
Distributed Multi-Agent Diagnosis and Recovery
from Sensor Failures

Matthew T. Long and Robin R. Murphy
Department of Computer Science and Engineering

University of South Florida
Tampa, Florida 33620

Email: {mtlong,murphy}@csee.usf.edu

Lynne E. Parker
Department of Computer Science

University of Tennessee
Knoxville, Tennessee 37996–3450

Email: parker@cs.utk.edu

Abstract— This paper presents work extending previous
research in sensor fault tolerance, classification, and re-
covery from a single robot to a heterogeneous team of
distributed robots. This approach allows teams of robots
to share knowledge about the working environment, sensor
and task state, to diagnose failures and also communicate
to redistribute tasks in the event that a robot becomes
inoperable. Our work presents several novel extensions to
prior art: distributed fault handling and task management
in a dynamic, distributed Java framework. This research
was implemented and demonstrated on robots in a lab
environment performing a simplified search operation.

I. I NTRODUCTION

Autonomous mobile robots require robust sensing to
enable useful control of planned actions. Failures in
sensing can lead the robot towards incorrect actions or
dangerous situations [1]. Unfortunately, these failures are
extremely common and can stem from a number of
sources: malfunctions, miscalibration, or errant planning.
Unexpected changes in the vicinity of the robot can also
have deleterious effects on the usability of the agent
– changing lighting conditions can wreak havoc with
the best vision algorithms and can even cause sensor
“hallucinations” leading to unforeseen actions.

These types of sensing degradation can be extremely
difficult, if not impossible, to model and classify; a robot
may not necessarily be able to uncover the true cause of
a failure, or sometimes even determine that a failure is
taking place. Physical sensor failures (e.g., loss of power)
can often be detected at the hardware level given a well-
designed sensor package. With an environmental change,
however, it can be difficult to differentiate between a
sensing failure due to the environmental condition (e.g.,
lights turned off) or some other cause, such as occlusion of
the sensed object. Unfortunately, each cause has a separate
method to continue the task – in the first, the robot may
wish to disregard the useless sensor data or switch to a
different sensor, while in the second case, the agent may
need to recover through the use of a new search behavior
or additional reasoning about the world state. Correctly
determining the proper recovery may require collaboration

by other sensors, whether the sensors reside on the same
agent, as demonstrated in [2] or on a peer, as demonstrated
in this paper.

This paper is not concerned with error detection, save in
the most general sense. It is assumed that failures will be
detected properly and the appropriate exceptions raised.
Instead, this paper is concerned with single- and multiple-
agent sensor recovery from a detected fault.

In this paper, sensor failure handling is both a local
and a distributed effort. A distributed environment enables
access to more sensors and more information about the
world, so a distributed environment can potentially allow
a more accurate and reliable error classification. This
system allows an agent to query a remote peer for sensor
information and request that a peer execute a test or set of
tests on sensors. The results of these tests are correlated
with the results of local tests to enhance confidence
about the state of local sensors. For example, it is very
difficult for a robot with a single camera to correctly
diagnose many failures – a physically damaged camera
often responds identically to a camera that is in a darkened
room. Correlating data and test results from a peer in
the area can help distinguish between the two cases. A
single robot should suffer gradual degradation in the face
of sensing failures, and extensions into a distributed arena
should not make the situation worse – the system should
be tolerant of partial failure, latency and other distributed
issues.

For most domains, the completion of a task is more
important than the state of one individual robot. Rather
than continue blindly on a task and jeopardize the overall
mission, a failing robot may attempt to communicate
its state to a peer and relinquish the task to a more
suitable peer. Taking advantage of the dynamic nature
of the environment, a robot can even call upon another
robot that has no knowledge of how to perform that task,
either by potentially using the remote robot’s sensors and
effectors directly – a robot ”teleoperating” a peer – or by
transmitting the knowledge of how to complete the task
and allowing the peer to act autonomously.



II. RELATED WORK

While related issues such as fault detection and diagno-
sis have been discussed in other works, the issue of how
to handle sensing failures is largely uninvestigated, and
work on distributed sensing recovery, in the sense denoted
in this paper, is even more scarce.

Much of the work on error detection, classification and
diagnosis, such as Soika [3] or Reed [4] is applicable to
this domain, but does not address the issue of recovery.
Tools such as analytical redundancy [5], [6] do not di-
rectly apply to this work, as these works assume that the
sensing capabilities of a robot system can be completely
modeled. In a distributed, dynamic and partially unknown
environment, this is unlikely to be the case. However,
work not reported in this paper is looking at incorporating
analytical approaches for situations where models are
known or valid with SFX-EH. The literature on distributed
fault recovery for autonomous robotics is virtually non-
existent. However, systems such as Jini [7] and Lim’s
[8] distributed service concept for information dissemi-
nation provides a framework for distributed services and
a foundation for this work. Both provide for distributed
lookup of services and dynamic mobile code. Stroupe,
Martin and Balch [9] fuse sensor data shared between
multiple robots using Gaussian distributions. Hoover and
Olsen [10] have implemented a sensor network consisting
of a static camera sensor network and a mobile robot for
robot navigation. This concept could be extended to use
multiple autonomous robots in place of static cameras.

This work is based off of earlier work on Murphy’s
SFX-EH architecture [11], particularly Murphy and Her-
shberger [2]. This article builds off of prior work and
proposes distributed extensions. The error classification
scheme now uses remote, distributed sensor data to verify
local hypotheses about the world. This generates more
information for validating hypotheses and the distributed
environment allows higher-level error handling, including
task transfer between agents.

Prior work has been done with SFX-EH [2], attempting
to enhance real-time characteristics by pre-computing a
shortest-time decision tree. This decision tree took timing
information for tests and recovery methods along with a
knowledge-engineer-supplied hypothesis library to find the
quickest path to recovery.

However, this approach suffered from several flaws.
These hypothesis libraries do not easily extend to a multi-
agent environment, because of its inherently dynamic
nature – there is no guarantee that there will be a peer
available, much less the timing or latency of remote
tests. The decision tree was generated at system start
to avoid run-time delays, but was difficult to change
dynamically. Additionally, the programmer was required
to design and maintain the hypothesis library, which turned
out to be non-intuitive and time-consuming. The new

implementation does not follow this approach, but instead
dynamically determines the proper ordering of tests at run-
time, based on timing information of each test and inter-
test dependencies.

III. A PPROACH

This section discusses the approach taken in this paper
to distributed sensor fault recovery. First, however, a
general understanding of sensing failures and recovery is
required as related to a single-agent system.

A. Recovery Strategies

The system handles errors in the following manner:
reconfiguration of the perceptual schema, recalibration of
the sensor, or other corrective actions.

Reconfigurationis perhaps the simplest recovery strat-
egy, and is typically the first corrective action that the error
classifier will take. After determining that the sensor has
failed, the classifier will reactivate the failed perceptual
schema, causing it to search for a new sensor logically
equivalent to the failed sensor.

Recalibration is often performed as a background re-
covery task, since many times the recalibration of a
sensor is a complex task. However, recalibration of sensors
offers the possibility of more intelligent behavior. If a
sensor is in a low-light situation, it may be possible
to reconfigure the camera to automatically apply various
image enhancements or filters to restore usability without
the perceptual schemas being required to each manually
apply image filters – it will all be done “under the hood”
at the sensor level.

Othercorrective actionscan be taken as well to try to
return sensors to active service. For example, if a sensor
group is disabled by placing opaque cloth over a set of
sensors the affected sensors might all report a low light
situation. Correlating the low light over all the sensors
might suggest a corrective action such as shaking the robot
or backing up to possibly dislodge the offending item.
Note that the error classifier would have no concept of
“cloth” or “being covered” at this stage, but would simply
know that a group of sensors were not working correctly.

However care must be taken that the error handler does
not interfere with the overall usability of the robot. If the
error handler were to suddenly reverse the robot without
knowledge of the overall state of the world, such as an
obstacle to the rear, it might put the robot into a worse
situation or risk damaging other sensors. In this case,
the error classifier needs to notify the task planner or
mission controller that the actionshould be taken, but
other concerns might override this suggestion or delay it
until a later, more convenient time.

Using this model also suggests an area for multi-agent
collaboration. A peer might be able to take corrective
action that the failed robot might not. In the above



example, a peer might be able to remove an item obscuring
a sensor or even turn on attached lights to add additional
luminance to an area and enable a failed camera.

B. Distributed sensing issues

Extending the above failure handling concepts into a
multi-agent realm adds several issues for consideration:
logical sensors across multiple robots, distributed sensor
correlation, and recovery.

Distributed sensing is challenging since the system is
dynamic by design. The number of sensors available to
an agent during the error handling is not fixed in any
way. Since mobile robots are mobile and not fixed in one
location, they can move into and out of communication
range of other robots. This is especially important in
many domains, such as search and rescue, where the
environment seriously limits wireless communication. As
robots enter a reasonable proximity and communication is
established, each becomes aware of the capabilities of the
others, and all can take advantage of cooperatively sharing
sensors, data and other knowledge.

With the introduction of additional robotic agents, it is
possible to stretch the concept of logical sensors across
multiple agents. A color camera on a remote peer may
be considered equivalent to a local color camera, with
different execution characteristics and attributes, such as
location and refresh time. However, logical remote sensors
introduce a host of issues, such as partial failure and
latency. While these issues have not yet been addressed
in general, the current implementation can utilize remote
sensors to validate hypotheses generated during the error
processing.

Fortunately, a distributed environment enables access
to more sensors and more information about the world,
so a distributed environment allows a more accurate and
reliable error classification. This system allows an agent
to query a remote peer for sensor information and request
that a peer execute a test or set of tests on sensors. The
results of these tests can be correlated with the results of
local tests to enhance confidence about the state of local
sensors. For example, it is very difficult for a robot with
a single camera to correctly diagnose many failures – a
physically damaged camera often responds identically to
a camera that is in a darkened room. Correlating data and
test results from a peer in the area can help distinguish
between the two cases.

IV. I MPLEMENTATION

The implementation consists of a number of com-
ponents, both traditional single-agent and new multi-
agent. Important components are the Sensor Fusion Ef-
fects (SFX) core architecture, multi-agent extensions to
the architecture, error handler and classifier, and remote
communication subsystems. Additional discussion is given

regarding the implementation language and other support-
ing techologies.

The local error handler and SFX architecture have been
implemented in previous work, however the extensions
that allow remote communication and remote error han-
dling and classification are novel. The SFX architecture
was chosen as a base for this work since many of the
concepts of single-agent error recovery had been imple-
mented previously in prior work [2]. This work adds
extensions to handle multi-agent testing, communication
and collaboration. One key feature of SFX that is heavily
utilized in the fault-recovery process is the use oflogical
sensors. Behaviors in SFX consist of two parts: a percep-
tual schema to generate a percept and a motor schema
to act on the percept. Any sensor and algorithm that is
able to generate the same percept for a behavior is said to
be a logical sensor. These logical sensors exist on a per-
perceptual-schema basis and all the logical sensors used
by a perceptual schema generate the same percept. Each
may have other intangibles, such as execution speed or
latency that can influence the desirability of that logical
sensor for the behavior. The importance of this will be
seen shortly.

Another module of note in the SFX architecture is
the Sensing Manager. This manager is responsible for
resolving conflicts related to sensors, such as prioritizing
and allocating sensors among all schemas that need the
sensor. The error classifier and error handling module is
part of the Sensing Manager, since it is responsible for
testing and reallocating failed sensors.

A. Classification

Error classification in SFX-EH uses a variant of the
“Generate, Test and Debug” (GTD) algorithm [2], [12].
This is best shown by example, and is discussed in detail
in Sections V-C and V-D.

B. Error Handler

A new Java based framework was implemented, uti-
lizing the Jini and RMI technologies to handle remote
method calls and services. Additionally, work on previous
error handlers [2] was extended to take advantage of
remote sensors and data.

Fig. 1 shows an updated overview of the architecture,
as it relates to distributed error handling, with changes
to the base SFX-EH denoted by the shaded areas. The
additions for this project are the use of remote test data,
and possibly even remote sensors in a behavior, although
this last is still future work.

C. EHKS

The primary data structure used by the error handler
is the Exception Handling Knowledge Structure. As a
fault is detected, a run-time exception is generated and an



Sensor
data

(may be
remote)

Perceptual Process

Sensing Manager Error
Classifier

Error
Recovery

Data
Collection

Data
Processing

Data
Collection

Data
Processing

Data
Fusion

Cause

Percept

Sensing Failure: EHKS

Active
sensing
routines

Fail up to 
mission, task

or human 
planner

Alternate
sensor

Remote
test data

Fig. 1. The SFX architecture, with distributed error handling

EHKS is generated. This EHKS is filled with information
from the appropriate portions of the SFX framework,
which is later used for classification. The nature of the
error determines the SFX modules that are relevant and
the information that is stored at any given time. For
example, if a hardware fault is detected at a low level,
a minimal amount of information is required for the
classifier to diagnose and recover from the problem: the
faulty sensor and the containing perceptual schemas and
behavior. However, if the error occurs during sensor fusion
of data from multiple sensors, it may not be immediately
clear with which sensor the problem lies. In this case,
more information must be generated and stored for use
by the classifier, and the work of the classifier is more
difficult.

The EHKS deserves some comment. The EHKS con-
tains fields for thefailure step, which denotes what the
robot was doing when the error occurred. Errors are
commonly detected during the data acquisition step, the
data processing step, or during sensor fusion. Theerror is
a description of what went wrong, and serves as a hint
to the classifier. The error might show that there was
low confidence in the sensor data, or that there was a
conflict between multiple sensors. The remainder of the
EHKS is filled with the following:bodies of evidencethat
show the state of relevant sensors when the error occurred,
environmental preconditionsthat might effect the sensors,
and a list offramesthat give the classifier access to the
state of the sensors, perceptual schemas and behaviors that
might affect classification.

D. Local and Distributed Execution of the Error Handler

Fig. 2 shows the flow of an error through the system.
The Sensing Manager initially passes the EHKS to the
Error Classifier for processing. The Error Classifier begins
the GTD process, creating a set of hypotheses that are
individually tested to validate or deny the hypothesis.

Perceptual
Schema

Explore
Thread

handleError()
activate()
(new sensor) run()

Task
Manager

Error
Classifier

Sensing
Manager

requestTest()
result

requestTest()
result

update()
update()

Jini/RMI

Fig. 2. Remote test states

The local error classification attempts to short-circuit
most of the testing, performing the most basic hardware
tests and trying to limit the number of more expensive
environmental tests run. This can be done if there is a
sufficiently diverse sensor payload – the classifier assumes
failure initially, and logically equivalent sensors that use
a different sensing modality will be selected first. This
initial testing determines a quick-and-dirty recovery that
will allow the robot to continue its task. An exploration
thread is also spawned for more in-depth testing of the
hypotheses.

Once the local testing is complete, the sensing manager
and perceptual schemas are updated to use the new sensor,
and the failed sensors are disabled. The exploration thread
then, as system resources allow, will continue testing of
the failed sensors. This thread also examines the remote
services offered by peers, and queries those offered ser-
vices to correlate remote data with local test results.

If the exploration thread classifies the error more ac-
curately than the initial best-guess, then it may be ad-
vantageous to update the sensing manager and perceptual
schemas with a different sensor. The initial guess may
have altered the a schema to use a sonar over a possibly-
failed camera, but later testing may reveal that the camera
is working correctly and may provide better results than
the sonar.

E. Java / JINI Implementation

The Java programming language is well suited to the
dynamic and distributed nature of the task. Jini, a Java
technology for service discovery and registration, was
used for broadcasting the services, such as sensors and
behaviors, offered by an agent, and RMI, Java’s Remote
Method Invocation, was used as the underlying technology
for remote method calls and mobile objects and code. Java
also has a rich set of libraries that simplify the task of
system development.

Fortunately Java and many of its core packages were
created to simplify development. For example, Jini and
RMI (Remote Method Invocation) are intended to allow an
agent to export local services and activate services offered



by remote agents. With Jini, complex distributed actions
can be developed relatively simply.

Jini works by instantiating a number of lookup services
on a network. As each agent activates, it looks for a lookup
service and notifies each that it has a number of services
that are available for use by a peer. As the network grows,
agents become aware of services offered by others within
the network (thefederationin Jini-speak). The registration
process is dynamic, and agents that are interested in
certain services can be notified that new services have
been instantiated or old services are no longer available.

From the SFX standpoint, many of the core SFX mod-
ules can be exported in this fashion and made available to
others. Sensors, tests and behaviors are among the most
obvious services that can be easily used by a remote
client, and this implementation does indeed use these three
services.

V. DEMONSTRATIONS

The following sections present two demonstrations of
the goals of this paper. The first demonstrates theexecution
of the error classification and recovery unit on a single
system, and the second shows that aphysically distributed
peer can aid in error diagnosis and error recovery. These
demonstrations provide existence proofs that multi-agent
diagnosis and recovery is possible in this context.

A. Test Hardware

The demonstrations use two robots from Oak Ridge
National Labs:Augustusand Theodosius. Both robots
are RWI ATRV-Mini robot bases and have a color cam-
era mounted on a pan-tilt unit as a primary sensor, as
well as the standard complement of core sensors: sonar,
power, compass and encoders for position. Unfortunately,
there were no robots with physically redundant sensors
available. To simulate and test this important capability
of the error handler, each camera and sonar sensor was
instantiated twice internally – this essentially creates two
distinct virtual sensors on the same hardware. This is valid
simulation since the internal errors generated are the same,
whether generated by an actual or a simulated hardware
failure. The benefit of this is that an operator can disable a
virtual sensor through the operator console, and the error
handler will be able to recover to the other virtual sensor.

B. Test Domain

The scenario for this demonstration is a team of robots
searching a room for a target orange-colored cone. The
team consists of two robots, Augustus and Theodosius.
The test domain for the demonstration is a search mission.

Both robots have the same complement of basic be-
haviors: find-object, track-object, move-to-object, and
avoid-obstacles. However, the behaviors are activated dif-
ferently on each agent, depending on the overall mission
state.

Arena boundary
Obstacle

Target

Typical
Augustus

start

Typical
Theodosius

start

Fig. 3. A sketch of the arena used for the demonstration

The robots were set up in the Center for Engineering
Science and Advanced Research (CESAR) robotics lab
at the Oak Ridge National Labs. They were placed in
an arena approximately 40’ by 25’, with opaque blocks
placed within. The robots were placed roughly 25’ from
the target cone, and due to the initial placement, could
sometimes see the cone at start and sometimes needed to
search prior to visual acquisition. Fig. 3 shows the typical
layout of the test arena. For brevity, Augustus typically
started seeing the cone, while Theodosius could not.

The cone is detected through a color segmentation
of appropriate values in HSI color-space. The resulting
segmented image is passed through a basic connected-
components algorithm to find the boundaries of the cone
and provides a directional percept to the navigational
schemas. The sonar are also utilized to find obstacles and
other hazards. Currently there is no high-level mapping
behavior, and the robots are purely reactive. Behavior
activation is controlled by the TaskManager portion of the
SFX framework and is based on the world state.

C. Single Agent Diagnosis and Recovery

The purpose of this demonstration is to show the exe-
cution of the error classifier in the single-agent case. The
demonstration uses a single robot, Augustus, exploring
the arena for the target. The active behavior during the
demonstration was the track-object behavior, but could
have been any other behavior.

In this demonstration, the operator introduces a hard-
ware failure in a color camera. Since the camera hardware
is too expensive to actually damage, this fault is introduced
remotely, and a hardware fault is simulated in the driver
software.

Diagnosis and recovery proceeds as follows:

a) The fault is detected in the low-level camera
driver software.



2 = track-cone
1 = find-cone

Frame 0 = 
color-camera

FailureStep =
DATA_ACQUISITION

Error =
MISSING_EVIDENCE

1 = haze-ok

Precondition 0 =
light-ok

Sensor 0
Data

color-
camera

data
Sensor 1

Data

find-
cone
data

2 = track-cone
1 = find-cone

Frame 0 = 
color-camera

FailureStep =
DATA_PROCESSING

Error =
BELOW_MIN_CERTAINTY

1 = haze-ok

Precondition 0 =
light-ok

Sensor 0
Data

color-
camera

data

a) b)

Fig. 4. EHKS generated by sensor failure for a) singe-agent and b)
multi-agent recoveries

b) Initially, a stub EHKS is generated and a Java
exception is thrown. As the exception is passed
up the call stack, each execution frame adds
information to the EHKS. The complete EHKS
is shown in Fig. 4a.

c) When the exception reaches the topmost execu-
tion frame, the SensingManager’s error handler
is invoked with the EHKS, and diagnosis and
recovery can begin.

d) The generate-test-debug stage begins error clas-
sification and handling. The classifier imme-
diately determines that the fault is hardware-
related, and short-circuits the bulk of the testing.
The classifier first executes quick hardware tests
on the faulty camera and its equivalent sensors.

e) The classifier then activates the backup camera.
With a valid backup available and active, the
behavior reactivates and the mission continues.

f) A testing thread is instantiated since the pos-
sibility exists that further information can be
extracted from the failed sensor. The execution
of this thread does not occur in the primary
classification and recovery step.

g) The test cycle ends with diagnosis and recovery
complete.

In this demonstration there is no distributed component
to the diagnosis, since there is only one active agent. This
demonstration is intended to show the correct execution

Fig. 5. Placing a box on the cameras triggers an environmental failure

of the error handler in the most simple case; further
demonstrations evaluate the distributed component.

The recovery consists of reactivating the track-cone
behavior with the find-cone perceptual schema using the
alternate, good camera. Note that this equivalent camera
has not been fully tested – only basic hardware tests are
run. The camera is assumed to work, however it may
generate a later fault if there is an environmental condition
that prevents correct functioning.

Further testing is performed by the testing thread, which
can be scheduled to execute as system resources permit.
If the failed sensor ever recovers, it will be returned to
service.

D. Multi-Agent Diagnosis and Recovery

The second demonstration shows the cooperative, dis-
tributed capabilities of the error classification scheme.
This demonstration uses multi-agent sensor testing and
communication to share sensor state and manage tasks
on physically distributed agents. This demonstration uses
both Augustus and Theodosius, with Augustus assuming
the role of primary search robot and Theodosius held in
reserve.

The sensor failures are generated through a physical
environmental failure on all visual sensors situated on the
primary search robot. This is accomplished by placing an
opaque box over the camera, which completely blocks
visual perception, shown in Fig. 5. Diagnosis and recovery
for this error is more complicated than previously encoun-
tered errors.

The error is processed as follows:

a) As before, a recognized error triggers the gen-
eration of a full EHKS. There are significant
differences, however. The box over the cameras
does not trigger an immediate error, but rather
lowers the light level sufficiently and causes
the active perceptual schema to fail to detect



needed visual cues. Once the perceptual schema
is unable to generate a percept, the schema enters
an error state that begins the error process.

b) The EHKS differs substantially as well, since
there is no immediate and apparent source of
the failure. In a schema using multiple sensors
and sensor fusion, the EHKS would contain all
the sensors that might have failed, but in this
demonstration is limited to the camera that is
faulty. Additionally, the type of error is set to
“BELOW MINIMUM CERTAINTY” to denote
that the schema failed through uncertainty as
to the target’s location and the failure step was
set to “DATA PROCESSING”. As the exception
passes up the call stack, the frame information
is stored for use by the error handler. (Fig. 4b)

c) When the exception reaches the topmost execu-
tion frame, the SensingManager’s error handler
is invoked with the EHKS, and diagnosis and
recovery can begin.

d) Within the error classifier, the primary step in-
volves generating the list of hypotheses to ex-
plain the fault. Here, two hypotheses have been
generated with the EHKS, and will form the core
of the testing. The hypothesislight-ok seeks to
verify that the ambient light level is sufficient
for the camera. The second hypothesis,haze-ok
requires sufficient ambient light available, and
verifies that the camera can distinguish objects
in the scene. This failure could be caused by
haze, film, water or some other substance on the
lens.

e) Once the list has been filled, tests are executed.
All test dependencies must be met before a given
test can execute. For example, beforelight-ok
can be executed, a set of hardware tests will
run that check power and connection to the low-
level driver. Since the sensor payload contains a
second visual sensor, the second sensor is tested
as well to verify the hypothesis.

f) As a result of the tests, the system determines
that the light-level is too low for any available
sensor, and notes that an environmental change
has caused the problem.

g) Since there is no equivalent sensor to activate,
the track-cone behavior is deactivated.

h) However, the possibility exists that further infor-
mation can be extracted from the failed sensors,
or that the environment may change again to
reactivate the sensors. To this end, a testing
thread is created and marked for later execution.
This test execution does not occur in the primary
classification and recovery step.

i) With diagnosis and recovery complete, the initial

test cycle ends.

In this demonstration, the testing thread executes after
a short delay – production systems should use a more
sophisticated scheduling algorithm. The execution of the
testing thread also activates the distributed component of
the error handling architecture. During this comprehensive
testing, the Jini lookup service is contacted when an
environmental test is executed, and remote sensors that
can test the environmental condition being examined are
polled. This remote test data is examined along with
the local test results to aid in diagnosis. During this
demonstration, the cameras on the second robot report that
the light level is normal, at odds with the local test results.

Recognizing the remote sensors are functioning has
little direct impact on the first robot’s availability; there
is no direct local recovery for this state as yet. However,
the second robot is notified of the Augustus’ failure and
takes over the initial task. While the first robot is out
of commission, and remains so for the duration of the
demonstration, the target is successfully located by the
second robot, Theodosius.

The current implementation assumes the robots are
located within the same region, and that the actual environ-
ment is equivalent for both robots. The set of sensors that
is available for remote queries is determined dynamically
during runtime and may vary between executions of the
error handler and testing threads, as agents move into or
out of communication range.

The demonstrations presented here are intended to vali-
date the extensions to SFX-EH by showing correct behav-
ior of a single-agent system, followed by fault diagnosis
and recovery in a multi-agent environment. In all cases, the
system diagnosed and recovered from operator-introduced
faults to complete the mission.

VI. CONCLUSIONS ANDFUTURE WORK

The multi-agent approach to sensor fault tolerance has
several advantages. Since no agent has a full causal
model of the world, or completely redundant hardware and
software, no agent alone is able to diagnose a failure or
even determine that a failure has occurred with complete
accuracy. This being the case, the more information that
can be gathered to corroborate or disprove a hypothesis,
the more confidence an agent can have in the results.
Corroborating evidence can be gathered from multiple
sensors on a a single robotic platform, but can also be
requested from similar sensors on other agents in the
vicinity.

A benefit of the approach used is that the available and
logical sensors for both the local platform and remote
peers is determined at runtime. Each time an error is
handled the appropriate action is taken, which might
be different, even for the same error, depending on the



environment, peers in communication range, and their
sensors.

Current work only scratches the surface of the potential
uses for multi-agent collaboration. This implementation
only uses remote sensors on peers in a limited manner
– for corroborating environmental hypotheses. However,
there are many more uses. Sharing sensors – having a
remote sensor logically replacing a local sensor – raises
issues such as localization and coordinate transformation
that are not yet fully addressed and is left for future work.

Since the current implementation has only been imple-
mented and tested in a lab environment, the work covered
in this paper must be tested and used in more robust set-
tings. Operating outdoors and in non-static environments
will provide more complex interactions as well as more
opportunities for sensing failures. Additionally, this work
must be extended to larger robot teams to truly examine
distributed multi-robot error recovery.

VII. A CKNOWLEDGMENTS

This work has been conducted under a grant from DOE
(DE-FG02-01ER45904).

VIII. REFERENCES

[1] J. Carlson and R. R. Murphy, “Reliability analysis of
mobile robots,” inProceedings of the 2003 IEEE In-
ternational Conference on Robotics and Automation,
2003, p. In publication.

[2] R. R. Murphy and D. Hershberger, “Handling sens-
ing failures in autonomous mobile robots,”The In-
ternational Journal of Robotics Research, vol. 18,
no. 4, pp. 382–400, March 1999.

[3] M. Soika, “A sensor failure detection framework for
autonomous mobile robots,” inProceedings of the
1997 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 1997, pp. 1735–1740.

[4] N. Reed, “Constructing the correct diagnosis when
symptoms disappear,” inProceedings Fifteenth Na-
tional Conference on Artificial Intelligence AAAI-98,
1998, pp. 151–156.

[5] M. L. Leuschen, J. R. Cavallaro, and I. D. Walker,
“Robotic fault detection using nonlinear analytical
redundancy,” inProceedings of the 2002 IEEE In-
ternational Conference on Robotics and Automation,
2002.

[6] D. Um and V. Lumelsky, “Fault tolerance via ana-
lytic redundancy for a modularized sensitive skin,”
in Proceedings of the 1999 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1999.

[7] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo,
A. Wollrath, and B. O’Sullivan,The Jini Specifica-
tion. Addison-Wesley Pub Co, 1999.

[8] A. Lim, “Distributed services for information dis-
semination in self-organizing sensor networks,”Jour-
nal of the Franklin Institute, vol. 38, no. 6, pp. 707–
727, 2001.

[9] A. W. Stroupe, M. C. Martin, and T. Balch, “Dis-
tributed sensor fusion for object position estimation
by multi-robot systems,”Proceedings of the 2001
IEEE International Conference on Robotics and Au-
tomation, pp. 1092–1098, 2001.

[10] A. Hoover and B. Olsen, “Sensor network perception
for mobile robotics,” in Proceedings of the 2000
IEEE International Conference on Robotics and Au-
tomation, 2000.

[11] R. R. Murphy, Introduction to AI Robotics. The
MIT Press, 2000, ch. 7, pp. 268–274.

[12] G. T. Chavez and R. R. Murphy, “Exception handling
for sensor fusion,”SPIE Sensor Fusion VI, pp. 142–
153, September 1993.


