
CArtAgO: An Infrastructure for Engineering
Computational Environments in MAS

Alessandro Ricci, Mirko Viroli, and Andrea Omicini

DEIS, Università di Bologna
via Venezia 52, 47023 Cesena, Italy

{a.ricci,mirko.viroli,andrea.omicini}@unibo.it

Abstract. Artifacts have been recently proposed as first-class abstractions
to model and engineer general-purpose computational environments for mul-
tiagent systems. In this paper, we consider the design and development of an
infrastructure called CArtAgO, directly supporting the artifact notion for the
engineering of multiagent applications. We first propose an abstract model
of the infrastructure, and then describe an implementation prototype of it.

1 Introduction

Artifacts have been recently proposed as first-class abstractions to model and engi-
neer computational environments in software MASs (multiagent systems) [1, 2]. The
background view—which is shared with other recent approaches in MASs literature
(see [3] for a survey)—is that the environment can play a fundamental role in engi-
neering MASs. On the one hand, it is a suitable locus where engineers can embed
responsibilities, impacting on MASs design and development; on the other hand,
it is a source of structures and services that agents can suitably use at runtime to
support and improve their activities—both individual and social ones. The artifact
notion promotes a methodology for modelling and engineering such computational
environments, by introducing concepts and elements that impact on system design,
development and runtime management.

Artifacts can be generally conceived as function-oriented computational devices,
namely, they are designed to provide some kind of function, that agents can exploit to
support their individual and collective (social) activities [1]. The notion of “function”
here refers to the meaning that is generally used in human sciences such as sociology
and anthropology, as well as in some recent work in AI [4], that is, the purpose for
which the device has been designed for—for an artifact, to support agent activities.

This view directly impacts on the foundation of interaction and activity in
agency: a MAS is conceived as an (open) set of agents that develop their activ-
ities by (i) computing, (ii) communicating with each other, and (iii) using and
possibly constructing shared artifacts—which embody the MAS computational en-
vironment. Generally speaking, artifacts can be either the target (outcome) of agent
activities, or the tools that agents use as means to support such activities: as such,
they are useful to reduce the complexity of their tasks’ execution. For instance, coor-
dination artifacts [5] are artifacts providing coordination functionalities—examples
are blackboards, tuple spaces or workflow engines.

The conceptual and theoretical background of this framework stems from the
theories developed in the context of human science, in particular Activity Theory

102

[6] and Distributed Cognition [7]. Also, this perspective shares the aims and the
principles developed in existing research work in Distributed Artificial Intelligence
about theories of interaction [8, 9] and in Computer Supported Cooperative Work,
with the notion of embodied interaction [10].

From an engineering point of view, by following this approach artifacts along
with agents become the basic building blocks (i.e. abstractions) to design and de-
velop MASs: designers can use (i) agents to model autonomous activities, which are
typically goal / task oriented, and (ii) artifacts to model structures, objects, typi-
cally passive and reactive entities which are constructed, shared and used during the
execution of such activities. The artifact abstraction provides then a natural way to
model object-oriented (OO) and service-oriented abstractions (objects, components,
services) at the agent level of abstraction, bridging the conceptual and semantic
gaps with the agent-oriented paradigm. On the one hand, as in the case of objects
(components) and services, artifacts expose interfaces composed by operations that
can be invoked by agents—though relying on a different semantics. On the other
hand, differently from the case of object-oriented and service-oriented models, the
invocation of an operation on an artifact never results in a transfer of control : agents
fully encapsulate their control flow(s). If this feature can be found in several patterns
developed in the context of OO and service-oriented software engineering, in our case
it becomes one of the fundamental principles which underly the artifact model, and
that eventually imposes a strict discipline in system design and implementation.

In order to stress the validity of the artifact model, and as a basis to extend
and evolve it, we find it useful to setup a prototype infrastructure, referred here
to as CArtAgO (Common “Artifacts for Agents” Open infrastructure). This is to be
concretely used for engineering multiagent applications, providing designer with the
artifact notion and all the related concepts.

Infrastructures play an essential role for keeping useful abstractions alive from de-
sign to runtime [11]. Agent infrastructures (or middleware) typically provide funda-
mental services for agent creation, management, discovery and (direct) communica-
tion: well-known examples are RETSINA [12] and JADE [13]. Analogously, CArtAgO
is meant to be exploited for creating and sustaining the existence at runtime of com-
putational environments engineered in terms of artifacts. It provides basic services
for agents to instantiate and use artifacts, as well as a flexible ways for MAS engineers
to design and construct any useful kind of artifact.

In this paper, we first discuss the basic aspects that characterise CArtAgO from
an abstract point of view—its abstract model (Sect. 2) and a core of abstract API
(Sect. 3); then, we describe a first concrete prototype (Sect. 4), implementing the
core part of the abstract model previously defined.

2 CArtAgO Abstract Model

The abstract model of CArtAgO concerns three basic parts, which will be developed
in the following subsections: (i) the model adopted for characterising actions and
perceptions linking agents to their computational environment, (ii) the abstract
model adopted for artifacts—as basic bricks to engineer such an environment—, and
finally (ii) the model adopted for workspaces, as logical contexts where artifacts and
agents are located.

103

2.1 Agent Side: Actions & Perceptions

As a premise to the following discussion, the artifact notion calls for introducing
a model (and a theory) of interaction which is different from the models generally
adopted in software agent infrastructures, which are typically based solely on com-
municative acts. Rather, the artifact model of interaction is more similar to models
defined for autonomous / situated agents. Agents interact with their computational
environment by means of suitable actions provided for artifact construction, selec-
tion and usage, and by perceiving observable events generated from such artifacts:
we refer to this kind of actions as pragmatic acts. The term pragmatic is adopted to
remark the differences with respect to communicative actions, which are the main—
we should say the only—type of actions that are typically modelled and supported
in the most-diffused languages, architectures and infrastructures for software agents,
such as e.g. FIPA-compliant platforms. Kinds of pragmatic action are pervasive, in-
stead, in all the approaches proposing an explicit notion of environment in MASs
(which, however, cannot be considered part of the mainstream in current agent
community, yet). So, in our case, differently from communicative actions that have
agents as targets—targets of the message sent—, pragmatic actions as defined here
are directed to an artifact. A primary example of pragmatic action is the execution
of an operation, whose effects can be the generation of streams of events distributed
in time.

The distinction between communicative and pragmatic actions is fundamental
also from a theoretical point of view, in particular if we consider the context of
intelligent agents. The semantics of a speech acts is typically defined in terms of
preconditions and effects on either the mental state of the communicative agents or
the social relationships that link such agents. On the other hand, such semantics
is not meaningful when we consider the interaction between agents and artifacts,
for artifacts are not suitably characterised in terms of mental or social attitudes
(belief, desires, intentions, goals, commitments, etc.), but rather by function-oriented
features. Actually, lots of research work has been developed to characterise from a
theoretical point of view communicative actions, trying to defined a semantics which
could be fruitfully exploited to support agent reasoning. Analogously, we think that
research work on theoretical aspects of pragmatic actions for software agents—which
is still in its infancy—is fundamental to conceive agent models and architectures that
support reasoning about the computational environment and its exploitation.

As in the classic agent model [14], agents perceive events through sensors, as
collectors of environment stimuli. In CArtAgO, sensors are structures provided by the
infrastructure: agents can flexibly create and use them to partition and control the
information flow perceived from artifacts, possibly providing specific functionalities
such as buffering, filtering, ordering, and managing priorities. Sensing is the internal
action that agents execute on their sensors to become aware (perceive) of the events
(stimuli) collected by the sensors.

2.2 Artifacts

Artifacts are the basic bricks managed by CArtAgO infrastructure. In the following
abstract model we define some basic features and properties which are essential in
their construction, manipulation and use, independently from the specific implemen-
tation models.

104

usage
interface

agents

an artifact

put get

observable
events

Internet nodes

Workspaces

Fig. 1. (left) An abstract representation of an artifact, used by agents through its usage
interface. In the picture the usage interface is represented metaphorically as the set of
buttons that agents press to interact with the artifact, and an output area where containing
observable events. (right) An abstract representation of workspaces, used to represent from
a logical point of view the topology of the system. In the picture two workspaces are
represented, mapped onto three Internet nodes. Agents and artifacts can belong to multiple
workspaces (that is, workspaces can intersect). Also, the same artifact can be distributed
on multiple nodes.

Identity Each artifact has a logic name specified by the artifact creator at
instantiation-time, and an id, released by the infrastructure, to univocally iden-
tify the artifact. The logic name is an agile way for agents to refer and speak about
(shared) artifacts, while the id is required to identify artifacts when executing actions
on them. The full name of an artifact includes also the name of the workspace(s)
where it is logically located. Since an artifact can be located in multiple workspaces,
the same artifact can be referenced by multiple full names.

It is worth remarking that an artifact can be both logically and physically dis-
tributed, that is the same artifact—i.e. an artifact with the same identity and state—
can have a spatial extension, being located in multiple locations according to the
chosen topology. This characteristic is not typically found in the agent abstraction:
agents, even if can have a distributed implementation, from a logical point of view
are always situated in a specific point of the topological space, which can e.g. dy-
namically change in the case of mobile agents.

Usage Interface & Events Each artifact has a usage interface that agents exploit
in order to interact with it, i.e to use it. A usage interface is defined as a set of
operations: agents interact with artifacts by invoking operations and observing events
generated from them, perceived through sensors. An operation is characterised by a
name and a set of parameters. Parameters, as well as the event generated, are meant
to have a type.

Operations have no return value concept, differently from e.g. methods in the
OO paradigm: any information, generated due to the operation execution and which
can be of interest for the invoker agent, is modelled as an observable event gener-
ated by the artifact and later received by agents as a perception. Also, exceptions

105

(error conditions) generated during the execution of an operation are modelled as
observable events.

As mentioned in the introduction section, a radical difference with respect to
the notion of interface as found in OO and component-oriented paradigms is the
control uncoupling. In such paradigms, the execution of a method causes the control
to flow with the data (parameters) from the object invoking the method to the
object owning the method: in other words, there is no encapsulation of the control.
In order to avoid this kind of control flow, some support for threads1 must e.g. be
used, as typically found in some well-known OO patterns for managing concurrency
[15]. By considering agents and artifacts, such an aspect is supported instead at the
very foundation level, and there is no need to introduce any explicit multi-threading
support.

The usage interface of an artifact can depend on its state, analogously to GUI
interfaces of applications: in other words, an artifact can expose different set of
operations according to its state. This is a simple and direct way to structure the
interface of artifacts, directly supporting what is typically implemented as a pattern
in the context of object-oriented paradigm, where interfaces are typically fixed.

Function Description and Operating Instructions In order to support a ra-
tional exploitation of artifacts by intelligent agents, each artifact is equipped with a
function description, i.e. an explicit description of the functionalities it provides, and
operating instructions, i.e. an explicit description of how to use the artifact to get
its function—for instance in terms of the usage protocols that the artifact support.
These descriptions are meant to be useful for cognitive agents that—by suitably
inspecting and interpreting them—can (i) dynamically reason about which artifacts
can be selected to support their activities, and (ii) get instructions to support activ-
ity execution, making it easier to set up plans and to reason about the expectation
of using an artifacts. We consider such issues of foremost importance, at the core
of the notion of computational environments designed to support the activities of
agents—in particular cognitive / rational agents. Actually, the research on these
aspects, in particular on formal models and languages that can be used to specify
function description and operating instructions, and their injection in existing agent
reasoning architectures (such as BDI), is still to be fully developed: first work can
be found in [16].

In CArtAgO, we provide a minimal but enabling support to these issues, by mod-
elling function description and operating instructions as simple textual documents
that can be specified for any artifact by its designer, providing basic services for
their dynamic inspection. We do not fix the specific model and formal semantics for
such documents: just to promote a first naive form of interoperability, we consider
the use of XML as representation language.

Observable State Artifacts are stateful reactive entities, with a state that can
change according to the operations executed by agents. Actually, in the case of
time- and location-aware artifacts, state and location of an artifact can change also
in reaction to time passing (e.g. a clock). Reaction to time passing is a simple way

1 We remark here that the thread concept is per se a foreign one in OO foundations.

106

to realise artifacts that exhibit a form of active behaviour, even if actually they do
not encapsulate any control flow, at least in the sense that we have seen for the
agent abstraction, where pro-active behaviour—instead—is considered. Pheromones
or pheromone environments are an effective example of computational environments
that can be designed and implemented as time-aware artifacts, where the state—the
pheromone intensity in this case—changes (also) according to time passing.

As for artifacts in human society, we consider it useful to explicitly define a no-
tion of observable state, as dynamic information (such as a set of properties) exposed
by an artifact, that can be dynamically observed by agents without necessarily inter-
acting through its usage interface. Such an observable state includes also the usage
interface description, whose shape can change according to the state of the artifact,
as mentioned previously. Also artifact observable state is sensed by agents as events
perceived from the environment, uniformly to the perception model introduced pre-
viously. Analogously to function description and operating instructions, in this first
model of CArtAgO we do not consider specific models and semantics for describing
artifact observable state, and we just consider a flat textual XML description.

2.3 Modelling Topologies: Workspaces

Artifacts (and agents) are logically located in workspaces, which can be used to
define the topology of the computational environment. A workspace can be defined
as an open set of artifacts and agents: artifacts can be dynamically added to or
removed from workspaces, agents can dynamically enter (join) or exit workspaces. A
workspace is typically spread over the nodes of an underlying network infrastructure,
such as the Internet. In CArtAgO, each workspace is created by specifying a logic
name and is univocally identified by an id released by the infrastructure. Workspaces
make it possible to define topologies to structure agents and artifacts organisation
and interaction, in particular as scopes for event generation and perception. On the
one side, a necessary condition for an agent to use an artifact is that it must exist
in a workspace where the agent is located. On the other side, events generated by
the artifacts of a workspace can be observed only by agents belonging to the same
workspace.

Intersection and nesting of workspaces are supported to make it possible to create
articulated topologies. In particular, intersection is supported by allowing the same
artifacts and agents to belong to different workspaces.

2.4 Modelling Organisation and Security Issues: Toward Workplaces

The adoption of explicit organisational models is a crucial aspect for managing the
complexity of the MAS structure, in particular for open scenarios [17]. As largely
discussed in literature (electronic Institutions are a primary example [18]), organi-
sational models can be fruitfully exploited also to specify and manage some aspects
that concern security inside the systems—access control in particular—by defining
the organisational policies and norms that rule the relationships among the system
parts.

By drawing on our previous research work on such aspects on TuCSoN infras-
tructure [19], in CArtAgO we introduce a role-based model, inspired to RBAC (Role-
Based Access Control) architectures [20]. According to the results coming from dif-

107

Artifacts use invokeOp(ArID,OpName,[Args],{SensorID}): OpID
sense({SensorID},Timeout): EventDescr
sense({SensorID},{Pattern},Timeout): EventDescr
createSensor(SensorType,SensorConfig): SensorID

Artifacts construction and createArtifact(Name,Template,Config,{WsID}):ArID
manipulation getArtifactID(Name,{WsID}):ArID

disposeArtifact(ArID)
registerArtifact(ArID,WsID)
deregisterAr(ArID,WsID)

Artifacts selection and getFD(ArID): FdDescr
inspection getOI(ArID): OIDescr

getUID(ArID): UIDDescr
getState(ArID): StateDescr

Workspaces management getWsID(WsName,{Location}):WsID
joinWS(WsID)
exitWS(WsID)
createWS(WsName,Location):WsID
addWSNode(WsID, Location)
removeWSNode(WsID, Location)
disposeWS(WsID)

Table 1. Actions available to agents to manage artifacts and workspaces.

ferent disciplines, role-based organisational models are among the most effective ap-
proaches to specify the structure of complex and articulated systems (human / social
systems as well as artificial ones). RBAC models—mainly adopted for engineering
security in complex information systems—adopt roles as the basic abstraction to
encapsulate user permissions to access system resources: that is, a user can access
system resources according to the permissions granted to the role the agent is playing
within the organisation.

In CArtAgO we inject such concepts with the notion of workplaces. Workplaces
define an organisational layer on top of workspaces. A workplace defines the set of
roles and related organisational rules or contracts being in force in a workspace. The
contracts defines, in particular, the norms and policies that rule agent access to the
artifacts belonging to the workspace. For example, depending on the role(s) that an
agent is playing inside the workplace, it can have or not the permission to use some
artifacts or to execute some specific operations on some specific artifacts.

By following the RBAC approach then, agents aiming to participate to a work-
place must first be assigned to the role(s) that they aim at playing, and after that,
such roles can be dynamically activated / deactivated by the agents according to the
need. Both role assignment and activation are subject to organisational rules, defin-
ing which (authenticated) agents can be assigned to which roles, and when agents
can dynamically activate/de-activate such roles.

These aspects are not discussed further in this paper though they are important,
and will be considered in details in future works.

108

3 Core Primitives

In order to exploit the infrastructure services, a basic abstract set of API (Applica-
tion Programming Interface) has been defined, related both to the agent side—that
is, to be used by agents (or agent programmers defining agent behaviour) to exploit
artifacts—and the artifact side, i.e. used for programming artifacts.

3.1 Agent side

On the agent side, the API is represented by a set of primitives that can be thought
as actions available to the agent, and that basically make it possible to create,
locate, manipulate, and use artifacts. Table 1 provides an abstract description of
such primitives, grouped according to their functionalities:

Artifacts Construction & Manipulation — Basic primitives are provided to
create (createArtifact) and dispose (disposeArtifact) artifacts dynamically. To
create an artifact, a logic name must be specified, along with the template that
identifies the type of the artifact to be created, possible configuration parameters
needed for artifact creation and optionally the workspace where the artifact
should be created. The identifier of an existing artifact can be obtained by the
getArtifactID primitive, specifying the artifact name and (possibly) its location
(workspace). By omitting the location, the current workspace(s) where the agent
is situated are considered.
The same artifact can be part of multiple workspaces: accordingly, basic actions
are provided to register (registerAr) / de-register (deregisterAr) an artifact in /
from a workspace, specifying the workspace id.

Artifact Use — These primitives constitute the core of agent / artifact interac-
tions, enabling an agent to invoke operations and sensing events. To execute
an operation the action invokeOp is provided, specifying the artifact id, the
operation name, the parameters, and the specific sensor where to collect events
possibly generated by the artifact in relation to this specific operation execution.
The invocation of an operation can fail, due for instance to the unavailability of
the artifact. This kind of failures should be distinguished from errors that can
raise when executing the operation on the artifact and that depends on the spe-
cific semantics of the operation: such errors are made observable to the agents
as events.
For perceiving the events collected by sensors, a set of sense primitives are
provided. By executing a sense action, an agent is made aware of the events
(stimuli) that have been eventually collected by a specific sensor. The effect of
the action is to fetch (remove) an event from the sensor and to return it to the
agent as a perception. Different types of sensors can provide different semantics
establishing the order in which events are fetched.
A time parameter is specified to indicate a maximum duration for the sensing
action: if no events are available in the sensor within the specified timeframe,
the action fails.
Besides this simple form of sensing, a pattern-driven sensing is supported: a
pattern parameter can be specified acting as a filter for fetching the events.
Again, specific types of sensor can support specific models for pattern matching.

109

Event generation genEvent(EventDescr)
genEvent(OpID,EventDescr)
genEventWs(EventDescr)

Operation management getOpID: OpID

State exposition exposeState(StateDescr)

Table 2. Basic primitives for artifact programming

Finally, a primitive createSensor can be used to flexibly create instances of sen-
sors, specifying their types.

Artifacts Selection & Inspection — In order to support a cognitive use of ar-
tifacts, a basic set of primitive is provided to inspect the function description
(getFD), the operating instructions (getOI), the usage interface (getUID), and
the dynamic observable (exposed) state (getState) of the artifact. Such infor-
mation is provided to the agent as documents encoded in a machine-readable
format, such as XML, possibly equipped with a formal semantics defining the
content of the documents with respect to some ontologies. OWL2, for instance,
can be a good candidate for this purpose.

Workspace manipulation — Finally, a basic set of primitives is provided to ma-
nipulate the logical topology of the environment, modelled through workspaces.
Such primitives range from joinWS and exitWS to join and leave a workspace,
to getWsID for getting a workspace identifier given its name and possibly one of
the (network) nodes where the workspace is located, createWS for directly creat-
ing a new workspace and disposeWS for completely removing a workspace. Since
a workspace typically spans on multiple network nodes, addWSNode is provided
to dynamically extend an existing workspace on a specific network node, and
conversely removeWSNode to remove a workspace from the specified network
node.

Most of these core services have been implemented in the prototype described in
Sect. 4.

3.2 Artifact side

Table 2 shows the minimal set of abstract primitives provided on the artifact side.
Such primitives are meant to be exploited by programmers defining artifact structure
and behaviour, and are useful essentially for generating observable events and expose
the artifact observable state.

Despite the specific programming model adopted for defining artifacts, artifact
behaviour is meant to be structured in operations, characterised by a name and a set
of parameters. Each operation request served by the artifact is labelled by a unique
operation identifier (type OpId in the tables). An event can be then generated using
the genEvent primitive by specifying the operation identifier to which the event must

2 http://www.w3.org/TR/owl-features/

110

be related, as observable effect of this operation (and of the agent action that caused
it). If no OpId is specified, the event is considered related to the current operation
request. The effect of the execution of these primitives is the generation of an event
that is dispatched to the agent that invoked the operation.

The OpId can be retrieved by invoking the primitive getOpID during the execu-
tion of the operation (as part of its execution body). Operation identifiers are meant
to be manageable as normal data structures, for instance, creating list of operation
identifiers and then generating events related to these operation when necessary,
during artifact functioning, across operation executions.

In order to model the generation of events which are not directly related to any
specific agent operation request, the primitive genEventWs is provided, generating
an event which is not related to a specific operation execution and that is observed
by all the agents residing in the same workspace(s) of the artifact.

4 A First Prototype

A first prototype implementing some of the functionalities described in the previous
section has been developed in Java and is available for download at the CArtAgO
project web site3. The prototype can be used to implement both concurrent and
distributed applications designed and structured in terms of agents and artifacts,
programmed in Java. A simple programming model called simpA4 has been adopted
to code agent and artifact structure and behaviour, to create agent and artifact
templates.

In this first prototype a CArtAgO application is simply a Java application exploit-
ing CArtAgO and simpA libraries (provided by the alice.cartago and alice.simpa
packages) containing the API to program agents and artifacts. The main loop of the
application is responsible to setup the CArtAgO environment (runtime) and to pop-
ulate the environment with the initial set of agents and artifacts constituting the
booting configuration of the application. Specific primitives are provided by the
CArtAgO environment at this stage to spawn agents and create artifacts.

With respect to the full model presented in previous sections, in this prototype
workspaces are not supported, and then the topology is defined directly in terms
of the infrastructure nodes. More precisely, each launched CArtAgO application—
running on a Java virtual machine—represents a node of the infrastructure, so mul-
tiple nodes can reside on the same Internet host. Each node (application) can contain
a dynamic set of agents and artifacts.

4.1 Architecture

Figure 2 shows the abstract layered architecture of a CArtAgO node (application). At
the core of the architecture there is the kernel, which acts as the glue between agents
and artifacts, providing the core services described in previous sections, exploited
through the API. Among the various functionalities, the kernel keeps track of the
agents and artifacts in execution on the nodes (through maps), exploits agent and
artifact registered factories to dynamically create agents and artifacts given their
3 CArtAgO project web site: http://www.alice.unibo.it/cartago
4 simpA project web site can be found at http://www.alice.unibo.it/simpa

111

Agent
contexts

Artifact
adapters

kernel

Agents Artifacts

environment
controllers

Agents
map

Artifacts
map

Agent
Factories Artifact

Factories

Transport Layers
(SOAP, TCP/IP, ...)

Fig. 2. Abstract architecture of a CArtAgO infrastructure node

templates, collects and serves operation execution requests generated by agents,
and dispatches events generated by artifacts, possibly using the available transport
layers when agents and artifacts reside on different nodes. The operation execution
requests on artifacts are served by a pool of environment controllers, acting as worker
threads—it is worth remembering here that artifacts, differently to agents, do not
encapsulate any control flow.

Agent access to kernel functionalities is mediated by agent contexts. The notion
of agent context is introduced to explicitly represent the local computational envi-
ronment encapsulating CArtAgO structures that are private to the individual agents,
such as sensors. Generally speaking, an agent context acts as a bridge between the
individual agent and the environment where the agent plays, providing the very basic
interface to act inside CArtAgO, and in the overall defining the basic set of actions
and perceptions allowed for the agent. So, the agent context is responsible on the
one side to route agent requests to the kernel and on the other side of dispatching
the events posted by the kernel to the agent, through the sensors managed by the
agent contexts.

Actually, an agent context can be fruitfully exploited to represent a working
session of the agent inside the system, and then to embed and enact possible organ-
isational and security policies related to the role(s) that the agent is playing. When
an agent starts a working session, an agent context is created and configured so as to
enable (filter) only those actions and sequence of actions that the agent can execute
according to his role(s).

112

4.2 Programming Artifacts and Agents

The simpA programming model provides a simple way to implement agents and
artifacts as patterns on top of Java, adopting CArtAgO model to define agent /
artifact interaction.

An artifact in simpA is modelled as a reactive entity exposing an interface with
a basic set of operations. As described in previous sections, such operations have
no return value: the information flow from an artifact to its environment (agents)
is modelled through events explicitly generated by the artifact during operation
execution.

In simpA, a new artifact (template) can be defined by extending the
alice.simpa.Artifact class provided in the library alice.simpa. The operations
supported by the artifact can be programmed as methods of the class, with no re-
turn value and with the method parameters representing operation parameters. In
the body of the operations (methods), the basic CArtAgO primitives for event gen-
eration, operation management and state exposition can be exploited, available as
protected method of the alice.simpa.Artifact class. The private fields of the class
can be exploited to model artifact hidden state.

Currently, the concurrency model adopted for artifacts constrain operation ex-
ecution requests to be served sequentially, i.e. only one operation at a time can be
in execution on an artifact. Such a choice—which resembles to the strategy adopted
for the monitor abstraction in the context of concurrent programming, with the
difference that in our case the control flow of the invoker is not blocked—is quite
effective in avoiding basic problems related to concurrent use of artifacts by agents
(and in particular concurrent updates of artifact internal state). At the same time,
this choice limits quite strongly the concurrency in artifact use: so, in the future we
plan to relax this constraint, by allowing multiple operations to be in execution at
a time on an artifact, relying on basic constructs for defining critical sections (such
as synchronisation blocks in Java) in order to avoid inconsistencies.

Figure 3 (left) shows a simple example of artifact, a shared buffer that will be used
in next subsection. The description of artifact structure and behaviour is reported
in the caption of the figure.

It is worth remarking here that this approach makes it simple and effective to
wrap and reuse any kind of object (resource, services) as artifact, so as to be suitably
exploited by the agents. For instance, even GUIs can be suitable modelled as arti-
facts, mediating the interactions between human agents and software agents, both
acting upon such artifacts and observing events generated by them. Figure 3 (right)
shows a simple GUI—with a single button—modelled as an artifact: by invoking
the subscribe operation, agents register themselves to be notified with the events
occurring in the GUI artifact, sensed as perceptions.

As another example, a Web Service can be wrapped as an artifact, with the usage
operations wrapping the operations provided by the service. So we think that this
is an effective solution to bridge the agent and service / object worlds, keeping the
agent level of abstraction and, in particular, encapsulation of control.

On the other side, an agent in simpA is modelled as a pro-active entity au-
tonomously executing the set of tasks defined by the agent programmer. A simpA
agent can interact with its social and computational environment either by means of
direct communication with other agents—using a simple speech act-like model—, or

113

package alice.cartago.examples.e4mas;

import alice.cartago.*;
import alice.simpa.*;
import java.util.*;

public class BufferArtifact extends Artifact {

private LinkedList<OpId> getReq;
private LinkedList<Object> items;

public BufferArtifact(){
items = new LinkedList<Object>();
getReq = new LinkedList<OpId>();

}

void put(Object obj){
if (!getReq.isEmpty()){

OpId id = getReq.removeFirst();
try {

genEvent(id, new ItemAvailable(obj));
} catch (Exception ex){}

} else {
items.add(obj);

}
}

void get(){
if (!isEmpty()){

Object item = items.removeFirst();
try {

genEvent(getOpId(), new ItemAvailable(item));
} catch (Exception ex){}

} else {
getReq.add(thisOpId);

}
}

boolean isEmpty(){
return items.size() == 0;

}
}

package alice.cartago.examples.e4mas;

import alice.cartago.*;
import alice.simpa.*;
import javax.swing.*;
import java.awt.event.*;
import java.util.*;

public class GUIArtifact extends Artifact implements ActionListener {
private MyFrame frame;
private ArrayList<OpId> listener;

public GUIArtifact(){
listener = new ArrayList<OpId>();
frame = new MyFrame(this);
frame.setVisible(true);
frame.addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent ev){
genEvent(new GUIEvent("closed",ev));

}
});

}

public void subscribe(){
listener.add(thisOpId);

}

public void actionPerformed(ActionEvent ev){
GUIEvent event = new GUIEvent("start",ev);
genEvent(event);

}

private void genEvent(GUIEvent ev){
for (OpId l:listener){

try {
genEvent(l,ev);

} catch (Exception ex){}
}

}

static class MyFrame extends JFrame {
public MyFrame(ActionListener l){

setTitle("Simple GUI Artifact");
setSize(200,80);
JPanel panel = new JPanel();
setContentPane(panel);

JButton press = new JButton("start");
press.setSize(80,50);

panel.add(press);
press.addActionListener(l);

}
}

}

Fig. 3. A buffer artifact (left) and a GUI artifact (right), programmed using the simpA
model, on top of CArtAgO. The buffer usage interface is composed by the put and get

operations, to insert and remove an item. In the put operation, the item passed as parameter
is inserted in enqueued only if no pending requests are present, collected by the getReq

list. If there is a pending request, then the item is dispatched to the requestor through the
generation of an event. In the get operation, if an item is available, then it is dispatched
to the requester by generating an event; conversely, the request is enqueued, by inserting
the operation id of current request in getReq. For what concerns the GUI Artifact, it is
worth noting the subscribe operation is used to register agents to be notified for events
occurring inside the artifact, internally generated by the Swing event-listener mechanism,
but externally made observable to subscribed agents through genEvent.

114

package alice.cartago.examples.e4mas;

import alice.cartago.*;
import alice.simpa.*;
import javax.swing.*;
import java.awt.event.*;
import java.util.*;

public class Producer extends Agent {

private SensorId guiSensor;
private ArtifactId guiId;
private ArtifactId bufferId;

public Producer(){}

protected void main() throws TaskException {
log("started.");
bufferId = getArtifactId("buffer");
try {

schedule("setupGUI");
schedule("produceTask");
schedule("shutdown");

} catch (Exception ex){}
}

protected void setupGUI(){
ArtifactManual manual =

 new ArtifactManual("alice.cartago.examples.e4mas.GUIArtifact");
try {

guiId = createArtifact("myGUI-"+getId(),manual);
guiSensor = linkSensor(new BasicSensor());
invokeOp(guiId,"subscribe",OpParams.NO_PARAMS,guiSensor);

} catch (Exception ex){}
}

protected void produceTask(){
try {

log("waiting for user request.");
Event evGUI = sense(guiSensor,60000);
if (evGUI!=null){

String descr = evGUI.getDescr();
if (descr.equals("start")){

schedule("produceItems");
}

} else {
log("Time out.");

}
} catch (Exception ex){}

}

protected void produceItems(){
try {

log("start producing.");
java.util.Random rand = new java.util.Random();
for (int i = 0; i<100; i++){

invokeOp(bufferId,"put",new OpParams("Item-"+i+"-"+getId()));
sleep(rand.nextInt(20));

}
} catch (Exception ex){
}

}

void shutdown(){ log("shutdown."); }
}

package alice.cartago.examples.e4mas;

import alice.cartago.*;
import alice.simpa.*;

public class Consumer extends Agent {

 private SensorId mySensor;

 public Consumer(){
 }

 protected void main() throws TaskException {

 try {
 log("started.");
 Sensor sensor = new BasicSensor();
 mySensor = linkSensor(sensor);

 ArtifactId buf = getArtifactId("buffer");
 int ncount = 0;
 while (true){

 invokeOp(buf,"get", OpParams.NO_PARAMS, mySensor);
 ncount++;
 Event ev = sense(mySensor,60000);
 if (ev!=null){

 String itemDescr = ((ItemAvailable)ev).getItem().toString();
 log("New item consumed #"+(++ncount)+": "+itemDescr);

 } else {
 log("Time out.");
 break;

 }
 }
 log("completed.");

 } catch (Exception ex){
 ex.printStackTrace();

 }
 }

}

package alice.cartago.examples.e4mas;

import alice.cartago.*;
import alice.simpa.*;

public class Test {

public static void main(String[] args) throws Exception {

Environment env = new Environment();

ArtifactManual manual =
 new ArtifactManual("alice.cartago.examples.e4mas.BufferArtifact");

ArtifactConfig params = new ArtifactConfig();
env.createArtifact("buffer",manual,params);

env.spawnAgent("consumer","alice.cartago.examples.e4mas.Consumer");
env.spawnAgent("producerA","alice.cartago.examples.e4mas.Producer");
env.spawnAgent("producerB","alice.cartago.examples.e4mas.Producer");

}

}

Fig. 4. A producer agent (left) and a consumer agent (right) in simpA. The behaviour of the
producer agents is composed by the following tasks, scheduled to be executed sequentially:
first, the agent creates the GUI artifact for interacting with the human user, by exploiting
the CArtAgO createArtifact service (API); then, when the human user presses the button
on the GUI, this event is perceived by the agent that starts to produce and insert items
in the buffer artifact, shared with the consumer, by invoking through the invokeOp API
the put operation belonging to the buffer usage interface. Finally, after having inserted 100
items, the agent shutdowns. On the other side, a consumer agent simply collects the items
from the buffer, by invoking the get operation and processing the information on items
embedded in events generated by the buffer and perceived by the agent.

115

GUI Artifact

subscribe

GUI Artifact

Producer
Agent

get

Consumer
Agent

put

Buffer Artifact

Human
User

Start

GUI Artifact

subscribe

GUI Artifact

Producer
Agent

Human
User

Start

Fig. 5. Agents and artifacts involved in the application described in Subsection 4.2

by means of pragmatic actions as defined in CArtAgO, to create, use, and inspect arti-
facts. A new agent (template) can be defined by extending the alice.simpa.Agent
class provided in the library alice.simpa. Actually, such a class contains all the
machinery that makes it possible to encapsulate the control flows to execute agent
tasks, realising agent pro-activity. Classes adopted for representing simpA agents are
meant to have no public interface. Agent tasks are specified as protected methods
of the class: in such methods the programmer explicitly defines the procedure—as
sequence of actions—to run when the execution of the task is requested. The basic
set of native actions available to the agent—implementing the basic abstract API
described in Sect. 3—are provided as protected method of the alice.simpa.Agent
class. Such actions include both internal and external actions. The former are mainly
used to manage agent agenda, for scheduling new tasks to execute, removing sched-
uled tasks, spawning the execution of parallel tasks, and so on. The latter are mainly
used to speak with other agents and to exploit CArtAgO core primitives, in particular
to create artifacts, invoke artifact operations, sense events, and so on. The private
field of the class can be used to model agent hidden state.

As an example, Fig. 4 (left) shows a simple producer agent using the GUI and
the buffer artifacts described previously. Basically, the agent creates an instance
of the GUI artifact to interact with the user. When the human user presses the
button, the agent senses the event and starts using the buffer, by inserting some
information items. Figure 4 (right) shows a simple consumer agent, observing and
retrieving information from the buffer, and logging such items in standard output.
Figure 4 (bottom-right) shows the main details of a simple application (graphically
represented in Fig. 5), where two producers and one consumer are spawned, accessing
the same buffer artifact, created in the main.

5 Related Works

The approach based on artifacts shares the same software engineering perspective
introduced by Weyns and colleagues in [21], where they identify a general model and
an architecture that can be (re-)used to engineer environments in MAS, despite of
the specific application domain. The model presented by the author is concern-based :

116

the environment is modelled as a set of modules that represent different functional
concerns of the environment. A similar focus, but in some sense less general, can be
found also in the work of Platon and collegues [22], where a general model for en-
vironments providing functionalities for over-hearing and over-sensing is presented.
Our notion of artifact can be compared at a first glance with the notion of functional
modules describe by Weyns and colleagues. The main difference is that artifacts are
conceived to be first-class abstractions both for the engineers designing and pro-
gramming agent environment and for the agents using such an environment : agents
do not perceive the environment as a single entity providing a set of functionali-
ties (which are internally engineered upon a set of modules), but directly create,
share, use, manipulate, destroy artifacts, each designed to encapsulate some kind of
function.

The model for perception and sensing described in the paper shares many points
with the model—more general—discussed in [23], introducing the notion of active
perceptions. Such a model decomposes perceptions into a succession of three func-
tionalities: sensing, interpreting and filtering. First, sensing maps the state of the
environment to a representation. The agent can select a set of foci, that enable the
agent to sense specific type of data in the environment. The representation of the
state is composed according to a set of perception laws, that can be used by designers
to enforce specific constraints on perceptions. Then, agents interpret representations
by means of descriptions, that are blueprints that map representation onto per-
cepts, modelled as expressions that can be understood by the internal machinery of
the agent. Finally, agents can select a set of filters, to restrict the perceived data
according to specific context relevant selection criteria.

In our model, sensors provide some of the functionalities discussed above. In par-
ticular, by following the meaning introduced by the authors, each sensor can be used
as a specific focus: the idea is that an agent can dynamically create, customise and
use different kind of sensors, with distinct features (such as buffering, filtering, etc),
to partition the perceptions from the environment, in our case related to artifacts
(even if the model can be extended to consider also perceptions directly related to
other agents). Sensor activity can be constrained according to laws enforced by the
organisational and physical context where the agent is situated, similar to percep-
tual laws discussed above: in our approach such rules are meant to be embedded and
enforced by the agent contexts—where sensors are collected, described in subsection
4.1—, including policies that constrain agent action space, i.e. set of actions that are
allowed for an agent playing some specific role(s). Pattern-driven sensing described
in Sect. 3 can be framed as a simplified form of filtering as defined in active per-
ceptions, with some points that concern also interpretation: patterns act as simple
filters that agents can specify to fetch in a data-driven way the data collected by
sensors, and require that an explicit description is adopted for describing the events
or stimuli posted to sensors.

Finally, the artifact abstraction and CArtAgO infrastructure draw on the research
work on tuple centres as programmable tuple-based coordination media [24] and on
TuCSoN coordination infrastructure [25]. Artifacts can be framed as a generalisation
of the notion of tuple centre: more precisely, tuple centres can be conceived as a
type of coordination artifacts [5], as artifacts designed to encapsulate programmable
coordination services.

117

6 Concluding Remarks

In this paper we first described in detail the abstract model and architecture of a
basic infrastructure for supporting artifacts in MAS, and then we provided a first
basic prototype implementing some core functionalities.

Among the issues not considered for lack of space—and that can be found in the
artifact conceptual framework—we mention here: (i) artifact composition—support
for linking together existing artifacts to dynamically compose complex artifacts, by
defining and exploiting artifact link interfaces; (ii) artifact management—support
for inspecting, controlling, testing artifact state and behaviour, by defining and ex-
ploiting artifacts management interface, besides usage interface.

Among the main points of a possible roadmap for the development of the project
CArtAgO, we consider important: (i) improving the development of the prototype,
supporting all the features presented in the abstract model, by implementing—in
particular—a first support for workspace and workplace, i.e. topology and organi-
sation / security, as described in the paper; (ii) modelling and integrating existing
services as kind of artifacts, in order to be easily re-used when engineering ap-
plications on top of CArtAgO. Two examples are: artifacts wrapping TuCSoN tuple
centres, providing agent coordination facilities, and artifacts wrapping Web Services,
to raise agent interaction with Web Services at the artifact level; (iii) establishing
first models and ontology for defining function descriptions, operating instructions,
and observable state description, possibly reusing existing research efforts on service
description models and (standard) languages, such as OWL-S.

Finally, existing and ongoing research in environment for MAS will be important
to improve the theoretical foundation of CArtAgO, concerning the notion of artifact
and related concepts: for instance, the research work on active perceptions can be
important to improve and extend the model of sensing currently adopted.

References

1. Ricci, A., Viroli, M., Omicini, A.: Programming MAS with artifacts. In Bordini,
R.P., Dastani, M., Dix, J., El Fallah Seghrouchni, A., eds.: 3rd International Workshop
“Programming Multi-Agent Systems” (PROMAS 2005), AAMAS 2005, Utrecht, The
Netherlands (2005) 163–178

2. Viroli, M., Omicini, A., Ricci, A.: Engineering MAS environment with artifacts. In
Weyns, D., Parunak, H.V.D., Michel, F., eds.: 2nd International Workshop “Environ-
ments for Multi-Agent Systems” (E4MAS 2005), AAMAS 2005, Utrecht, The Nether-
lands (2005) 62–77

3. Weyns, D., Parunak, V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for multia-
gent systems, state-of-the-art and research challenges. In: Environments for Multiagent
Systems. Volume 3374 of LNCS., Springer Verlag (2005)

4. Amant, R.S., Wood, A.B.: Tool use for autonomous agents. In Veloso, M.M., Kamb-
hampati, S., eds.: AAAI/IAAI’05 Conference, Pittsburgh, PA, USA, AAAI Press / The
MIT Press (2005) 184–189

5. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In: AAMAS’04. Vol-
ume 1., New York, USA, ACM (2004) 286–293

6. Nardi, B.A.: Context and Consciousness: Activity Theory and Human-Computer In-
teraction. MIT Press (1996)

118

7. Kirsh, D.: Distributed cognition, coordination and environment design. In: European
conference on Cognitive Science. (1999) 1–11

8. Agre, P.: Computational research on interaction and agency. Artificial Intelligence 72
(1995) 1–52

9. Agre, P., Horswill, I.: Lifeworld analysis. Journal of Artificial Intelligence Reserach 6
(1997) 111–145

10. Dourish, P.: Where the action is. The MIT Press (2001)
11. Gasser, L.: MAS infrastructure: Definitions, needs, and prospects. In Wagner, T.,

Rana, O., eds.: Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-
Agent Systems. Volume 1887 of LNAI. Springer (2001) 1–11

12. Sycara, K., Paolucci, M., van Velsen, M., Giampapa, J.: The RETSINA MAS infras-
tructure. Autonomous Agents and Multi-Agent Systems 7 (2003)

13. Bellifemine, F., Poggi, A., Rimassa, G.: JADE: a FIPA2000 compliant agent develop-
ment environment. In: 5th International Conference on Autonomous Agents (Agents
2001), Montreal, Quebec, Canada, ACM Press (2001) 216–217

14. Russel, S., Norvig, P.: Artificial Intelligence. A Modern Approach. 2nd edn. Prentice
All, New Jersey (2003)

15. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Ar-
chitecture: Patterns for Concurrent and Networked Objects. Wiley & Sons (2000)

16. Viroli, M., Ricci, A.: Instructions-based semantics of agent mediated interaction. In:
AAMAS’04. Volume 1., New York, USA, ACM (2004) 286–293

17. Ferber, J., Gutknecht, O.: A meta-model for analysis and design of organizations in
multi-agent systems. In: Proceedings of ICMAS ’98, IEEE Press (1998)

18. Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J.A., Arcos, J.L.: Ameli: An agent-based
middleware for electronic institutions. In Jennings, N.R., Sierra, C., Sonenberg, L.,
Tambe, M., eds.: AAMAS 2004. Volume 1., New York, USA, ACM (2004) 236–243

19. Omicini, A., Ricci, A., Viroli, M.: RBAC for organisation and security in an agent
coordination infrastructure. Electronic Notes in Theoretical Computer Science 128
(2005) 65–85

20. Sandhu, R., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based control models.
IEEE Computer 29 (1996) 38–47

21. Weyns, D., Holvoet, T.: Formal model for situated multiagent systems. Fundamenta
Informaticae 63 (2004) 125–158

22. Platon, E.e.a.: Oversensing with a softbody in the environment: Another dimension
of observation. In G. Kaminka, G., Pynadath, D., Geib, C., eds.: Proceedings of the
“Modeling Others from Observation” Workshop, International Joint Conference on
Artificial Intelligence, Edinburgh, Scotland (2005)

23. Weyns, D., Steegmans, E., Holvoet, T.: Towards active perception in situated multia-
gent systems. Applied Artificial Intelligence 18 (2004) 867–883

24. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer
Programming 41 (2001) 277–294

25. Omicini, A., Zambonelli, F.: Coordination for Internet application development. Au-
tonomous Agents and Multi-Agent Systems 2 (1999) 251–269

119

