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ABSTRACT
In a large distributed system it is often infeasible or even
impossible to perform diagnosis using a single model of the
whole system. Instead, several spatially distributed local
models of the system have to be used to detect possible
faults. Traditional diagnostic tools, however, are not suit-
able to deal with such a set of spatially distributed local
models.
A Multi-Agent System of diagnostic agents, where each

agent has a model1 of a subsystem, may be proposed as a
solution for establishing global diagnoses of large distributed
systems. Unfortunately, establishing a global minimal diag-
nosis is NP-Hard, even if every agent is able to determine
local minimal diagnoses in polynomial time. Moreover, com-
munication overhead in establishing a global diagnosis will
be high: unless P = NP a super-polynomial number of mes-
sages between the agents will be required for establishing a
global diagnosis.
In this paper we present a protocol that overcomes this

complexity issue by exchanging diagnostic precision for en-
ables agents to determine local minimal diagnoses that are
consistent with global diagnoses. Moreover, the protocol en-
sures that no agent acquires knowledge of global diagnoses.
The protocol does not guarantee that a combination of the
agents’ local minimal diagnoses is also a global minimal di-
agnosis. However, for every global minimal diagnosis, there
is a combination of local minimal diagnoses.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Algorithms, Theory, Verification

1Here, we focus on Model-Based Diagnosis.
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1. INTRODUCTION
A classical diagnostic tool can be viewed as a single di-

agnostic agent having a model of the whole system to be
diagnosed. There are, however, several reasons why in some
applications such a single agent approach may be inappro-
priate. First of all, if the system is a large physically dis-
tributed system, e.g. a modern telecommunication network,
there may be not enough time to compute a diagnosis cen-
trally and to communicate all observations. Secondly, if the
structure of the system is dynamic, e.g. AGV systems driv-
ing in a platoon, the system may change too fast to maintain
an accurate global model of the system over time. Finally,
sometimes a central model is simply undesirable. For exam-
ple, if the system is distributed over different legal entities
and one entity does not wish other entities to have a de-
tailed model of its part of the system. For such systems, a
distributed approach of multiple diagnostic agents can offer
a solution, as was shown in [12].
In such multi-agent based systems, the model (knowledge)

of the system can be distributed over the agents in two
principally different ways2 (cf. [5]): (i) spatially distributed :
knowledge of system behavior is distributed over the agents
according to the spatial distribution of the system’s compo-
nents, and (ii) semantically distributed : knowledge of sys-
tem behavior is distributed over the agents according to the
type of knowledge involved, e.g. a model of the electrical
and a model of the thermodynamical behavior of the sys-
tem. For both types of distributions it can be shown that
a multi-agent system is able to establish the same global
diagnoses as a single diagnostic agent having the combined
knowledge of all agents [12].
In this paper we will focus on a spatial distribution of

knowledge over the diagnostic agents. First, we review in
section 2 the well known definitions of Model Based Diag-
nosis [10, 7]. In section 3, we formalize multi-agent diagnosis
and present some formal results. We analyze the problems
involved in multi-agent diagnosis in section 4. Section 5 de-
scribes a protocol for establishing a diagnosis which is used
in the experiments reported on in section 6. Section 7 con-
cludes the paper.

Remark For simplicity, we do not consider time, though
the definition can be extended to dynamic systems. We

2Combinations are, of course, also possible.



also do not consider formulations based on Discrete Event
Systems [3, 9]. These formulations emphasize more the dy-
namical aspects of the systems on an abstract level, and
especially the occurrence of failure events. As far as failure
events can be related to fault modes, discrete event systems
can be viewed as a special case of our approach.

2. THE DIAGNOSTIC SETTING
A system to be diagnosed is a tuple S = (C,M, Id, Sd,Ctx,

Obs) where C is a set of components, M = {Mc | c ∈ C}
is a specification of possible fault modes per component, Id
is a set of (identifiers of) connection points between compo-
nents, Sd is the system description, Ctx is a specification
of input values of the system that are determined outside
the system by the environment and Obs is a set of observed
values of the system. A component in C has a normal mode
nor ∈ Mc, one general fault mode ab ∈ Mc, and possibly
several specific fault modes. We assume that all components
have inputs and outputs.3

The system description Sd = Str∪Beh consists of a struc-
tural description Str and a behavioral description Beh of
the components. The structural description Str consists of
instances of the form p = in(x, c) or p = out(x, c) where x
is an input or output identification of a component c and
p ∈ Id is a connection point identifier. A connection point
p ∈ Id is connected to at most one output of some compo-
nent; i.e. if p = out(x, c) and p = out(y, c′), then x = y and
c = c′. A connection point p has a value value(p) which is
determined by the output of a component or a system input.
The set Beh =

⋃
c∈C Behc specifies the behavior for each

component c ∈ C. The behavior description Behc of a com-
ponent describes the component’s behavior for each (fault)
mode in Mc, possibly with the exception of ab ∈ Mc. In
this specification, the predicate mode(c,m) is used to de-
note the mode m ∈ Mc of a component c. For each in-
stance mode(c,m), Behc specifies a behavioral description
of the form: mode(c,m)→ Φ where m ∈ Mc.

4 The expres-
sion Φ describes the component’s behaviour given its mode
m ∈ Mc.
The context Ctx describes the values of system inputs

Idin = {p ∈ Id | ∀x, c : (p = out(x, c)) �∈ Str} that are
determined by the environment, so Ctx consists of instances
of the form value(p) = v where v is the value of a connection
point p ∈ Idin.
Finally, the set of observations Obs describes the values

of those connection points that are observed (measured) by
the diagnostic agent. It therefore also consists of instances
of the form value(p) = v where v is a value of a connection
point p ∈ Id.
A candidate diagnosis is a set D of instances of the predi-

cate mode(c,m) such that for every component c ∈ C there
is exactly one mode in m ∈ Mc such that mode(c,m) ∈ D.
We define a diagnosis D as a candidate diagnosis meeting
some additional constraints. Combining the two well-known
types of diagnoses, consistency based [8, 10] and abductive
[1], we use the following, more general, definition (cf [2]):

3This assumption is not valid for every system. It is, how-
ever, possible to transform most systems to a system con-
sisting of components with only inputs and outputs (see for
instance [4]).
4Note that we may use a single description for a class of
components. Instances of this description must imply the
form of description give here.

Definition 1. Let S = (C,M, Id, Sd,Ctx,Obs) be the
system to be diagnosed and let |∼ to denote the possibly lim-
ited reasoning capabilities of a diagnostic system.5 More-
over, let Obscon, Obsabd ⊆ Obs be subsets of observations
and let D be a candidate diagnosis. Then D is a diagnosis
for S iff

1. D ∪ Sd ∪ Ctx |∼ ∧
ϕ∈Obsabd

ϕ,

2. D ∪ Sd ∪ Ctx ∪ Obscon �|∼⊥.

The number of diagnoses can be quite high, exponential
in the worst case. In case of consistency based diagnosis, we
can characterize the set of diagnoses using a small number
of minimal diagnoses: a diagnosis D is a minimal diagnosis
if for no other diagnosis D′,

{mode(c, nor) | mode(c, nor) ∈ D} ⊂
{mode(c, nor) | mode(c, nor) ∈ D′}.

3. MULTI AGENT DIAGNOSIS
The knowledge distribution over multiple agents defines a

division of a system into several subsystems. If knowledge is
spatially distributed, the set of components C is partitioned
over the agents. So, agent Ai has knowledge about a set Ci

of components and C =
⊎m

i=1 Ci where m is the number of
agents. This results in the following distribution of knowl-
edge: Behi = {ξ ∈ Beh | ξ = (mode(c,m) → Φ), c ∈ Ci},
Stri = {(p = in(x, c)) ∈ Str | c ∈ Ci} ∪ {(p = out(x, c)) ∈
Str | c ∈ Ci} and Obsi = {(value(p) = v) ∈ Obs | (p =
out(x, c)) ∈ Str, c ∈ Ci}. Note that we do not have to split
up the context Ctx.
By distributing knowledge, i.e. Behi and Stri over the

agents, we loose the knowledge about the connections be-
tween components managed by different agents. Therefore,
we provide each agent Ai with information about connection
points that connect to components managed by other agents
and we split the set connection points into relative inputs
Ini and outputs Outi of the agent’s subsystem. Here, Ini =
{p ∈ Id | {p = in(x, c), p = out(y, c′)} ⊆ Str, c ∈ Ci, c

′ �∈
Ci} and Outi = {p ∈ Id | {p = out(x, c), p = in(y, c′)} ⊆
Str, c ∈ Ci, c

′ �∈ Ci} . Hence, Si = (Ci,M, Id, Sdi, Ctx,Obsi,
Ini, Outi) is a subsystem to be diagnosed by the agent. A
candidate diagnosis of the subsystem Si is denoted by Di.

The diagnosis of one agent. Each agent Ai in the multi-
agent system has to diagnose the subsystem Si = (Ci,M, Id,
Sdi, Ctx,Obsi, Ini, Outi). This can be viewed a single agent
diagnosis if values of the inputs and outputs of the subsys-
tem are known. Let us use Vi to denote the set of value
assignments value(p) = v to the inputs, where p ∈ Ini. So,
Vi is the local context of the subsystem Si that is deter-
mined by the outputs of other subsystems. We therefore
extend Definition 1 to the diagnosis of subsystems.

Definition 2. Let Si = (Ci,M, Id, Sdi, Ctx,Obsi, Ini,
Outi) be a subsystem to be diagnosed, let Vi be a (partial) de-
scription of the values of the connection points Ini and let Di

be a candidate diagnosis for Si. Then Di is a diagnosis for
Si iff Di is a diagnosis for (Ci,M, Id, Sdi, Ctx ∪ Vi, Obsi).

5I.e {ϕ | Σ |∼ ϕ} ⊆ {ϕ | Σ |− ϕ}.



The diagnosis of multiple agents. Given multiple diag-
nostic agents, an important question is how the diagnoses
of the agents relate to the diagnoses of a single (omniscient)
agent that has complete knowledge of the system descrip-
tion and the observations. When addressing this question
we assume throughout the paper that there are no conflicts
between the knowledge of the different agents. That is, there
always exists a diagnosis D such that D ∪Sd∪Cxt∪Obs is
consistent.
The following propositions show how multi-agent diagno-

sis and single agent diagnosis (w.r.t. the same global system
S) are related.

Proposition 1. Let S1, ..., Sk be the subsystems making
up the system S. Moreover, let D be a single agent diagnosis
of S.
Then Vi = {(value(p) = v) | p ∈ Ini, D ∪ Sd ∪ Ctx |∼

(value(p) = v)} is the local context of Si that is determined
by the other subsystems Sj, and Di = {mode(c, s) | c ∈
Ci, mode(c, s) ∈ D} is a diagnosis of Si. [12]

Proposition 2. Let S1, ..., Sk be the subsystems that make
up the system S and let the local context Vi of Si describe the
values of connection points in Ini that must be determined
by the other subsystems Sj , and let Di be a diagnosis of Si

determined by agent Ai given Vi.
Then, D =

⋃k
i=1 Di is a single-agent diagnosis if

1. D is a candidate diagnosis,

2. Di ∪ Sdi ∪ Ctx ∪ Vi |∼ (value(p) = v), and

3. for every p ∈ Outi, p ∈ Inj and (value(p) = v) ∈ Vj.
[12]

Complexity. If knowledge is spatially distributed, each agent
manages a different part of the system. The behavior of a
subsystem managed by an agent depends on the behavior
of the other subsystems. This makes it difficult to predict
the behavior of the whole system, since the values of the
connection points in Outi depend on the local context Vi.
The values specified by Vi, however, are determined by other
subsystems Sj whose local context Vj may depend on the
values of the connection points in Outi. Because of these
circular dependencies, predicting the behavior of the system
is an NP-Hard problem: The Constraint Satisfaction Prob-
lem (CSP) can be easily reduced to this problem by using
Ini to represent a variable, (Sdi,Di, Ctx,Obsi) to represent
a constraint and Vi to represent a variable assignment from
the domain.

Theorem 1. Given a global candidate diagnosis D, pre-
dicting the values of all connection point is an NP-Hard
problem. [12]

To avoid solving such a hard problem for every candidate
diagnosis, consistency based diagnosis and consistency based
diagnosis with abductive explanation of normal observations
are preferred. These approaches do not apply to fault mod-
els. Nevertheless, we still have to solve one NP-hard problem
to predict the normal behavior of the system6.

6We might, however, avoid predicting the normal behavior
if, at some abstract level, we can assume default values for
the connection points. This also reduces the amount of in-
formation exchange

The determination of a minimal diagnosis is also an NP-
hard problem when knowledge is spatially distributed over
the agents. This complexity issue is a direct result of the
intrinsic complexity of Model-Based Diagnosis, as follows
from the outline of the proof of the following theorem.

Theorem 2. Determining a minimal diagnosis D is an
NP-hard problem, even if each agent is able to determine all
its local minimal diagnoses in polynomial time.

To prove the theorem, we reduce a classical single agent di-
agnostic problem to a multi-agent diagnostic problem. Given
a system S, partition the system into subsystems Si such
that every Si consists of exactly one component diagnosed
by agent Ai. Clearly, each agent Ai is able to determine all
its local minimal diagnoses in polynomial time. If, however,
the agents could determine, through collaboration, a global
minimal diagnosis in polynomial time, this would immedi-
ately imply the existence of a polynomial algorithm solving
the NP-hard single agent diagnostic problem.
Note that the above theorem does not hold if knowledge

is semantically distributed over the agents. In this case, the
agents are able to find a minimal diagnosis of the system in
polynomial time [12].
The complexity of multi-agent diagnosis does not tell us

what the communication overhead of the multi-agent sys-
tem will be. In fact, one agent could collect the information
of all the other agents, determine the diagnoses and dis-
tribute the results. This approach requires only polynomial
number of messages. However, if agents may only send mes-
sage in which they (1) claim that an input determined by
another subsystem is either correct or incorrect, (2) reject
such a claim, (3) accept a claim or (4) retract a claim, then
a super-polynomial number of messages is needed in order
to determine a minimal diagnosis.

Corollary 1. Suppose that agents are only allowed to
exchange messages in which they (1) claim that an input
determined by another subsystem is either correct or incor-
rect, (2) reject such a claim, (3) accept a claim or (4) retract
a claim.
Then, in order to determine a minimal diagnosis, agents

have to exchange a super-polynomial number of messages.

Note that no single agent is able to derive a global diagno-
sis of the system based on these messages. Therefore, agents
have to establish a minimal diagnosis in collaboration.
Now, suppose that a polynomial number of messages would

suffice for determining a minimal diagnosis. Then agents are
able to adapt their local diagnoses based on these messages
and can determine all local minimal diagnoses in polyno-
mial time with only a polynomial number of messages. But
then a minimal diagnosis of the system can be determined
in polynomial time, contradicting7 Theorem 2. Hence, a
super-polynomial number of messages is required.

4. ANALYSIS
After observing abnormal behavior of the system, the

agents must make a global diagnosis. In order to do so,
each agent must make a local diagnosis in which it also
takes into consideration the correctness of those inputs of
its subsystem that are determined by other agents. There-
fore, we must extend a candidate diagnosis Di of agent Ai

7under the assumption that P �= NP .
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Figure 1: Combining local diagnoses.

with correctness assumptions Cai about the systems inputs.
For every input p ∈ Ini, Cai contains either the proposition
correct(p) or ¬correct(p). The conditional context Cci will
be used to describe inputs of a subsystem Si, i.e. the local
context of the subsystem determined by other subsystems
conditional to these correctness assumptions, i.e.,

Cci = {correct(p)↔ (value(p) = v) | value(p) ∈ Vi}.
If in its local diagnosis (Di, Cai), agent Ai assumes that

one of its inputs is incorrect, the agent must communicate
this information to an other agent Aj determining the input.
Next, agent Aj may treat this information as an observation
of one of its outputs, and adapt its local diagnosis accord-
ingly.
There are three problems connected with this approach.

The first problem concerns the determination of a minimal
diagnosis. As we have seen in the previous section, if knowl-
edge is spatially distributed over the agents, determining a
minimal diagnosis is an NP-hard problem leading to a com-
binatorial explosion in the inter-agent communication.
The second problem concerns the occurrence of circular

dependencies. Suppose that agent Ai blames an observed
anomaly on one of its inputs determined by the output of
subsystem of agent Aj . Agent Aj in its turn may blame the
error in the output determining the input of Si on one of
its own inputs. If this input is determined by an output of
the subsystem of agent Ai, we may have a cycle of blames
that supports itself. Clearly, local diagnoses that constitutes
such cycles of blames do not represent a valid diagnosis of
the system.
The third problem concerns the combination of local diag-

noses. Suppose that we have four different subsystems each
managed by a different agent, as illustrated in figure 1. In
subsystem S4 an anomaly is observed. The agent managing
S4 establishes two diagnoses D1 and D2. In both diagnoses,
subsystems S2 and S3 are blamed for the observed anomaly.
Based on diagnosis D1 the agent of S2 derives the diagnosis
D3 and the agent of S3 the diagnosis D5. Similarly, based
on diagnosis D2 the diagnoses D4 and D6 are derived. If
in each of these diagnoses subsystem S1 is blamed for the
problem, then the agent managing S1 must make a diagnosis
either based on the diagnosis D3 and D5 or on the diagnosis
D4 and D6. It must therefore consider D3 and D5 as well as
D4 and D6 because they are based on D1 and D2, respec-
tively. Clearly, the agent may not derive a diagnosis based
on, for instance, D4 and D5.

5. THE PROTOCOL
We wish to design a protocol that will enable each agent

to determine all its local minimal diagnoses such that each
local minimal diagnosis is consistent with a global diagno-
sis of a single agent having the combined knowledge of all
agents. None of the local agents should, however, be able to
determine a global diagnosis and preferably not even be able
to determine the subsystem causing the observed anomalies.
Since diagnoses can be derived from conflict sets [10, 8,

7], and since conflict sets contain the dependencies needed
for handling the problem with loops described in the pre-
vious section, we propose a protocol based on determining
local conflict sets. A conflict set is a set of assumptions
that cannot be correct given the current observations of
the system. In the absence of fault models for the com-
ponents, such an assumption states that a component be-
haves normally. In that case, a conflict set is a subset Ξ of
{mode(c, nor) | c ∈ C} such that Ξ ∪ Sd ∪ Cxt ∪ Obs is in-
consistent. Every diagnosis can be derived from the conflict
sets by selecting an assumption of each conflict set and by
subsequently stating that this assumption is incorrect.
To determine the diagnoses, it suffices to consider minimal

conflict sets. The number of minimal conflict sets can, how-
ever, be exponential in |Ctx∪Obs|. To reduce this number,
we limit ourselves to minimal sets of correctness assump-
tions that are needed in order to causally predict the values
of observed connection points. We will call such sets de-
pendency sets. Such a dependency set that enables us to
causally predict the value of a connection point is called a
conflict set if the predicted value does not correspond with
the observed value.
Since each connection point has exactly one dependency

set8, the number of conflict sets will be equal to the number
of connection points that are observed to be incorrect. This
reduction of the number of conflict sets also reduces the diag-
nostic precision. That is, the number of diagnoses increases.
On the other hand, we can also reduce the number of di-
agnosis by using the dependencies set to apply abductive
explanation of normal observations [11]. That is, compo-
nents that belong to a dependency set of a connection point
that is observed to be correct, are assumed to function nor-
mally. This assumption is justified, if the probability that
one fault is compensated by another is sufficiently small. A
dependency set of a connection point that is observed to be
correct is called a confirmation set.
Since an agent only knows the components that belong to

the subsystem it manages, the correctness assumptions of a
dependency set determined by an agent may only concern
the local components and the inputs of the subsystem.

Definition 3. A dependency set of connection point p ∈
Id of a subsystem Si is defined as the smallest set Dep(p) ⊆
{mode(c, nor) | c ∈ C} ∪ {correct(p) | p ∈ Ini} such that
Dep(p)∪Sdi∪Cxt∪(Obsi\(value(p) = v)) |∼ (value(p) = v).

Here, |∼ is restricted in such a way that the output value of
a component can only be derived from the component’s input
values.

The agents have to determine the local parts of the global
conflict (and confirmation) sets using the local dependency

8provided that no component behaves like a switch [11]



sets. When an agent Ai observes the value of a connec-
tion point p ∈ Ci, the agent knows that the assumption
{mode(c, nor) | mode(c, nor) ∈ Dep(p)} in the local depen-
dency set Dep(p) belongs to the global conflict or confirma-
tion set depending on the observed value of p. Next, for each
input q of the subsystem such that correct(q) ∈ Dep(p),
agent Ai must inform agent Aj managing the subsystem
that determines the value of q about the status of the con-
nection point q. The status is correct if Dep(p) is part of a
global confirmation set and is possibly incorrect if Dep(p) is
part of a global conflict set.
The agent Aj that receives information about the status

of an output q of its subsystem knows that the assump-
tions {mode(c, nor) | mode(c, nor) ∈ Dep(q)} in the local
dependency set Dep(q) belong to a global conflict or confir-
mation set depending on the status information it receives.
Since it is possible that agent Aj receives status information
of several outputs q1, ..., qm of its subsystem based on one
and the same observed connection point p, the assumptions
{mode(c, nor) | mode(c, nor) ∈ Dep(qx)} in the local depen-
dency set Dep(qx) of all these outputs belong to the same
global conflict or confirmation set depending on the status
information. Hence, in order to enable agent Aj to combine
these sets of assumptions into a local part of a global conflict
or confirmation set, an agent must provide with the status
information of an input of its subsystem, an identification of
the observed connection point p on which the status informa-
tion is based. In order to guarantee anonymity, a randomly
generated number can be used for this purpose.
Another important issue is the handling of circular depen-

dencies between subsystems. Agents must detect such loops
of dependencies when determining the local parts of global
conflict and confirmation sets. An agent Aj may receive
status information about an output q of its subsystem that
depends on the status information of an input r, which agent
Aj has sent to the agent Ah managing the subsystem that
determines the value of r. Clearly, if correct(r) ∈ Dep(q),
agent Aj should not send again status information to agent
Ah about r in order to avoid an infinite loop.
The protocol presented in figure 2 enables the agents to

determine the local parts of the global conflict and confir-
mation sets. Using its local conflict and confirmation sets,
an agent can determine its local diagnoses. The agent may
choose any approach that enables it to derive the local di-
agnoses using the local conflict and confirmation sets.
The correctness of the protocol follows from the following

propositions.

Proposition 3. Consider all sets of assumptions in any
set Sk respectively Sb determined by an agents. The com-
bination of the sets having the same identification of an ob-
served connection point p results in the global conflict respec-
tively confirmation set of the connection point p. Moreover,
for each global conflict set and for each global confirmation
set such local sets in Sk respectively Sb exist.

Proposition 4. The number of massages that will ex-
changed in the worst case is bounded by |Id|2.
Assuming that every component has at least one output,

the protocol has a worst case time complexity of O(|Id|3).

Using the protocol presented in figure 2, each agent can
determine all local diagnoses using the local conflict and
confirmation set. Assuming that an anomaly caused by one

Protocol of agent Ai

for each connection point p that is observed or is in Outi do
determine the dependency set Dep(p);
rid(p) := randomly generated identification;

end;
Sb := ∅;
Sk := ∅;
for for each observed connection point p do

if value of p is correct then
Sb := Sb ∪ {(Dep(p), rid(p))}

else
Sk := Sk ∪ {(Dep(p), rid(p))};

for each (X, id) ∈ Sb do
for each correct(q) ∈ X do

send (q, ‘correct’, id) to agent Aj with q ∈ Outj ;
for each (X, id) ∈ Sk do

for each correct(q) ∈ X do
send (q, ‘possibly incorrect’, id) to

agent Aj with q ∈ Outj ;
repeat

for each (p, status, id) received from agent Aj do
if status = ‘possibly incorrect’ then

if (Y, id) ∈ Sk then
X := Dep(p) − Y ;
Sk := (Sk − {(Y, id)}) ∪ {(Dep(p) ∪ Y, id)};

else
X := Dep(p);
Sk := Sk ∪ {(Dep(p), id)};

end; [ if ]
for each correct(q) ∈ X do

send (q, ‘possibly incorrect’, id) to
agent Aj with q ∈ Outj ;

else if status = ‘correct’ then
if (Y, id) ∈ Sb then

X := Dep(p) − Y ;
Sb := (Sb − {(Y, id)}) ∪ {(Dep(p) ∪ Y, id)};

else
X := Dep(p);
Sb := Sb ∪ {(Dep(p), id)};

end; [ if ]
for each correct(q) ∈ X do

send (q, ‘correct’, id) to
agent Aj with q ∈ Outj ;

end; [ if ]
until no more changes;
return Sb and Sk;

end.

Figure 2: A protocol for multi-agent diagnosis

component cannot be compensated by an anomaly caused
another component, the agent may remove from each local
conflict set those components that occur in one of its lo-
cal confirmation sets. All minimal local diagnosis can then
be derived from the resulting conflict sets. The combina-
tion of the local minimal diagnoses of different agent forms
a global diagnosis of the whole system provided that not a
cycle of blames arises. E.g., agent A1 blames the cause of a
problem on the subsystem managed by agent A2 in a local
diagnosis, while agent A2 blames the cause of the problem
on the subsystem managed by agent A1 in its local diag-
nosis. Moreover, if no cycle of blames occurs in combining
the local diagnoses, the resulting global diagnosis need not
be a minimal global diagnosis of the system. However, the
opposite, as stated by the following theorem, does hold.

Theorem 3. For each global minimal diagnosis D based
on global conflict (and confirmation) sets, there are local
minimal diagnoses (Di, Cai) based on local conflict sets in
Sk (and confirmation sets in Sb) such that D =

⋃
i Di.



 
¬correct(q) ¬correct(r)correct(p) 

Figure 3: Focusing on likely broken components.

 
¬correct(p) ¬correct(q) ¬correct(r) 

Figure 4: Multiple focuses.

The above presented protocol enables agents to determine
local conflict and confirmation sets from which they can de-
rive their local diagnoses. In deriving the local diagnoses,
the agents should take into account that no component of
a local conflict set needs to be broken if the local conflict
set is the result of an observation in another subsystem. As
follows from Theorem 3, for every minimal global diagno-
sis there is a combination of minimal local diagnoses that
together forms the global diagnosis.
In the experiments reported on in the next section, we

used a focusing approach [11] instead of determining local
diagnoses. This approach determines the most likely broken
components in a global conflict set; the focus. One can prove
that the components of a focus are those components belong
to no confirmation set and occur in the highest number of
other conflict sets. The correctness of this focusing process
is based on the assumption that (1) the probability that a
component is broken is every small, and (2) the anomaly
caused by one broken component cannot be compensated
by the anomaly caused by another broken component. If
the second assumption does not hold, focuses must be de-
termined differently [11]. Figure 3 gives an illustration of
the focusing process. The figure show one confirmation set
and two conflict sets.
Note that because of the focuses, we loose again some

diagnostic precision. In figure 4, we have three conflict sets
resulting in three focuses which are represented by the two
dark gray triangles in the figure. If a component in the
left focus (the left dark gray triangle) is broken, one of the
components in the conflict set of r must also be broken.
In that case we should not prefer a component in the right
focus (the right dark gray triangle) to be broken over another
component in the conflict set of r. Similarly, if a component
in the right focus is broken, one of the components in the
conflict set of p must also be broken.
The main advantage of the focusing approach is that the

approach has a polynomial time complexity and that we
can determine additional measurements in order to reduce
the number of diagnoses without actually determining the
diagnoses. Moreover, diagnoses that were ignored by the fo-
cusing process will be considered after making the additional
measurements.
An agent cannot determine by itself whether the focus of a

local conflict set is a part of the focus of the corresponding
global conflict set. Therefore, the agent must inform the
other agents about the number of local conflict sets it has
used to determine a focus. An agent removes the focus of
a conflict set upon receiving information that another agent
has used more conflict sets to determine a focus of a conflict
set with the same identification.
In our implementation, agents informed each other about

the number of conflict sets used to determine a focus through
broadcasting these numbers together with identifications of
the observed connection points. Instead of broadcasting the
agents could also propagate this information. Then the
agents must make sure that no loops occur in the propa-
gation process.

6. EXPERIMENTS
The performance of the proposed protocol has been val-

idated though experiments. In the experiments, we have
measured the communication overhead of 1000 generated
systems consisting of 100 components distributed over 10
agents. The number of broken components varied from 1
to 10 and the number of observation points from 10 to 100
with step size 10. The broken components and the observa-
tion points were selected randomly. The step size of 10 was
chosen to guarantee that each agent has on average 1 to 10
observation points. For each combination of the number of
broken components and the number of observation points,
10 instance were generated.
In each experiment, a system was generated by randomly

distributing the components over a ‘physically’ area 1 by 1
unit and by uniformly distribution a group of agents over
the same area. Components were assigned to their most
nearby agent thereby forming the subsystems managed by
the agents. Each component in the generated system had
two inputs and one output. Each of the two inputs of a
component c was connected to an output. The output was
selected by choosing a value δ and by using it as an approx-
imation of the length of the connection between the input
and the output. That is, we search for a component d having
a distance to c closest to the value δ.
We assumed a very simple behavior for the components.

A broken component gives a wrong output value. Moreover,
if one of the inputs of a component has a wrong value, then
the output of the component will also have a wrong value.
We also assume that the agents predict the behavior of the
system starting from the observed values of the connection
points. So, if a connection point is observed to have a wrong
value, then the inputs values of the components that are de-
termined by this connection point, are assumed to be correct
because a new prediction is made. It is necessary to predict
the behaviors of components using the observation in or-
der to handle circular dependencies between components. If
the behavior of the system is not predicted using the ob-
servation made, the agents can observe the outputs of every
component in a cycle without being able to determine which
components in the cycle are broken.
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Figure 5: The communication overhead.

As a consequence of the way the system is generated, the
system will contain many circular dependencies. These cir-
cular dependencies make the diagnostic process harder. Es-
pecially circular dependencies involving multiple agents re-
sult in a large communication overhead.
For each of the 1000 generated systems, the number of

messages that were exchanged between the agents by the
protocol were measured. This also includes the number of
messages needed to determine the focuses, as described at
the end of the previous section. Figure 5 presents the re-
sults if δ, the length of a connection between an input and
an output, is randomly chosen from the interval [0, 1]. Other
ways of choosing a value δ, in which we preferred local con-
nection or limited the length of a connection, resulted in a
lower communication overhead. The reduction in the com-
munication overhead was no more than a factor 2, while the
shape of the graph representing the number of messages,
was similar to the graph of figure 5 for all the different ways
of choosing δ.
The results of experiments show that the communication

overhead is rather high. This is a consequence of the way
a system has been generated which leads to a large num-
ber of circular dependencies in the system. These circular
dependencies make the diagnostic process harder, especially
circular dependencies involving multiple agents. Since real-
istic systems will probably contain less circular dependencies
as the systems generated in the experiments, we expect that
the communication overhead of these systems will be much
lower.

7. CONCLUSION
Multi-agent diagnosis of spatially distributed subsystems

is an NP-hard problem. This does not only imply a high
time complexity, but also a high communication overhead.
Especially the latter makes it infeasible to establish a diag-
nosis in a distributed way.
In this paper we presented a protocol that overcomes the

complexity by exchanging diagnostic precision for a low com-
munication overhead. The protocol lets agents free in choos-
ing which algorithm to use for local diagnosis provided that

the algorithm can derive a diagnosis using conflict sets.
The behavior of the algorithm has been verified by exper-

iments. In the experiments, the agent apply a diagnostic
approach that is based on focusing on likely broken com-
ponents. This approach requires some additional informa-
tion to be exchanged between the agents. The number of
messages that agents exchange in running the protocol is
rather high. This high number of messages is caused by the
high number of circular dependencies between subsystems
managed by different agents. We expect that for practical
problems the number of circular dependencies will be much
lower, thereby reducing the number of messages that the
agents have to exchange.
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