t3; t3 < t4; t3 =m6g, and L1 = fhS1; A; S3i; hS2; B; S3i; hS3; C; S4ig. Step S1 represents an action of going to the mall andthat S2 is an action of bringing one's wallet (which, we suppose, includes a credit card); S1 thus has as itse�ect the statement A, representing the proposition that the agent is at the mall, and S2 the statement B,representing the proposition that the agent has its credit card. The step S3, then, represents the action ofactually buying the shirt; it requires A and B as preconditions and generates C as an e�ect, representing theproposition that the agent has the shirt. Finally, S4 is a dummy step representing the achievement of thegoal, taking C as its precondition and generating no e�ects. The links hS1; A; S3i and hS2; B; S3i representthe fact that S1 and S2 are performed for the purpose of establishing the various preconditions of S3 (in theprocess of plan generation, their presence would block the insertion of another step that might interfere withthese preconditions), and likewise the link hS3; C; S4i indicates that S3 is performed in order to achieve thegoal state. Of the temporal ordering constraints, the �rst three are qualitative constraints inherited fromthe causal links, while the fourth is a quantitative constraint specifying that S3 must be performed preciselyat m6 (the moment, perhaps, that the shirt is on sale).We will say that a plan is scheduled when each of its steps has been assigned a speci�c moment ofexecution. In this paper, we prohibit schedules with concurrent actions, although, importantly, two steps ofthe same action type can be merged|assigned to the same moment of execution.De�nition 2 (Schedule, scheduled and schedulable plans) A schedule for a plan P = hS;O;Li is aset of constraints O such that: (1) there is a constraint of the form ti = m in O for each Si in S; (2) O[Ois consistent; and (3) Type(Si) = Type(Sj) whenever O [O ` ti = tj. The plan P is said to be scheduledwhenever there exists a set of constraints O � O such that O is a schedule for the plan; P is said to beschedulable whenever there exists a schedule for it.As an example, the constraint set O = ft1 = m3; t2 = m4; t3 = m6; t4 = m7g is a schedule for the plan P1above, showing that this plan is schedulable. Of course, a plan whose ordering constraints are themselvesinconsistent cannot be scheduled, but even a plan whose ordering constraints are consistent may neverthelessfail to be schedulable, since its only consistent linearizations may be those in which type distinct steps areassigned to the same moment. Schedulability is thus a stronger requirement than mere consistency oftemporal constraints.We focus in this paper on plans that are complete, in the sense that no further planning is needed in orderto guarantee the preconditions of their various steps, although additional scheduling may still be required.De�nition 3 (Complete plans) Let P = hS;O;Li be a plan. A precondition A of a step Si from S isestablished whenever there is some link hSj ; A; Sii in L. A link hSj ; A; Sii from L is threatened whenever

there is both an action Sk in S with e�ect :A and a schedule O for P such that O [O ` tj < tk < ti. Theplan P is complete just in case each precondition of each step from S is established and no link from L isthreatened.This de�nition of plan completeness is equivalent to the standard notion from the literature, except that itreplaces the idea of temporal consistency with the stronger notion of schedulability.In order to assess the desirability of a new option against a background context, we need to be able toreason about the plans that are formed when two others are combined, as follows.De�nition 4 (Union of plans) Given plans P = hS;O;Li and P0 = hS0;O0;L0i, the union of the twoplans is P [P0 = hS [S0;O [O0;L[L0i.Note that the union of two independently schedulable plans might not be schedulable, since their temporalconstraint sets may not even be jointly consistent; also, the union of two complete plans might not becomplete, since steps in one may threaten links in the other. If the union of two complete plans can bemade complete and schedulable simply through the addition of ordering constraints, we say that the plansare strongly compatible.De�nition 5 (Strong compatibility) Let P = hS;O;Li and P0 = hS0;O0;L0i be complete plans. ThenP and P0 are strongly compatible just in case there is a temporal constraint set O00 such that hS [S0;O [O0 [O00;L [L0i is complete and schedulable.As an example, consider the plan P2 = hS2;O2;L2i, where S2 = fS5; S6g, O2 = ft5 < t6g, and L2 =fhS5; D; S6ig, and where the step S5 has D and :A as e�ects. (Intuitively, P2 might represent the plan ofgoing home, withD representing the proposition that the agent is at home, and :A, of course, the propositionthat the agent is no longer at the mall.) Then P2 and the previous P1 are strongly compatible, as shown bythe constraint set O00 = ft3 < t5g, since hS1 [S2;O1 [O2 [O00;L1 [L2i is complete and schedulable.The notion of strong compatibility de�ned here is, in fact, a very strong notion, since it does not alloweither of two compatible plans to be modi�ed in any way, but only supplemented with additional schedulinginformation, in order for their joint execution to be guaranteed. This notion is not, however, the strongestavailable. A stronger notion is that of perfect compatibility, where two complete plans P and P0 are de�nedas perfectly compatible just in case their union P [P0 is itself complete and schedulable. It is easy to see thatP1 and P2, though strongly compatible, are not perfectly compatible, since the joint plan P1[P2 allows forschedules in which S5 occurs between S1 and S3, threatening the link hS1; A; S3i.SemanticsEventually, we will want to interpret a plan as specifying a set of allowed futures|intuitively, those futuresconsistent with an execution of the plan. (An interpretation along these lines can be developed within thegeneral logical framework of branching time [18, 19].) For reasons of space, however, we restrict ourselves inthis paper to a simpler account, in which complete and scheduled plans, rather than futures, are taken asthe points in the semantic space, and more abstract plans are associated with sets of these.We begin by adapting the notion of re�nement [10] from the plan generation literature.De�nition 6 (Re�nement; v) Let P = hS;O;Li and P0 = hS0;O0;L0i be plans. Then P0 is a re�nementof P (P v P 0) just in case S � S0 and O � O0 and L � L0.

Letting � represent the set of complete and scheduled plans, we de�ne the semantic interpretation of a planas follows.De�nition 7 (Interpretation; v[P]) The interpretation of a plan P is the set of its complete and scheduledre�nements: v[P] = fP0 : P v P0g \�:The idea, of course, is that a plan is to be interpreted as the set of ways in which it might be carried out,and so it is natural to de�ne a plan as consistent whenever there is some way in which it can be carried out.De�nition 8 (Plan consistency) A plan P is consistent just in case v[P] 6= ;.Note that a complete plan is consistent just in case it is schedulable, and that an incomplete plan is consistentjust in case it has a complete and schedulable re�nement.3 Evaluation of optionsFor the purposes of this paper, we de�ne an option as a complete plan that is presented to an agent foracceptance or rejection. This terminology may seem peculiar, since it is often natural to think of an optionas something more along the lines of a goal state|having a new shirt, say. Nevertheless, even when thevalue of an option lies entirely in the achievement of some goal state, sensible reasoning demands that goalstates and their means of achievement|in this case, a trip to the mall|must be evaluated together.We suppose that an agent evaluates each new option P against the background of a context C, some planto which it is already committed, and that the process of evaluation proceeds as follows. First, the agentdetermines whether P is compatible with C|where, for the purposes of this paper, we will assume that theconcept of compatibility can be usefully approximated through our notion of strong compatibility|and ifnot, P is rejected. Of course, this policy of immediately rejecting incompatible options is a considerablesimpli�cation. More realistically, an agent faced with an incompatible option P could explore either localrevisions to the plan that might guarantee compatibility, or else alternative plans for achieving the goal thatP aims at; and if the goal is valuable, the agent might also consider modi�cations of his background context.However, we cannot examine these more sophisticated alternatives in the present paper.Assuming compatibility, then, the agent should accept the new option just in case its bene�t outweighsits cost in the context. Again, we simplify by supposing that the bene�t of the option P|represented hereas �(P)|is both apparent and independent of context (in the most natural case, this bene�t will derivefrom the goal state at which the plan is directed). All that remains to be speci�ed, then, is the cost of thenew option P in the context C.Cost in isolationWe begin by de�ning the cost of a plan in isolation. We take as given a function Cost mapping action typesinto real numbers representing their costs, and assume that the function is extended to the steps of a planin the natural way: Cost(Si) = Cost(Type(Si)).Next, we introduce an auxiliary notion of point cost, de�ned only for complete, scheduled plans|thepoints in the semantic space. Where P = hS;O;Li is such a plan, we partition the plan steps into sets ofactions forced (by the temporal constraints) to occur at the same moment, taking [Si] = fSj : O ` ti = tjgfor each Si 2 S. We then let [P] represent the set of these equivalence classes: [P] = f[Si] : Si 2 Sg. Itfollows from our de�nition of a schedule that steps in the same equivalence class will necessarily represent

actions of the same type; these type-identical steps performed at the same moment are to be thought of ascollapsing into a single merged step. We therefore de�ne the point cost of the plan itself as the sum of thecosts assigned to the merged steps it contains:Point-cost (P) = X[Si]2[P]Cost(Si):Given this auxiliary notion, it is now natural to de�ne the cost of an arbitrary consistent plan as thepoint cost of the least expensive way in which it might be carried out, that is, the least expensive point inits semantic interpretation.De�nition 9 (Cost of a plan; �(P)) Where P is a consistent plan, the cost of P is the point cost of itsleast expensive complete and scheduled re�nement: �(P) = minfPoint-cost (P0) : P0 2 v[P]g:It is easy to see that �(P) = Point-cost (P) whenever P is itself a complete and scheduled plan, and that�(P;) = 0 for the null plan P; = h;; ;; ;i.Cost in contextHaving de�ned the cost of a plan in isolation, we now turn to our central task of de�ning the cost of a newoption P in the context of a background plan C. Our treatment of this concept is simple: we take the costof the new option in context to be its marginal cost|the cost of carrying out P along with C, less the costof carrying out C alone.De�nition 10 (Cost of a plan in a context; �(P=C)) Where the plans C and P are strongly compatible,the cost of P in the context C is �(P=C) = �(P [C)� �(C):It follows immediately from this de�nition that the cost of a plan in the null context is identical to its costin isolation: �(P=P;) = �(P). It is also worth noting that the cost of a plan in any context that alreadyincludes that plan as a component is zero: �(P=P [C) = 0.This de�nition can be illustrated with a case in which the cost of a new option is actually a�ected by thebackground context. Suppose the agent's background context is simply the plan to buy a shirt at the mall,represented by our earlier P1, and imagine that the agent is presented with the new option of going to themall for some swim goggles. More exactly, we can take the new option as the plan P3 = hS3;O3;L3i, whereS3 = fS7; S8; S9; S10g, O3 = ft7 < t9; t8 < t9; t9 < t10g, and L3 = fhS7; A; S9i; hS8; B; S9i; hS9; E; S10ig.Here, the steps S7 and S8 again represent actions of going to the mall and bringing one's wallet, stepssharing the respective types of S1 and S2 from the background plan P1; the step S9 represents the actionof purchasing the goggles; S10 is again a dummy step representing goal achievement; and the statement Erepresents the proposition that the agent has swim goggles. Let us suppose that these various steps carrythe following costs: each of S2, S3, S8, and S9 carries a cost of 1, since both carrying a wallet and making apurchase are easy to do; each of S1 and S7 carries a cost of 10, since any trip to the mall is abhorrent; andS4 and S10, as dummy steps, both carry a cost of 0.Given this information, it is clear that �(P1) = 12|the cost of the agent's background plan is 12.Presumably, then, the bene�t of this background plan must be at least 12|we must have �(P1) � 12|orthe agent would not have adopted it. Suppose, however, that �(P3) = 2. It is clear also that �(P3) = 12,so that, considered in isolation, the new option would not be worth pursuing. On the other hand, it iseasy to see that �(P3 [P1) = 13, since the least expensive execution of the joint plan, in which boththe steps S1 and S7 as well as the steps S2 and S8 are merged, carries a cost of 13. Therefore, we have

�(P3=P1) = �(P3 [P1)��(P1) = 1. Even though the new option would not be worth pursuing in isolation,it is worth pursuing in context, since its bene�t is greater than its cost in context.As this example shows, the cost of a plan in context may be less than its cost in isolation, but it is alsopossible for the cost is context to be greater. Our earlier taxi/van story already illustrates this possibility, butit is worth noting that it also arises even in the more restricted framework of complete, strongly compatibleplans. In this setting, a plan in context will have a higher cost than it has in isolation if the background plancontains steps that might be merged if it were performed in isolation, but the new option blocks that mergepossibility. For instance, suppose the agent already intends to purchase a shirt and some swim goggles atthe mall, and is now considering an option of seeing a movie. Suppose further that the movie begins soon,leaving time to make only one of the purchases, and that the mall stores are closed after the movie lets out.Then attending the movie, in this context, has an extra cost, since it means an additional trip to the mallto carry out the already intended plans. Just as in the taxi/van story, the present example illustrates a casein which a new option is more expensive in context than in isolation because its adoption would rule out themost e�cient executions of the background plan.Cost estimatesAlthough the notion of cost as the least expensive method of execution is de�ned for any consistent plan,we do not necessarily assume that the agent knows the true cost either of his background plan or of any newoptions under consideration. Instead, the agent may only estimate the cost of its plans.De�nition 11 (Cost estimate for a plan) Where P is a consistent plan, a cost estimate for P is aninterval of the form � = [��; �+], where �� and �+ are nonnegative real numbers such that �� � �(P) � �+.Cost estimates, so de�ned, accurately bound the actual cost of a plan, and are thus related to the intervalmeasures of plan cost used in the decision-theoretic plan generation literature [21, 7, 6].We now show that, under certain coherence conditions, a cost estimate for a plan in context can bederived from a cost estimate for the context together with a cost estimate for the plan and context combined.Assume that P and C are strongly compatible plans, and that �C = [��C ; �+C] and �P[C = [��P[C; �+P[C] arecost estimates for the plans C and P [C respectively. We know from the de�nition of a cost estimate that��C � �+C and ��P[C � �+P[C , but the de�nition tells us nothing about the relations among the intervals �Cand �P[C themselves. Nevertheless, it is reasonable to conclude that ��C � ��P[C , since the least expensiveexecution of the compound plan P [C cannot be less costly than the least expensive execution of C, oneof its components; and similarly, �+C � �+P[C . We characterize the pair of estimates �C and �P[C as jointlycoherent just in case these two conditions hold: ��C � ��P[C and �+C � �+P[C .As long as �C and �P[C are jointly coherent we can derive a cost estimate �P=C = [��P=C; �+P=C] for the planP in the context C in the following way. Given joint coherence, the end points of the intervals �C and �P[Ccan stand in only two possible ordering relations:(1) ��C � �+C � ��P[C � �+P[C ;(2) ��C � ��P[C � �+C � �+P[C :In either case, it is clear that �+P=C should be de�ned as �+P[C � ��C , the maximum possible distance betweenpoints in �P[C and �C . In case (1), we know that ��P=C should likewise de�ned as ��P[C � �+C , the minimumpossible distance. In case (2), it is reasonable to take ��P=C as 0, since we know, even when the low estimatefor executing P [C is less than the high estimate for executing C, that the true cost of executing P [C can

be no less than the true cost of executing C. Combining cases (1) and (2), we can therefore take ��P=C asmax[0; ��P[C � �+C], leading to the following general de�nition.De�nition 12 (Cost estimate for a plan in context) Where the plans P and C are strongly compat-ible, let �C = [��C ; �+C] and �P[C = [��P[C; �+P[C] be a pair of jointly coherent cost estimates for the plans Cand P [C. Then the cost estimate for the plan P in the context C is the interval �P=C = [��P=C; �+P=C], where��P=C = max[0; ��P[C � �+C] and �+P=C = �+P[C � ��C :It follows immediately from this de�nition that �(P=C), the true cost of P in the context C, lies within thederived interval �P=C; and it is also easy to see that the derived interval �P=C narrows monotonically as theintervals �C and �P[C are narrowed.The derived interval estimate of cost in context is useful because, in many cases, it allows an agentto accept or reject an option without calculating its true cost. Suppose, for example, that an agent withbackground plan C is considering the new option P with bene�t �(P); and imagine that the agent has assignedestimated costs �C and �P[C to the plans C and P [C, from which it derives the estimate �P=C = [��P=C; �+P=C]for the cost of P in the context C. Then if �(P) > �+P=C, the agent is justi�ed in adopting the new option,since the cost in context of the option is necessarily less than its bene�t; and likewise, the agent is justi�edin rejecting the option if �(P) < ��P=C, since its cost in context is necessarily greater than its bene�t. If��P=C � �(P) � �+P=C , there are two subcases to consider. First, if it happens that ��P=C = �+P=C, then, since weknow that �(P=C) lies within the interval �P=C, it follows that �(P) = �(P=C), and so the agent is justi�edeither in accepting or rejecting the option. If ��P=C < �+P=C , on the other hand, the agent's interval estimatesdo not provide enough information to determine whether the option should be adopted or rejected. In thislast case, and only this case, the agent is forced to re�ne his estimates further before making a rationaldecision, narrowing his cost estimates for C and P [C, and thereby also narrowing his derived estimate forP in the context of C.4 Reasoning proceduresWe now present some algorithms through which the process sketched in Section 3 of evaluating a new optionP against the background of a context C might actually be accomplished.As explained earlier, the �rst step of the process is determining whether P is, in fact, strongly compatiblewith the context C. This problem has been studied in [22], which develops a constraint satisfaction procedureto determine plan compatibility. This algorithm, Combine, takes as input two plans|which, in our case,would be P and C|identi�es all the threats between them, constructs a constraint satisfaction problem(CSP) representing the threat resolution alternatives, and then solves the CSP to �nd some set of resolutions.This set of resolutions is equivalent to the constraint set O00 in our De�nition 5 of strong compatibility, sothat a solution to the CSP guarantees strong compatibility between P and C. If the CSP has no solution,so that strong compatibility fails, the algorithm indicates this by returning a failure value, and, in thecurrent treatment, the new option is rejected. Again, this immediate rejection of incompatible options isan oversimpli�cation, but one that we adhere to in this paper. Note that the Combine algorithm was notdesigned for temporally grounded plans, but we are developing a generalization of it that can handle suchplans [17].Our focus in this paper is on the second step in the reasoning process, in which the agent computes thecost estimate for plan P in context C. Given an option P that is compatible with C, we might next appealto the Optimal Merge algorithm [22], which uses a dynamic programming approach to �nd an optimally

merged plan, that is, one with minimum cost. This cost is precisely �(P [C), which could then be combinedwith an exact value for �(C) to yield an exact value for �(P=C). The option P could then be accepted orrejected depending on the relation between �(P=C) and �(P).In general, however, it may not be necessary to compute the exact value of �(P=C); instead, as suggestedearlier, an agent may be able to accept or reject a new option only on the basis of an interval estimate of itscost in context. The remainder of this section develops an algorithm to implement this idea|evaluating anew option by estimating its cost in context, and then progressively re�ning the estimates where necessary.Such an approach may prove to be e�cient if, as we suspect, it can frequently terminate in realistic caseswithout the need to compute an exact cost in context. In addition, the algorithm presented here displaysanytime performance, producing cost estimates of monotonically increasing accuracy. Thus, if the agent\runs out of time" in evaluating an option, and is forced to a decision before shrinking the cost rangesu�ciently, the agent can at least make an informed decision; it can determine, for example, how much itstands to lose. Finally, by reasoning about incomplete plans and estimated costs, the algorithm matches ourintuitions about deliberation in dynamic environments.StepsetsGiven our current restriction to complete plans, the only factor in
uencing plan cost is step merging. Tosupport reasoning about possible step merges, we therefore introduce the notion of a stepset. A stepsetclusters steps in a plan that share the same type.De�nition 13 (Stepset of a plan) Where P = hS;O;Li is a consistent plan, a stepset for P is a partitionM = f[S1]; : : : ; [Sn]g of S subject to the restriction that Type(Si) = Type(Sj) for any steps Si and Sjbelonging to the same equivalence class [Sk].Because type-equivalence is a necessary but not su�cient condition for placing two steps in the same equiv-alence class, a given plan may have several di�erent stepsets. Consider a plan P with only two steps, bothof which are the same type. Plan P will have one stepset in which its two steps are clustered, and anotherin which they are not. Intuitively, the former corresponds to all schedules for P in which its two steps aremerged, while the latter corresponds to those in which they are not. In fact, the temporal constraints in Pmay prevent the merging of its two steps; that is, there may be no schedules for P that merge its steps. Inthat case, we will say that the stepset that places the two steps in same equivalence class is not feasible.Let us make these notions precise. We will say that a schedule for a plan P corresponds to a particularstepset for P whenever the step merges determined by the schedule agree with those of the stepset. LetP = hS;O;Li be a plan, and let M be a stepset for P and O be a schedule for P. Then O corresponds toM provided that for any steps Si and Sj in S, Si and Sj are in the same equivalence class in M if and onlyif O ` ti = tj.As already noted, not every stepset will have a schedule that corresponds to it. Let M = f[S1]; : : : ; [Sn]gbe a stepset for the plan P = hS;O;Li. Then we de�ne the stepset constraints associated with M|written,Const(M)|as that set containing ti = tj whenever [Si] = [Sj], and ti 6= tj whenever [Si] 6= [Sj]. The stepsetM is then de�ned as feasible just in case the plan hS;O [Const(M);Li is complete and schedulable.Stepsets represent only decisions about which steps in a plan are to be merged, neglecting any otherinformation about the order of steps or the exact times of their performance. On the other hand, stepsetsdo capture all the information that is necessary for computing plan cost: since cost depends only on stepmerging, all of the scheduled plans that correspond to a particular stepset will have the same cost. Given a

stepset M , we can therefore introduce a notion of stepset cost for M , written SSCost(M), as follows:SSCost(M) = X[Si]2M Cost(Si):The stepset cost for M represents the cost of any scheduled plan corresponding to M .The stepsets based on a plan P can be organized into a lattice, as follows. The top element of thelattice is the minimally merged stepset Minmerge(P), de�ned as the partition f[S1]; : : : ; [Sn]g in which eachequivalence class [Si] is identi�ed with the unit set fSig. The bottom element of the lattice is the maximallymerged stepset Maxmerge(P), de�ned as the partition f[S1]; : : : ; [Sn]g, in which each equivalence class [Si] isidenti�ed with the set fSj : Type(Sj) = Type(Si)g containing all steps sharing the type of Si. We can thende�ne one stepset as below another in the lattice if it results from increased merging. More exactly, whereM and M 0 are elements of the lattice, we de�ne M �M 0 just in case: for each [Si] in M 0 there is an [Sj] inM such that [Si] � [Sj]. We can then de�ne the down successors of a stepset M as those stepsets that arebelow M in the lattice and contain exactly one fewer member; and we can de�ne the up successors of M asthose stepsets that are above M in the lattice and contain exactly one more member. The down successorsofM are those stepsets that can be obtained fromM by merging two of its members, and the up successorsof M are those stepsets from which M can be obtained through the merge of two members.We can assume that these various stepset concepts are implemented as the following functions: SScost(M)calculates the stepset cost of a stepset M ;Minmerge(P) andMaxmerge(P) form the minimally and max-imally merged stepsets of the plan P; Down-Successors(M) and Up-Successors(M) return the downsuccessors and up successors of the stepset M in the relevant lattice; and Feasible(M;P) determineswhether M is a feasible stepset for plan P. All but the last of these functions are trivial. Feasibility requireschecking whether hS;O [Const(M);Li is complete and schedulable. We do this by casting the problem asa constraint satisfaction one, in which the constrained variables are the steps in S, and their domains aremoments of execution: that is, a solution to the CSP problem consists of an assignment of a time point toeach step. Two sets of constraints must be observed: the temporal constraints in O [Const(M), and thethreat-avoidance constraints that derive from L. Although in the worst case, solving a CSP is computation-ally intractable, there are a number of powerful techniques that are known to work very well in practice, andin fact, have recently been applied to large planning and scheduling problems [5, 11, 12, 4].The algorithmWe now present our algorithm, depicted in Figure 1, for evaluating an option P in the context C, underthe assumption that the two plans are strongly compatible. The algorithm works with two stepset lattices,based on the plans C and P [C. In a fashion somewhat reminiscent of the candidate-elimination algorithm[14], our algorithms maintains, for each lattice, an upper frontier containing the highest nodes in the latticenot yet known to be infeasible, and similarly a lower frontier. It then systematically attempts to establishthe feasibility or infeasibility of the nodes in the frontiers, re�ning the cost estimates for the plans C andP [C, and using them to update the derived cost estimate for P in the context C. After each re�nement,the derived estimate of cost in context is compared with the bene�t of P; if �(P) is outside the range of thecurrent estimate, the algorithm then terminates with a recommendation to either accept or reject P.In more detail, the algorithm begins by calling the procedure Initialize(P; C), which has the followinge�ects. Where Q ranges over the plans C and P [C, it assigns to the variables UpperQ and LowerQ setscontaining the minimally and maximally merged stepsets for Q. Next, the variables �+Q and ��Q, representingupper and lower cost estimate bounds for the plan Q, are assigned the stepset costs of these minimally and

procedure Evaluate-Option(P; C) return Accept or RejectInitialize(P; C)loopif Coherent(�+C ; ��C ; �+P[C; ��P[C) then��P=C max[0; ��P[C � �+C]�+P=C �+P[C � ��Cif v[P] > �+P=C thenreturn Acceptend ifif v[P] < ��P=C thenreturn Rejectend ifif ��P=C = �+P=C thenreturn Accept or Rejectend ifend ifCall either Refine(C) or Refine(P [C)end loopFigure 1: Evaluate-Option(P; C)maximally merged stepsets. Finally, the variables Actual+Q and Actual�Q are set to false: these are simply
ags indicating whether the upper and lower cost estimate bounds for the plan Q are based on stepsetsknown to be feasible.After initialization, the algorithm enters its main loop, �rst checking whether the current cost estimatesfor C and P [C are jointly coherent, that is, whether ��C � ��P[C and �+C � �+P[C. This is required becausesubsequent re�nement of the estimates �C and �P[C may lead to a temporary loss of joint coherence. Inthat case, the estimate �P=C cannot be updated until coherence has been restored by further re�ment steps.When �C and �P[C are jointly coherent, the algorithm applies De�nition 12 to update the estimate �P=C,and then carries out the reasoning procedure described at the end of Section 3: it compares the bene�tsof the new option with the current estimate of its cost in context, and accepts or rejects the new optionif the current estimate is narrow enough to allow it to do so. Otherwise, if the current estimate of cost incontext is not narrow enough to justify a decision|or if the current cost estimates for C and P [C are notjointly coherent|the algorithm tightens the cost estimates for C and P [C, by calling either Refine(C) orRefine(P [C), and then repeats the loop.We have left the decision about which estimate to re�ne (�C or �P[C) nondeterministic in the algorithm,thereby decoupling the control heuristics from the algorithm itself. A similar decoupling has proven to beuseful in the analysis of many AI algorithms. This tactic has two advantages. First, it simpli�es the basealgorithm; see [20] for an example of this applied to classical plan generation. Second, it allows for separate,focused investigation of heuristics for e�cient control, something we are now exploring in our ongoing work.Recent work in decision-theoretic plan generation [6] has analyzed the use of interval-based utility estimatesin �nding optimal plans, and there is potential for the transfer of this analysis to our framework. However,we defer consideration of this issue to subsequent work.The procedure Refine(Q)|where Q ranges over C and P [C|is itself straightforward, simply callingeither Refine-Down(Q) or Refine-Up(Q), again, nondeterministically choosing between them.

procedure Refine-Down(Q)if Actual�Q = F thenSelect a maximal cost element M from UpperQDelete M from UpperQAdd Down-Successors(M) to UpperQif Feasible(M;Q) thenActual+Q T�+Q SScost(M)elseif Actual+Q = F then�+Q ArgmaxU2UpperQSScost(U)end ifend ifend if Figure 2: Refine-Down(Q)The two re�nement procedures are similar, and we �rst describe Refine-Down(Q). Essentially, whatit does is select a node M from the upper frontier, and check its feasibility. The nodes are selected indecreasing order of cost. Thus, if M is found to be feasible, its cost is less than that of any previouslyexamined feasible node; hence the current upper bound on the cost estimate, �+Q, can be set to the costof M . What if M is found to be infeasible? Both C and P [C are consistent; the latter is a consequenceof the strong compatibility of P and C. Thus, regardless of whether Q is C or P [C, its stepset latticeis guaranteed to contain at least one feasible node. If a feasible node has not yet been found|that is, ifActual+Q = F|we know that some feasible element exists whose stepset cost is less than that of M , and so�+Q can be set to re
ect the highest stepset cost of the remaining elements. Again, this can only lower thevalue of �+Q. However, if a feasible point has already been found, we have no guarantee of �nding another,and so determining that M is infeasible does not lead to updating the value of �+Q.After examining M , the procedure removes it from the upper frontier, and replaces it with its down-successors, so that they can be considered in subsequent iterations.The procedure Refine-Up(Q), presented in Figure 3, is in some ways a dual to Refine-Down(Q): itre�nes the lower bound ��Q of the cost estimate for the plan Q, working from the lower frontier. It di�ers,however, in its behavior when a feasible node is found. The reason for this is that the �rst feasible nodefound represents �(Q), the true cost of Q: because the procedure selects nodes in increasing order of cost,the �rst feasible node it �nds necessarily corresponds to the least expensive schedule for Q, which is the truecost of Q. Therefore, immediately upon �nding a feasible node, Refine-Up(Q) sets the upper bound �+Q to��Q, narrowing the estimate to a point.One �nal comment about the algorithms concerns the initial lines of both Refine-Up(Q) and Refine-Down(Q), which require that Actual�Q = F . This is simply a bookkeeping condition: because Refine-Up(Q) sets both ��Q and �+Q to the exact cost of Q at the same time as it sets Actual�Q = T , this conditionblocks additional calls to either procedure from producing any further e�ect.

procedure Refine-Up(Q)if Actual�Q = F thenSelect a minimal cost element M from LowerQDelete M from LowerQAdd Up-Successors(M) to LowerQif Feasible(M;Q) thenActual�Q T��Q SScost(M)�+Q ��Qelse��Q ArgminU2LowerQSScost(U)end ifend if Figure 3: Refine-Up(Q)5 ConclusionIn this paper, we have developed the foundations of a theory of rational choice that takes seriously the viewthat agents make decisions in the context of their existing plans. A central goal of our work is to ensure thatthe theory we develop is computationally viable, and we have framed our approach in terms of models ofplanning developed in the AI literature. The overall picture we have is one in which an agent maintains a setof commitments, some of which, at any given time, will be only partially speci�ed. A new option for actionmust then be evaluated taking into account interactions between that option and the background context.Recognizing that agents have computational resource limits, we have developed an account that does notrequire the agent always to compute the exact cost of an option in context; instead, we have shown howestimates of option cost can support rational choice.Here we have only provided details for a very restricted case of the general problem, and it is clearthat the theory must be extended along a number of dimensions. Some such extensions are relativelystraightforward. For example, we have discussed only cost savings that result from merging of type-identicalsteps, but sometimes it is also possible to merge steps of di�erent types that both achieve the particularconditions required in the current context. Also, we have discussed only plans that involve a single, albeitpossibly merged, action at a time, but have not here considered plans with true concurrency: two or moresteps of di�erent types performed at the same moment.Other generalizations will require more signi�cant extensions to the theory as we have developed it inthe paper. Most notably, we have dealt here only with complete, primitive plans. Handling incomplete plansrequires extending the algorithms for cost computation, because the cost of an incomplete plan dependsnot just on possible ways of scheduling it, but also on possible ways of completing it. Similarly, handlinghierarchical plans requires reasoning about possible decompositions. In both cases, then, methods for plangeneration must be interwoven with the cost computation process.Finally, we have focused our attention in this paper on new options that are at least strongly compatiblewith the background context. Although this is a reasonable starting point, it is clearly important to generalizethe theory so it can handle other situations. We are currently examining weaker notions of compatibility, forinstance, situations in which the union of the new option and the background context results in threats thatcannot be resolved with just ordering and linking constraints, but instead require the introduction of new

plan steps. In this case, the computation of plan cost must take into account the cost of the threat-repairsteps. A further generalization, hinted at in Section 3, would cover situations of true incompatibility betweena background context and a new option.References[1] Fahiem Bacchus and Froduald Kabanza. Planning for temporally extended goals. In Proceedings of the13th National Conference on Arti�cial Intelligence, 1996.[2] Michael E. Bratman. Intention, Plans and Practical Reason. Harvard University Press, Cambridge,MA, 1987.[3] Michael E. Bratman, David J. Israel, and Martha E. Pollack. Plans and resource-bounded practicalreasoning. Computational Intelligence, 4:349{355, 1988.[4] Amedeo Cesta, Angelo Oddi, and Stephen F. Smith. Pro�le-based algorithms to solve multiple capac-itated metric scheduling problems. In Proceedings of the Fourth International Conference on Arti�cialIntelligence Planning Systems (AIPS-98), pages 214{223, 1998.[5] C. Cheng and S. F. Smith. Generating feasible schedules under complex metric constraints. In Proceed-ings of the 12th National Conference on Arti�cial Intelligence (AAAI-94), 1994.[6] Richard Goodwin and Reid Simmons. Search control of plan generation in decision-theoretic planners. InProceedings of the Fourth International Conference on Arti�cial Intelligence Planning Systems (AIPS-98), pages 94{101, 1998.[7] P. Haddawy, A. Doan, and R. Goodwin. E�cient decision-theoretic planning: techniques and empiricalanalysis. In Proceedings of the 11th Conference on Uncertainty in Arti�cial Intelligence, 1995.[8] Ronald A. Howard and James E. Matheson, editors. The Principles and Applications of DecisionAnalysis. Strategic Decision Group, Menlo Park, CA, 1984.[9] Daniel Kahneman and Amos Tversky. Prospect theory: an analysis of decision under risk. Econometrica,47:263{291, 1979.[10] Subbarao Kambhampati, Craig A. Knoblock, and Qiang Yang. Planning as re�nement search: A uni�edframework for evaluating design tradeo�s in partial-order planning. Arti�cial Intelligence, 76(1-2):167{238, 1995.[11] Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic, and stochasticsearch. In Proceedings of the Thirteenth National Conference on Arti�cial Intelligence (AAAI), Portland,OR, 1996.[12] Henry Kautz and Bart Selman. The role of domain-speci�c knowledge in the planning as satis�abilityframework. In Proceedings of the Fourth International Conference on Arti�cial Intelligence PlanningSystems (AIPS-98), pages 181{189, 1998.[13] David McAllester and David Rosenblitt. Systematic nonlinear planning. In Proceedings of the NinthNational Conference on Arti�cial Intelligence, pages 634{639, Anaheim, CA, 1991.[14] Tom M. Mitchell. Machine Learning. McGraw-Hill Co., Inc., New York, 1997.[15] J. Scott Penberthy and Daniel Weld. UCPOP: A sound, complete, partial order planner for ADL. InProceedings of the Third International Conference on Knowledge Representation and Reasoning, pages103{114, Cambridge, MA, 1992.[16] Martha E. Pollack. The uses of plans. Arti�cial Intelligence, 57:43{68, 1992.

[17] Martha E. Pollack, Ioannis Tsamardinos, Jun Hu, and John F. Horty. Merging temporally groundedplans. In preparation.[18] Arthur Prior. Past, Present and Future. Oxford University Press, New York, 1967.[19] Richmond Thomason. Indeterminist time and truth-value gaps. Theoria, 36:264{281, 1970.[20] Daniel S. Weld. An introduction to least commitment planning. AI Magazine, 15(4):27{61, 1994.[21] Mike Williamson and Steve Hanks. Optimal planning with a goal-directed utility model. In Proceedingsof the Second International Conference on Arti�cial Intelligence Planning Systems, pages 176{181, 1994.[22] Qiang Yang. Intelligent Planning: A Decomposition and Abstraction Based Approach. Springer, NewYork, 1997.

