
[FP6-2003-IST-2] contract no. 511632

Contract no. 511632

CASCOM

Context-Aware Business Application Service Co-ordination in Mobile
Computing Environments

Instrument: STREP

Thematic Priority: [FP6-2003-IST-2]

Deliverable D5.2: Service Composition and Execution in IP2P
Environments

Due date of deliverable: August 31, 2006
Actual submission date: August 31, 2006

Start date of project: 01.09.2004 Duration: 36 months

Project coordinator name: Dr. Oliver Keller
Project coordinator organisation name: DFKI

 Released

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)
Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 3(105)

Deliverable D5.2: Service Composition and Execution in
IP2P Environments

Document Properties:

Document Number1: IST-2003-511632-CASCOM/WP5/D5.1
Document responsible: ADETTI

Author(s)/editor(s):
ADETTI {António Lopes, Rui Fonseca, Luís Botelho}, URJC
{Alberto Fernandez, Matteo Vasirani, Sascha Ossowski},
UniBasel {Thorsten Möller, Heiko Schuldt}, DFKI {Bastian
Blankenburg}

Document Type2: Deliverable
Security Type3: Public
Status of the Document4: Released
Reviewed by5: TMC
Version 1.0

Revision History:

Revision Date Issued by Description

0.1 2006-06-21 António Lopes Initial Table of Contents

0.2 2006-07-18

António Lopes, Rui
Fonseca, Alberto
Fernandez, Matteo
Vasirani, Thorsten
Möller

Added content to sections 2.1.2, 2.4 and 3

0.3 2006-07-20

António Lopes,
Luís Botelho,
Bastian
Blankenburg

Updated content on section 3.2

Added content on sections 2.1.1 and 2.3

0.4 2006-07-25
Alberto Fernandez,
Matteo Vasirani,
António Lopes

Small changes and comments in the entire
document

0.5 2006-07-31 António Lopes,
Alberto Fernandez,

Changed the structure of sections 2 and 3,
corrected some errors and comments throughout

1 Format: IST-2003-511632-CASCOM/<Source ID>/(<Partner ID)/<Type> <number>
 Example: IST-2003-511632-CASCOM/WP3/D01 (Document comes from the WP1, Deliverable 1)
2 Document Type: Report,/Deliverable/ PM
3 Security Type:
 Confidential Internal circulation within project (and Commission project Officer if requested)

Restricted Restricted circulation list (specify in footnote) and Commission PO only
Internal With no confidential content but intended for internal use
Public Public document

4 Draft <#>, Draft <#> Reviewed, Final Draft, Released, Revised Draft <#>, etc
5 Reviewed by: <Appointed Reviewer>/TMC / PMC

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 4(105)

Thorsten Möller the entire document.

0.6 2006-08-04

António Lopes,
Alberto Fernandez,
Bastian
Blankenburg

Updated the content on sections 2.1 and 2.2

0.7 2006-08-11

Thorsten Möller,
António Lopes,
Alberto Fernandez,
Matteo Vasirani,
Sascha Ossowski

Updated content in sections 3.2.3, 3.2.4, 3.2.5.

Merged the terms “Plan”, “Composite Service” and
“Composite Service” into “Composite Service”.

Updated section 2.1.3.3

Corrected some text throughout the entire
document based on comments from partners.

1.0 2006-08-14

António Lopes,
Alberto Fernandez,
Sascha Ossowski,
Matteo Vasirani,
Heiko Schuldt

Added the introduction

Corrected an error in section 2.1.3.3.5

Reviewed section 3

1.0 2006-08-31 Heikki Helin Final editing

Abstract:

This document is the Deliverable 5.2 of the CASCOM project. This deliverable describes the work

done in the project regarding service composition and execution in IP2P Environments. The

deliverable is divided in two different main sections: the first main section of this deliverable describes

methods for service composition planning in IP2P environments. The second main section of the

deliverable describes the design of the reliable CASCOM service execution platform suitable for IP2P

environments.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 5(105)

Table of Contents
1 Introduction.. 10

1.1 Definition of Terms .. 11
2 Service Composition in IP2P Environments... 12

2.1 Service Composition Planner Agent .. 12
2.1.1 Typical Usage and Interface ... 12

2.1.1.1 The Agent’s Interface .. 12
2.1.1.2 Testing the Agent .. 13

2.1.1.2.1 doComposition .. 13
2.1.1.2.2 Get Matching Services from the SDA............................ 13
2.1.1.2.3 Answer to doComposition ... 13

2.1.2 Internal Architecture.. 14
2.1.3 Components Detailed Description .. 15

2.1.3.1 Directory-based Service Composition with OWLS-XPlan 15
2.1.3.1.1 OWLS-XPlan... 16

2.1.3.2 Pre-conditions and Effects Composition Planner............................. 20
2.1.3.2.1 PcECP’s Internal Architecture....................................... 20

2.1.3.3 Filters for Service Composition: A Role and Category based
Approach... 25
2.1.3.3.1 Overview... 26
2.1.3.3.2 Obtaining the Relevance Matrix 28
2.1.3.3.3 Service Relevance Calculus ... 33
2.1.3.3.4 Types of Generic Service Composition Filters 34
2.1.3.3.5 Service Composition Filter Instantiation 36
2.1.3.3.6 Implementation ... 37

2.2 Open Service Composition.. 39
2.2.1 Dynamic Version of OWLS-XPlan .. 39

2.3 User-centered Composition of Value Added Information... 42
2.3.1 Fredo, the Agent... 42
2.3.2 Information Broker Agent.. 43

2.3.2.1 Representing Preferences... 44
2.3.2.2 Identifying Information Providers ... 45
2.3.2.3 Querying the Information Providers ... 46
2.3.2.4 Evaluating Gathered Information ... 49

3 Service Execution in IP2P Environments... 52
3.1 Executing OWL-S/WSDL Services .. 52
3.2 Distributed Approach... 53

3.2.1 Execution Strategy ... 54
3.2.1.1 Fully-Decentralised Execution Strategy with Tight Integration of

Execution Agent and Web Services .. 55
3.2.1.2 Dynamically-Decentralised Execution Strategy with Remote

Coupling of Execution Agent and Web Services 56
3.2.2 General Structure ... 58
3.2.3 Interaction Interface.. 60

3.2.3.1 Achieve Rational Effect * Protocol ... 60
3.2.3.2 Agent Ontology.. 65

3.2.3.2.1 Description of Predicates .. 67
3.2.3.2.2 Description of Concepts .. 67
3.2.3.2.3 Description of Agent Actions ... 69

3.2.4 Execution Monitoring .. 73
3.2.5 Context-awareness... 74

3.3 Centralised Approach.. 74
3.3.1 Service Execution Agent... 75

3.3.1.1 Agent’s Interface ... 75

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 6(105)

3.3.1.2 Context-awareness ... 75
3.3.1.3 Internal Architecture .. 76
3.3.1.4 OWL-S Grounding Extension: AgentGrounding 78

References ... 81
Annexes.. 82

A. OMS_InitialOntology.owl file content ... 83
B. OMS_GoalOntology.owl file content .. 85
C. RegisterPatientService.owl file content.. 87
D. SellMedicineService.owl file content.. 90
E. DeliverService.owl file content... 93
F. CompositeService.owl file content... 96

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 7(105)

List of Figures
Figure 1 – ACL Message received by the SCPA to perform composition13
Figure 2 – ACL Message return by the SCA with composition’s result...14
Figure 3 – SCPA internal architecture..15
Figure 4 – Part of OWL-S 1.1 Service Description...17
Figure 5 – Part of an action description in PDDLXML converted by OWLS2PDDLXML17
Figure 6 – Using parts of methods to reach a goal state in OWLS-XPlan18
Figure 7 – Architecture of XPlan ..19
Figure 8 – Part of plan description in PDDLXML..20
Figure 9 – Example of Init conversion to PDDL ...22
Figure 10 – Beginning of the Action conversion process ...23
Figure 11 – Action’s pre-conditions conversion process ..23
Figure 12 – Action’s Effects conversion process..24
Figure 13 – Sapa's architecture ...25
Figure 14 – Architecture of the filter component ..28
Figure 15 – Historical information matrix update algorithm ..30
Figure 16 – Relevance matrix refinement algorithm...32
Figure 17 – Service relevance algorithm..34
Figure 18 – Filter of services. The three possible configurations are described.35
Figure 19 – Partial CASCOM interaction ontology ...36
Figure 20 – Class diagram of the filter component...38
Figure 21 – General view of class relations ...39
Figure 22 – Fredo Scenario Example ..43
Figure 23 – Request received by Fredo from its client ...43
Figure 24 – Preference for cheap Italian Restaurants..45
Figure 25 – Fuzzy lessThan(10) ..47
Figure 26 – Paged Information-Request Protocol ..48
Figure 27 – Membership functions: a) lessThan(N) b) equalTo(N) ..50
Figure 28 – Fuzzy value Italian Food ...50
Figure 29 – Course of fully-decentralised execution strategy with tight integration of SEA and

service provider ..56
Figure 30 – Dynamically-decentralised execution strategy with remote coupling of execution agent

and Web services ...57
Figure 31 – Execution Agent – General Class structure ..58
Figure 32 – On Execution System to Agent integration – Class structure59
Figure 33 – Message Flow...61
Figure 34 – Achieve Rational Effect * Protocol – Initiator state model ...62
Figure 35 – Achieve Rational Effect * Protocol – Responder state model......................................63
Figure 36 – Achieve Rational Effect * Protocol – Class structure...64
Figure 37 – Overview of ontology of execution agent ..66
Figure 38 – Internal Architecture of the Service Execution Agent ..77
Figure 39 – Example of AgentGrounding description...79
Figure 40 – Message generated from the example in Figure 39 ..80

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 8(105)

List of Tables
Table 1 – Example of information about historical plans ..27
Table 2 – Example of classes information about historical plans ...29
Table 3 – Relevance matrix. ..31
Table 4 – Example of relevance matrix..32
Table 5 – Preference structure ..44
Table 6 – Description of the predicate object Status..67
Table 7 – Description of the predicate object Statistic..67
Table 8 – Description of the concept object OWLSServiceID ..67
Table 9 – Description of the concepts OWLSService and OWLSServiceFragment68
Table 10 – Description of the concept StatusType...68
Table 11 – Description of the concept Measurement ...68
Table 12 – Description of the concept StatisticOptions ..68
Table 13 – Description of the concept ValueMapping ..69
Table 14 – Description of the agent action DownloadAction ..69
Table 15 – Description of the agent action UploadAction...70
Table 16 – Description of the agent action UploadExecuteAction..70
Table 17 – Description of the agent action ExecuteAction ...71
Table 18 – Description of the agent action UpdateAction ..71
Table 19 – Description of the agent action UpdateExecuteAction..72
Table 20 – Description of the agent action StatisticsAction..72
Table 21 – Description of the agent action RemoveAction...73
Table 22 – Description of the agent action AbortAction ...73

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 9(105)

Abbreviations

ACL Agent Communication Language

AIC Agent Interaction Component

FIPA Foundation for Intelligent Physical Agents

IOPEs Inputs, Outputs, Pre-conditions and Effects

IP2P Intelligent Peer-to-Peer

JADE Java Agent DEvelopment framework

OWL Web Ontology Language

OWL-S Web Ontology Language for Services

P2P Peer to Peer

PA Personal Agent

PDDL Planning Domain Definition Language

PcECP Pre-conditions and Effects Composition Planner

RTPG Relaxed Temporal Planning Graph

SCPA Service Composition Planner Agent

SDA Service Discovery Agent

SEA Service Execution Agent

SOAP Simple Object Access Protocol

REST REpresentational State Transfer

WSDL Web Services Description Language

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 10(105)

1 Introduction

The present document is the deliverable 5.2 of the CASCOM project. CASCOM’s main objective is
to implement, validate, and trial value-added supportive infrastructure for business application
services for mobile workers and users across mobile and fixed networks. The driving vision of
CASCOM is that ubiquitous business application services are flexibly coordinated and pervasively
provided to the mobile worker/user by intelligent agents in dynamically changing contexts of open,
large-scale, and pervasive environments. In compliance with the research objectives of the project,
we primarily focus on the W3C standard OWL-S [OWLS03][MBHL04] for describing semantic Web
services (based on the W3C standard OWL [OWL03] language) such that standard reasoning
services can be used by intelligent agents to automatically find and compose relevant services
without too much interaction with its user.

The deliverable is a part of CASCOM’s work package 5 whose primary objectives include:

o To develop and deploy generic agents and advanced mechanisms for service co-
ordination in IP2P environments.

o To develop agent-based distributed service directories IP2P environments with
fixed and dynamic topology.

o To investigate concepts, architectures, and methods to incorporate situation-
awareness into service coordinating and providing agents in IP2P environments.

o To develop a reliable service execution platform.

This deliverable describes the methods for service composition planning and execution in
IP2P environments. This includes the description of the Service Composition Planner
Agent and the approaches for Service Execution in the CASCOM environment.

The first part of the deliverable (Section 2) is dedicated to describing the methods for
service composition planning. This main section is divided into three sub-sections.

The first one (Section 2.1) is dedicated to describing the Service Composition Planner
Agent, which is an integrated agent for service composition planning activities within the
CASCOM environment. This agent has 3 components, described in Sections 2.1.2 and
2.1.3, specifically designed to optimize the composition planning process of Semantic Web
services.

The second one (Section 2.2) describes methods for open service composition. In this
section a dynamic version of the OWLS-XPlan composition planner, OWLS-XPlan+ is
described.

The third sub-section (Section 2.3) describes a specialization of the composition planning
process specifically oriented to information services: a broker agent specialized in creating
value-added information services based on the preferences provided by a specific user.

The second part of the deliverable (Section 3) is dedicated to describing the methods for
execution of Semantic Web services in the CASCOM environment. This main section is
divided into three sub-sections as well.

The first sub-section (Section 3.1) makes a general description of the execution process of
OWL-S/WSDL services. This sub-section describes this process independently of any
chosen approach for executing processes.

The second sub-section (Section 3.2) describes a distributed approach to address the
execution of Semantic Web Services. It explains how to deploy a set of several service
execution agents to coolaborate in the execution of a composite service.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 11(105)

The third sub-section (Section 3.3) describes an alternative and somehow complementary
approach to the one presented in Section 3.2, by presenting a centralized approach for
executing Semantic Web services. In this approach a single specialized service execution
agent is used to execute composite services as requested by client agents.

1.1 Definition of Terms
A lot of different terms can be used to describe the result of structured composition
planning of several atomic services into one single service, such as plan, compound
service or composite service. To avoid ambiguity, we have decided to use the official term
as used in the W3C’s OWL-S standard: composite service.

Please note that, even though sometimes the term “process” can be used to describe a
composite service as well, we decided not to exclude this term from the text of the
deliverable because it can also be used to denote an atomic service, as opposed to a
composite one.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 12(105)

2 Service Composition in IP2P Environments

Service composition is the problem of the dynamic creation of a new service that satisfies given
requirements, received in the service composition request. The new service is created by the
composition of a specific set of other component services, which must be described to the service
composition agent within the received request.

2.1 Service Composition Planner Agent
In the CASCOM architecture the Service Composition Functionality is delivered by the Service
Composition Planner Agent, which is described in the following sections.

2.1.1 Typical Usage and Interface
In a typical scenario, the Personal Agent (PA) sends a composition request message to the SCPA.
This is done using the standard FIPA request protocol. This message must contain two
components, the initial state of the world and the goal to achieve (both in OWL).

After receiving the request, the SCPA cannot immediately perform the composition and before
that, it must contact the SDA in order to retrieve OWL-S descriptions of relevant services. When
the SDA replies, its message must include a sequence of OWL-S complete service descriptions.

After receiving the set of atomic services that will be used for composition, the SCPA performs the
second step, which refers to internal processing and the planning process itself.

Once the planning completed successfully, the SCPA converts the plan to an OWL-S composite
service description and informs the PA about the plan. Simultaneously, the SCPA requests the
SEA to execute the plan. Any subsequent messages from the SEA about the execution status of
the plan are forwarded to the PA.

2.1.1.1 The Agent’s Interface
When requesting the composition of a new service, client agents interact with SCPA through the
FIPA-request interaction protocol. Such protocol states that when the receiver agent receives an
action request, it can either agree or refuse to perform the action. Whichever should be its
decision, the agent should then notify the other agent of its decision through the corresponding
communicative act (FIPA-agree or FIPA-refuse). By default, if no time constraints apply, the SCPA
should always agree to perform the action. If should the answer be a refuse (e.g., the agent cannot
perform the request in the given time), the protocol ends and no more messages are exchanged
between the agents.

Responding with an agree message establishes a compromise between those two agents, in
which, the FIPA-request protocol states that, after a successful action execution the executor
agent should return the results through a FIPA-inform message. The SCPA returns a composite
service description in OWL-S, which states the result of the composition. Thus, the SCPA will send
a FIPA-inform-result message containing the OWL-S description of the new composite service.

However, before composition can be done, the SCPA needs to ask the SDA for relevant services.
So, the SCPA itself sends a request to the SDA, in order to obtain the services that may be
included in the final composite service. It also uses the FIPA-request protocol and the SDA replies
also with a FIPA-agree first, and then with the FIPA-inform-result.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 13(105)

2.1.1.2 Testing the Agent
In this section we present a succinct yet well-aimed example of this agent’s behaviour. Let’s
picture the following scenario to produce this example: the PA requests the SCPA to create a
composite service that should contain these three component services: RegisterPatientService,
SellMedicineService and DeliverService.

2.1.1.2.1 doComposition
The received FIPA-ACL [FIPA00b] message with FIPA-SL [FIPA00c] content is depicted in Figure
1.

(REQUEST
 :sender (agent-identifier :name pa@cascom)
 :receiver (set (agent-identifier :name scpa@cascom))
 :content "((action
 (agent-identifier :name scpa@cascom)
 (doComposition
 :categories \"http://.../OnlineMedicineSelling.owl\"
 :init \"http://.../OMS_InitialOntology.owl\"
 :goal \"http://.../OMS_GoalOntology.owl\")))"
:language fipa-sl
:protocol fipa-request
:ontology scpa-ontology)

Figure 1 – ACL Message received by the SCPA to perform composition

The FIPA-ACL message with FIPA-SL content in Figure 1 is a request message, meaning that the
receiver (e.g., SCPA) will, if agreed, perform an action. This action, “doComposition” in the
example, has three arguments: the OWL-S request description that should contain IOPEs of the
composite service and component services categories; the OWL description of the initial state of
the world and the OWL description of the goal to achieve.

OMS_InitialOntology.owl and OMS_GoalOntology.owl files content are presented in annexes A
and B, respectively. The OnlineMedicineSelling.owl has the Composite Service IOPEs plus the
component services categories (e.g., Register-Patient, Sell-Medicine and Deliver-Service).

2.1.1.2.2 Get Matching Services from the SDA
The next step implies sending a message to the SDA, to obtain the services description to be part
of the composite service. This interaction with the SDA takes place exactly as described in
Deliverable 5.1.

The returned services by the SDA are the RegisterPatientService.owl, SellMedicineService.owl
and DeliverService.owl files, which are presented in annexes C, D and E, respectively.

2.1.1.2.3 Answer to doComposition
At this point the SCPA performs some pre-processing of the input files and then begins the
composition and by the time it finishes, the generated plan is then transformed to an OWL-S
description of the composite service (see CompositeService.owl file, which is presented as in
annex F), and finally the SCPA returns the result to the PA. The reply message is presented in
Figure 2.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 14(105)

(INFORM
 :sender (agent-identifier :name scpa@cascom)
 :receiver (set (agent-identifier :name pa@cascom))
 :content "((result
 (action
 (agent-identifier :name scpa@cascom)
 (doComposition
 :categories \"http://.../ OnlineMedicineSelling.owl\"
 :init \"http://.../OMS_InitialOntology.owl\"
 :goal \"http://.../OMS_GoalOntology.owl\"))
 (\"http://.../CompositeService.owl\"))"
 :language fipa-sl
 :protocol fipa-request
 :ontology scpa-ontology)

Figure 2 – ACL Message return by the SCA with composition’s result

Figure 2 shows the message that the SCPA sends to the Personal Agent. It is an Inform message
containing the composite service description.

2.1.2 Internal Architecture
Figure 3 shows the internal architecture of the SCPA, which consists of three main components.

The Filter (detailed in section 2.1.3.3) reduces the set of relevant services that will be used for
composition. This filter is applied to the services retrieved by the SDA. Its goal is to select a
smaller set of services to be used for composition in order to increase the efficiency of the planning
process.

The OWLS-XPlan (see section 2.1.3.1.1) is a service composition planner that takes a set of
OWL-S services, a description of the initial state and the goal state to be achieved as input, and
returns a plan. The set of service descriptions is obtained from the filter.

In addition to the OWLS-XPlan the SCPA includes a pre-conditions and effects composition
planner (PcECP) (see section 2.1.3.2). This planner is used to check whether the plan created by
the OWLS-XPlan is valid in terms of the pre-conditions and effects specified in the query. To carry
out this evaluation, the PcECP will receive as input the set of atomic services that make up the
composite plan and will try to generate a plan. If that plan is equal to the one created by the
OWLS-XPlan then it is returned as the valid plan6. If the plan is not valid, the OWLS-XPlan is
invoked again to generate a different plan. The process is repeated until a compatible plan is found
or no more different plans can be generated.

6 Plans that have the exact same actions structured in a Parallel-like construct are considered to be equal, as

the order in which the actions are executed in the plan are irrelevant for the effects that the actions
produce.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 15(105)

SCPA

Filter

N services

M
services

M <= N

OWLS-XPlan

=?

PcECP

Initial
State

Goal
State

plan

plan

NO
Generate
new plan

Plan’s atomic
services

YES

plan

Figure 3 – SCPA internal architecture

2.1.3 Components Detailed Description
In this section, we provide a detailed description of each of components that make up the internal
architecture of the Service Composition Planner Agent.

2.1.3.1 Directory-based Service Composition with OWLS-XPlan
Hierarchical task network (HTN) planners such as SHOP2 perform well in domains for which
complete and detailed knowledge on at least partially hierarchically structured action execution
patterns is available, such as, for example, in scenarios of rescue planning. In domains in which
this is not the case, i.e., no concrete set of methods and decomposition rules that lead to an
executable plan are provided, an HTN planner would not find the solution due to the fixed structure
of hierarchical action decompositions stored in its database. That inherently limits the degree of
quality of any HTN planner to that of its used methods that are created by human experts.

In contrast, action based planners are able to find a solution based on atomic actions as they are
described in the methods, but without using the structure of the latter. Atomic actions can be
combined in multiple ways to solve a given planning problem. The problem then is to cope with
planning problems that are in part hierarchically structured according to decomposition rules and
methods but not solvable exclusively by means of HTN planning.

For this purpose, we developed a hybrid AI planner Xplan which combines the benefits of both
approaches by extending an efficient graph-plan based FastForward-planner with a HTN planning
component. To use Xplan for semantic Web-Service composition, XPlan is complemented by a
conversion tool that converts OWL-S 1.1 service descriptions to corresponding PDDL 2.1 [M98]
descriptions that are used by Xplan as input to plan a service composition that satisfies a given
goal. In contrast to HTN planners, Xplan always finds a solution if it exists in the action/state space

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 16(105)

over the space of possible plans, though the problem is NP-complete. Xplan also includes a re-
planning component to flexibly react to changes in the world state during the composition planning
process. Together the implementations of Xplan and OWLS2PDDL converter make up the
semantic Web service composition planner OWLS-Xplan.

We briefly describe OWLS-XPlan7 in the following section; for more details we refer to the paper
[KGS05].

2.1.3.1.1 OWLS-XPlan
OWLS-XPlan consists of several modules for pre-processing and planning. It takes a set of
available OWL-S services, a domain description and a planning query as input. The domain
description and the planning query contain OWL individuals (facts) which are true initially or are to
be achieved by the plan, respectively. They also contain the necessary OWL ontologies.
OWLS-XPlan then returns a plan sequence, i.e. a composite service, which satisfies the planning
query. For this purpose, it first converts the domain ontology and service descriptions in OWL and
OWL-S, respectively, to an equivalent PDDL 2.1 problem and domain descriptions using the
OWLS2PDDL converter.

The resulting domain description contains the definition of all types, predicates and actions,
whereas the problem description includes all objects, the initial state, and the goal state. Both
descriptions are then used by the AI planner XPlan to create a plan (representing a composite
Web-Service) in PDDL that solves the given problem in the actual domain. For reasons of
convenience, we developed a XML dialect of PDDL, called PDDXML that simplifies parsing,
reading, and communicating PDDL descriptions using SOAP. We also developed a module to
convert the PDDXML plan description to an OWL-S process model, making it possible to
seamlessly integrate OWLS-XPlan into a purely OWL-S based system.

The OWLS2PDDL converter and the XPlan planner are integrated in the CASCOM architecture via
the Service Composition Planner Agent SCPA. While the OWLS2PDDL converter and Xplan
planner are developed in the liaison project SCALLOPS, the SCPA is developed in CASCOM.

2.1.3.1.1.1 OWLS2PDDXML Converter
The conversion of OWL-S 1.1 service descriptions to PDDXML requires the transcription of types
and properties to PDDL predicates as well as the mapping of services to actions. Any OWL-S
service profile input parameter correlates with an equally named one of a PDDL action, and the
hasPrecondition service parameter can directly be transformed to the precondition of the action by
use of predicates. The same holds for the hasEffect condition parameter. For the conversion of the
output of an individual OWL-S service to PDDL, the service output parameter is mapped to a
special type of the service hasEffect parameter. This is because the service hasEffect condition
explicitly describes how the world state will change while this is not necessarily the case for a
hasOutput parameter value, though it could implicitly influence the composition planning process.
However, PDDL does not allow describing such non-physical knowledge. As an example, Figure 4
and Figure 5 show a part of an OWL-S service description and the corresponding PDDXML action,
respectively, which is obtained from the OWLS2PDDXML converter.

7 OWLS-Xplan is available as open source software under Mozilla Public License 1.1 at
 http://projects.semwebcentral.org/projects/owls-xplan/

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 17(105)

Figure 4 – Part of OWL-S 1.1 Service Description

Figure 5 – Part of an action description in PDDLXML converted by OWLS2PDDLXML

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 18(105)

2.1.3.1.1.2 AI Planner XPlan
The AI planner XPlan is a heuristic hybrid search planner based on the FF-planner developed by
Hoffmann and Nebel [HN01]. It combines guided local search with graph planning, and a simple
form of hierarchical task networks to produce a plan sequence of actions that solves a given
problem. This yields a higher degree of flexibility compared to pure HTN planners like SHOP2
[SPW04] whereas the use of predefined workflows or methods improves the efficiency of the
FF-planner. In contrast to the general HTN planning approach, a graph-plan based planner is
guaranteed to always find a solution independent from whether the given set of decomposition
rules for HTN planning would allow building a plan that contains only atomic actions. In fact, any
graph-plan based planner would test every combination of actions in the search space to satisfy
the goal which, of course, can quickly become prohibitively expensive.

XPlan combines the strengths of both approaches. It is a graph-plan based planner with additional
functionality to perform decomposition like a HTN planner. Figure 6 shows an example of how
XPlan of OWLS-XPlan uses only those parts of a given method for decomposition that are
required to reach the goal state with a sequence of composite services WS1 and WS3. In contrast,
HTN planning would completely decompose M into WS1 followed by WS2, hence output also WS2
which is of no use for reaching the goal.

Figure 6 – Using parts of methods to reach a goal state in OWLS-XPlan

2.1.3.1.1.2.1 Architecture
The XPlan system consists of one XML parsing module, and following preprocessing modules.
First, required data structures for planning are created and filled, followed by the generation of the
initial connectivity graph and goal agenda. The core planning modules concern the heuristically
relaxed graph-plan generation and enforced hill-climbing search (cf. Figure 7).

After the domain and problem definitions have been parsed, Xplan compiles the information into
memory efficient data structures. A connectivity graph is then generated and efficiently realized by
means of a look up table, which contains information about connections between facts and
instantiated operators, as well as information about numerical expressions which can be
connected to facts. This connectivity graph is maintained during the whole planning process and
used for the actual search.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 19(105)

Figure 7 – Architecture of XPlan

The first of the core planning modules is concerned with the Relaxed Graphplan generation. This
is done efficiently using a heuristic [H00] which approximates the distance between the initial state
to all reachable states. These distance values are then used to guide the forward directed search.
After each successful step the distance values are updated again using the heuristic. Additionally,
(decomposition) information from hierarchical task networks is used, if required, to cope with
partially hierarchical domains.

The graphplan generation is interleaved with an enforced hill-climbing search method to prune the
search space during planning. Information on the quality of an action (execution of a service) is
utilized by the local search to decide upon two or more steps that are equally weighted by the
heuristic. This is done by computing the set of helpful executable actions for every search state
such that the goal eventually can be reached. A helpful action of a search state S is an action that
satisfies at least one proposition of the goal set of the first layer in the plan graph. If there are
many helpful actions, then actions of an HTN decomposition are preferred. The reason is that such
actions are more likely to be succeeded by an useful action in the task network as part of the
relaxed plan.

Figure 8 shows a fragment of the plan description produced by Xplan, i.e., a sequence of actions,
that is, the composed sequence of corresponding OWL-S services that should be executed by the
agent.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 20(105)

Figure 8 – Part of plan description in PDDLXML

2.1.3.1.1.2.2 Implementation
We implemented Xplan modularly in C++, using the Microsoft MSXML Parser for reading PDDXML
definitions and generating plans in XML format. Alternatively, XPlan also provides an interface for
direct interchange of planning data without having to use PDDXML as interchange format.

2.1.3.2 Pre-conditions and Effects Composition Planner
To enhance the planning capabilities of the Service Composition meta-service of the CASCOM
Architecture, a pre-conditions and effects composition planner was developed in the scope of the
task Service Composition in IP2P Environments. The PcECP provides a way of composing
services using the pre-conditions and effects of the atomic services.

This composition planner uses Sapa [DK01], a Multi-objective Metric Temporal Planner, to create
a composite service. Sapa is a domain-independent heuristic forward chaining planner that can
handle durative actions, metric resource constraints, and deadline goals. It is designed to handle
the multi-objective nature of metric temporal planning. This composition planner uses standards
such as OWL/OWL-S [OWL03] [OWLS03] service descriptions and PDDL [M98] descriptions. The
OWLS2PDDL converter was adapted from the OWLS2PDDXML [DFKI05] (see section 2.1.3.1.1.1)
in order to convert OWL-S to PDDL, suitable for the Sapa planner inputs.

The Pre-conditions and Effects Composition Planner (PcECP) was developed as a single
component that can easily be integrated into an autonomous agent. In the scope of the CASCOM
Architecture, the Service Composition Planning Agent (SCPA) is equipped with this component in
order to provide a way of composing services using the pre-conditions and effects expressed in
the clients’ requests. During the trial of the CASCOM project the added value of this component
will be evaluated.

2.1.3.2.1 PcECP’s Internal Architecture
The PcECP component has two sub-components: the OWLS2PDDL converter and the Sapa
Planner. As described before, after receiving the composition request, the SCPA must first contact
the Service Discovery Agent (SDA) in order to obtain a set of candidate services to perform the

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 21(105)

composition planning. After receiving the set of atomic services that will be used for composition,
the SCPA performs the second step, which refers to internal processing of the request.

In the PcECP this internal processing is related to input Sapa parameters. The Sapa has two input
parameters, the description of the Domain and the description of the Problem (both in PDDL).
Thus, the SCPA uses an internal component named OWLS2PDDL, which will provide those two
translated inputs, ready to be used by Sapa. When the two inputs are translated into PDDL, the
SCPA begins the composition process using the Multi-Objective Metric Temporal Planner Sapa.

Sapa’s output will be a chaining of services mostly based on their own pre-conditions and effects
that satisfy the composition’s goal. Once the planning is done, all information regarding the
chained services is extracted (e.g., pre-conditions and effects) to be then processed by an
algorithm that will provide the information about the composite service. Such information is
displayed through the composite service inputs, outputs, pre-conditions and effects (IOPEs)
considering the generated chain of services. After all those steps, the information (IOPEs)
produced by the algorithm and the chain of services obtained by the planning, are then loaded in
OWL-S objects in the OWL-S API [S04] in order to produce a complete OWL-S description of the
composite service.

2.1.3.2.1.1 The Converter: OWLS2PDDL
As previously explained, when a service composition is needed, the Service Composition Planner
Agent receives the initial state of the world, the goal to achieve both in OWL and the request
description in OWL-S with the service categories to be part of the new composite service.
Considering the fact that Sapa inputs must be in PDDL, a conversion needs to be done.

A typical problem file in PDDL has three sections: the Objects, the Init and the Goal definitions.
The Objects section has all objects mapped to their own types (e.g., location0 location1 –
Location). The Init section has all predicates that, given their arguments, produce the initial state of
the world (e.g., at patient0 location0, wants_account patient0). At last, the Goal section has all
predicates that also, given their arguments, produce the goal to achieve (e.g.,
Patient_ownsMedicine patient0 medicine0, at medicine0 location0).

To produce the problem file in PDDL, the converter only needs to process the Init and Goal
descriptions received by the SCPA. Such files follow a unique pattern. They all have the base
ontology followed by the predicates that describe their best interests (Init, Goal).

Given OWL/OWL-S description format, it is possible to map all our needs knowing what each tag
represents. So, the converter processes those two files and creates the referred objects attached
to their types, the Init section with the predicates and arguments extracted from the initial state of
the world ontology file, and the goal section similar to the Init, but using the Goal ontology file.
Figure 9 shows an example of a tipical Init description conversion to PDDL.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 22(105)

Figure 9 – Example of Init conversion to PDDL

A typical domain file in PDDL has also three sections, yet, obviously different from the problem.
Those sections are: the Types, the Predicates and the Actions. Usually the Types section contains
object types matched to their super types (e.g., Location – Object, Medicine - Product).

The Predicates section presents the predicates that can and/or will represent the action’s
pre-conditions and/or effects (e.g., Patient_ownsMedicine ?p – Patient ?m – Medicine). Finally the
Actions section contains all actions (services), belonging to the domain, that will be used to
perform the plan. Such actions may or may not be chosen by the planner to be part of the plan.

Each Action (Service) has three sub-sections: the Parameters (e.g., ?RegisterPatientService_p –
Patient), the Pre-conditions (e.g., Patient_hasValidData ?RegisterPatientService_p) and the
Effects (e.g., not(wants_account ?RegisterPatientService_p)).

To create the domain file in PDDL the converter needs to process the ontology files (Init, Goal) as
well as the service files. These service files refer to the services returned by the SDA and each
service will become an action to be part of the domain file. Hence, to create the Types and the
Predicates section, the converter only has to process the ontology files and figure out which types
are sub types of others and which predicates exist in the domain.

Similar to these two sections (Types and Predicates) but slightly more complex, comes the Actions
section. Each Service file, will state an Action in the domain file. In order to ease the
comprehension of the conversion process, a few pictures are presented next.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 23(105)

Figure 10 – Beginning of the Action conversion process

Figure 11 – Action’s pre-conditions conversion process

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 24(105)

Figure 12 – Action’s Effects conversion process

Figure 10, Figure 11 and Figure 12 show which parts the converter uses to perform the
conversion. As stated before, the Action has to be composed of three sub-sections. These pictures
show an example of the RegisterPatientService (action) and its parameters, pre-conditions and
effects.

2.1.3.2.1.2 The Planner: Sapa
Sapa is a forward chaining planner, which searches in the space of time-stamped states. Sapa
handles durative actions as well as actions consuming continuous resources. It was developed
regarding heuristics for focusing Sapa’s multi-objective search. These heuristics are derived from
the optimistic reachability information encoded in the planning graph. Unlike classical planning
heuristics, which need only estimate the “length” of the plan needed to achieve a set of goals,
Sapa’s heuristics need to be sensitive to both the cost and length (“makespan”) of the plans for
achieving the goals.

Sapa improves the temporal flexibility of the solution plans by post-processing these plans to
produce order constrained (or partially-ordered) plans. This way, Sapa is able to exploit both the
ease of resource reasoning offered by the position-constrained plans and the execution flexibility
offered by the precedence-constrained plans.

All definitions aside, Sapa’s purpose in this component is to generate, if possible, a chain of
services based on their pre-conditions and effects that satisfy the composition’s goal. Such output
will then be loaded in the OWL-S API to produce the composite service description as previously
explained.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 25(105)

Figure 13 – Sapa's architecture

Figure 13 shows the high-level architecture of Sapa. Sapa uses a forward chaining A* search to
navigate in the space of time-stamped states. Its evaluation function is multi-objective and is
sensitive to both makespan and action cost. When a state is picked from the search queue and
expanded, Sapa computes heuristic estimates of each of the resulting children states. The
heuristic estimation of a state S is based on (i) computing a relaxed temporal planning graph
(RTPG) from S, (ii) propagating cost of achievement of literals in the RTPG with the help of time-
sensitive cost functions (iii) extracting a relaxed plan Pr for supporting the goals of the problem and
(iv) modifying the structure of Pr to adjust for mutex and resource-based interactions. Finally, Pr is
used as the basis for deriving the heuristic estimate of S. The search ends when a state S0
selected for expansion satisfies the goals. In this case, Sapa post-processes the
position-constrained plan corresponding to the state S to convert it into an order constrained plan.
This last step is done to improve the makespan as well as the execution flexibility of the solution
plan.

2.1.3.3 Filters for Service Composition: A Role and Category based Approach
According to the CASCOM Architecture, when a Personal Agent requests a service, it first
contacts the SDA to search for it. If no providers are found, then the PA asks the SCPA (Service
Composition Planning Agent) to create a composite service that includes several pre-existing
services. In order to be able to generate such a plan that matches the original query, the SCPA
needs a set of input services to set out from.

Ideally, the set of services taken into account to create the composite plan should comprise all
services registered in the directory. However, this can be impracticable as the number of services
increases, as it is expected to occur in the open IP2P environments that CASCOM targets. To
overcome that problem, it is necessary to reduce the set of input services that are passed on to the
planner. For this purpose, we propose filters that sort out those services registered within the
directories that are less relevant to the planning process.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 26(105)

Selecting the set of candidate services to form the plan is not an easy task. Several ad-hoc
heuristics can be thought of (e.g. services that share at least one input or output with the query
etc…). In this section we propose a more informed method for filtering services that makes use of
service class information. We first develop a generic framework for service-class based filtering,
and then instantiate it to different filters on the basis of (a) organizational information obtained from
the role ontology and (b) the service category derived from the directory structure.

The SCPA will be equipped with a component that implements the approach presented in this
section. During the trial of the CASCOM project the added value of this component will be
evaluated.

2.1.3.3.1 Overview
In this section we give a birds-eye view of our approach to service filtering for composition. Setting
out from an ideal situation, we outline the major difficulties that need to be overcome, so as to
motivate our service filtering mechanism. The technical details of the process are described in
subsequent subsections.

At a high level of abstraction, the service composition planning problem can be conceived as
follows: Let P = {p1, p2, …, pm} be the set of all possible plans (composite services) for a given
service request R, and D = {s1, s2, …, sn} the set of input services for the proper service
composition planner (i.e. the directory8 available). The objective of a filter F is to select a given
number l of services from D, such that the search space is reduced, but the best plan of P can still
be found.

In an ideal situation with complete information (i) the set of all plans P is known and (ii) the quality
of each plan can be evaluated (obviously, the plan that requires the least number of services is not
always the one that best matches a query). In this case, the set of services returned by the filter
should include all the services of the best plan (as well as some others until the number of l
services is reached). However, it is obvious that this ideal case is not realistic since the problem
would be already solved (i.e. the plan of maximum quality is supposed to be known beforehand).

In a next step, suppose that it is not possible for the filter to evaluate the quality of the plans in P.
In this case, if the number of services necessary for the execution of all plans in P is bigger than
the number of services l that are allowed to pass our filter, the latter should make sure that the
pruning of the search space for the planner is minimal. Put in another way: the bigger the subset of
plans P'⊂P that the planner can choose from, the bigger the probability that the plan of maximum
quality is among them. Therefore, the filter should select those services that maximise the
cardinality of P', i.e. that maximise the number of plans from P that are available to the planner. A
good heuristic to this respect is based on plan dimension and on the number of occurrences of
services in plans: a service is supposed to be the more important, the bigger the number of plans
from P that it is necessary for, and the shorter the plans from P that it is required for.

Again, it is unrealistic to assume complete information respecting the set of plans P for a given
query R in general, and respecting their length and number of occurrences of services in them in
particular. Nevertheless, we can approximate this information by storing and processing the plans
historically created. So, in principle, we can build up matrices as the shown in Table 1 for every
possible query. In the example, for some query R, service s2 was part of 10 plans composed by
two services and 55 plans formed by 3 services. In the example, the matrix also stores the number
of plans generated of each dimension.

8 In this context, we use the term “directory” to denote the set of services retrieved by the SDA from the

CASCOM Directory Services.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 27(105)

Historical information about plans for service request R

Dimension 1 2 3 …

of plans 0 50 70

s1 0 7 24

s2 0 10 55

s3 0 33 21

…

Table 1 – Example of information about historical plans

However, it soon becomes apparent that the number of services and possible queries is too big to
build up all matrices of the above type. The memory requirements would be prohibitively high and
the filtering process would become computationally too expensive. Furthermore, the continuous
repetition of a very same service request R is rather unlikely. And, even more important, this
approach would not be appropriate when a new service request (not planned before) is required
(which, in fact, is quite usual).

To overcome this drawback, we make use of service class information available in the CASCOM
framework, so as to cluster services based on certain properties (in particular, we will use the
service categories provided by the directory structure, and the role taxonomy reflecting the
organisational structure underlying CASCOM interactions − see D5.1). So, there will only be
matrices for each class of service request (query), and the matrix information stored for classes of
services instead of services. If the number of classes is not too big, the aforementioned approach
can become feasible computationally.

Service classes need not be disjoint. This will allow, for instance, describing that an ambulance
service can belong to both transport and medical categories, or search for a service able to play an
advisor and explainer role when engaging in interactions to provide the service. In particular, for
service advertisements we allow specifying a set of classes, and for service requests we allow a
formula in disjunctive normal form (i.e. a disjunction of conjunction of classes). This perfectly fits
the requirements of role-based service composition filters (see the role-based service
matchmaking approach described in D5.1 for further details on the structure of queries and service
advertisements).

Figure 14 depicts the structure of our approach to service composition filtering. With each outcome
of a service composition request, a Historical Information Matrix H (an abstraction of Table 1) is
updated. Setting out from this information, a Relevance Matrix v is revised and refined. Based on
this matrix, service relevance can be determined in a straightforward manner. For each service
composition request, the filtering method is based on this service relevance function.

In the following we go into the details of the different aspects of the outlined approach (depicted in
Figure 14). First, in section 2.1.3.3.2, we will see how the relevance matrix is obtained. Afterwards,
the calculus of service relevance (making use of the relevance matrix) is described. In section
2.1.3.3.4, different options for the instrumentation of service composition filters are outlined.
Subsequently, a filter based on both role-based and service category-based classification is
presented. Finally, in section 2.1.3.3.6, our approach to the implementation of service composition
filters is sketched.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 28(105)

Historical
Information
Matrix (H)

Relevance
Matrix (v)

Update
Calculate
Relevance

Matrix

RefiningService
Relevance

Filter
Method

<plan,R>

R

{s1,s2…sn}

Relevant
services

Figure 14 – Architecture of the filter component

2.1.3.3.2 Obtaining the Relevance Matrix
In this section we describe how the relevance matrix v(s,r) can be obtained from past plans. We
first describe how the information about plans is stored and how the relevance matrix is calculated
from this information. Then, we propose a method to refine the relevance matrix. Finally, several
options for bootstrapping are described.

Historical information about plans

The relevance matrix v represents the estimation of a service class s to be included in a (the best)
composite plan to provide the requested service class r. In order to create the relevance matrix we
set out from a set of plans (composite services) that were created in the past. We deal with
simplified versions of those plans. In particular we are only interested in the classes of services
that compose every plan. More precisely, for each plan we use the following information:

a) Request classes expression (disjunctive normal form) included in the request. We
denote CR1, CR2, ..., CRn the classes included in that expression.

b) Plan classes: is the set of classes PC = {CP1, CP2, ..., CPm} obtained after mapping the
services included in the composite plan.

The information about past plans created is stored in a matrix like Table 2 (adapted from Table 1
by considering classes instead of services). A matrix like this will exist for every different class of
services. We will name HR the matrix with information about request class R.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 29(105)

HR: Historical information about plans for service class R (Request)

Dimension 1 2 3 …

of plans 0 50 70

C1 0 7 24

C2 0 10 55

C3 0 33 21

…

Table 2 – Example of classes information about historical plans

The information in this table is computed as follows. If only one service class is included in the
request expression, the dimension (cardinality of PC) is calculated and the value of the “# of plans”
and every class of PC is incremented by one, for that dimension9.

However, when more than one class are present in the request expression, things are not that
simple. The problem is that, when there is more than one class in the request, it is not
straightforward to determine the parts of the request that the service (classes) of the composite
plan are relevant for.

In the case of a conjunction expression (e.g. CR1 ∧ CR2), we assume that all the classes in the plan
are relevant for both CR1 and CR2, since both conditions must be fulfilled. However, in the case of a
disjunction this is not the case. For instance, if the request expression is (CR1 ∨ CR2) and the plan
includes the classes {CP3, CP4, CP5}, it is not clear whether these three classes are participating in
providing both CR1 and CR2, or if, for instance, CP3 and CP4 are relevant for CR1, and CP5 only for
CR2. In this last case we decrease the possible negative impact of adding one unit to the wrong
class by weighting the contribution of the plan information by the inverse of the number of terms in
the disjunction expression. For example, suppose a query (request expression) of the following
shape: (CR1 ∨ (CR2 ∧ CR3) ∨ CR4). Furthermore, assume that the classes of services required by the
plan (composite service) that has been determined to best match this query are PC = {CP1, CP2}.
According to our model, the dimension of that plan is 2, and the historical matrixes corresponding
to the four classes in the request expression (CR1, CR2, CR3, CR4) are updated in line with this. In
particular, the values of HCR1(“# of plans”,2), HCR1(CP1,2), HCR1(CP2,2), HCR2(“# of plans”,2),
HCR2(CP1,2), HCR2(CP2,2), and so on for HCR3 and HCR4, are incremented by 1/3 as the number of
disjunctive terms in the query is 3. Figure 15 shows the algorithm for updating the historical matrix.

9 As all services need to be available for the plan to be executable, every service class has the same

relevance for the plan, independently of whether one or several services of that class are used by the
plan.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 30(105)

Figure 15 – Historical information matrix update algorithm

Calculus of the relevance matrix

As commented above, by ranking services we try to select a set of services that cover the largest
subset of the plan space, as an attempt to maximise the chance of the best plan to be contained in
it. Services that formed smaller plans in the past are considered more relevant, since it is easier to
cover small plans that large ones, so with less services more plans can be covered.

We use the following function to aggregate the information about plans (remember that all this
information is about a single request class R):

∑

∑

=

== m

d
c
d

m

d
c
d

d
N
d
n

1

1 R)C,Relevance(,

Where d is the dimension of the plan, m is the dimension of the longest plan stored, nd is the
number of times that C was part of a composite plan of dimension d for the request R, and Nd is
the total number of plans of dimension d (“# of plans”) for that request. c is a constant > 0 that
allows giving more importance to plans of smaller dimension (a straightforward value is k=1). Only
dimensions with more than 0 plans are considered.

In the example of Table 2,

24,0
70/350/2
24/3 7/2 R),CRelevance(1 =
+
+

=

With this calculus we obtain a relevance value between 0 and 1 for every given service class C
with respect to the composition of a service of class R.

Table 3 shows a partial example of the relevance table. In that table v(i,j) is the estimated
relevance of service class Ci for a request (query) class Cj.

<PC> = SET OF Class // plan classes
<RE> = <DisjunctionExpr> // request expression
<DisjunctionExpr> = SET OF <ConjunctionExpr>
<ConjunctionExpr> = SET OF Class

UpdateHistorical(H: historical matrix;RE: request expression;PC: plan classes)
{
 dim = Card(RE)
 FOR ALL Conj IN RE {
 FOR ALL r IN Conj {
 Hr("# of plans",dim) = Hr("# of plans",dim) + 1/dim
 FOR ALL p IN PC {
 Hr(p,dim) = Hr(p,dim) + 1/dim
 }
 }
 }
 return H
}

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 31(105)

Requests
v

C1 C2 … Ci … Cj Cn

C1 v(1,2) v(1,i) v(1,j) v(1,n)

C2

…

Ci v(i,i) v(i,j)

…

Cj

…

Services
in

directory

Cn

Table 3 – Relevance matrix.

Note that each cell of this table is obtained from one row of Table 2 and that each column of Table
3 is obtained from one of the n Historical Information Matrices. Thus the time complexity for the
calculation of the relevance matrix is O(m·n2), being m the dimension of the longest plan stored
and n the number of classes (recall that the number of classes n is supposed to be fixed and not
overly high).

Refining the relevance matrix

The matrix v(s,r) specifies the relevance of a service class s to be part of a plan (composite
service) that matches the query for a certain service class r. However a situation like the following
may occur: Suppose that a plan that achieves C1 is searched for, and that a potential solution is to
compose the services C2 and C3

 (C2 ⊕ C3
 for short10). However there is no service provider for C3,

but instead C3 can be composed as C4 ⊕ C5 ⊕ C6, so the final plan is C2 ⊕ C4 ⊕ C5 ⊕ C6.
Unfortunately, the value v(C4,C1) is low and the service providing C4 is discarded and not taken
into account in the planning process, so the aforementioned plan cannot be found by the planner.
Therefore, we will refine the relevance matrix by taking transitivity into account, e.g. through the
following update: v(C4,C1) = v(C4,C3)*v(C3,C1). The same holds for third-level dependencies (e.g.:
v(C7,C1) = v(C7,C4)*v(C4,C3)*v(C3,C1)). This example motivates the definition of the vk(s,r) as a
k-step relevance matrix

v1(s,r) = v(s,r)

vk(s,r) = Max (vk-1(s,r), vk-1(s,s1) * v(s1,r), v k-1 (s,s2) * v(s2,r), … v(s,sn) * v(sn,r))

As shown in the equation, we use the product as combination function and the maximum to
aggregate the results (as always, other more complex aggregation functions are possible).

Table 4 shows a relevance matrix for this example. In that case, v(C4,C1) = 0.1, but v2(C4,C1) =
v(C4,C3)* v(C3,C1) = 0.8*0.7 = 0.56.

10 Here ⊕ denotes a composition operator.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 32(105)

Requests
v

C1 C2 C3 C4 C5 C6 ... Cn

C1 1

C2 0.8 1

C3 0.7 1

C4 0.1 0.8 1

C5 0.5 1

C6 0.6 1

… 1

Services
in

directory

Cn 1

Table 4 – Example of relevance matrix

Note that the higher the value of k the better the estimation of the relevance of service classes.
The refinement of the relevance matrix is repeated until it converges (i.e. pk+1(s,r) = pk(s,r)) or until
a timeout is received. Figure 16 shows the algorithm. The elevated time complexity of O(n3) for
each refinement step is attenuated by the anytime properties of the approximation algorithm.
Furthermore, recall that the number of classes n is supposed to be fixed and not overly high.
Finally, note that several updates and refinements can be combined into a “batch” to be executed
altogether when the system’s workload is low.

Figure 16 – Relevance matrix refinement algorithm

Bootstrapping

There are several ways of obtaining the initial relevance matrix:

a) If there are historical records of plans they can be used to calculate the matrix

b) An a priori distribution can be assigned using expert (heuristic) knowledge

RefineMatrix(v: relevance matrix)
{
 REPEAT
 v = v_next
 v_next = RefineStep(v)
 UNTIL v = v_next
}

RefineStep(v: relevance matrix)
 v': relevance matrix
{
 FOR ALL s IN C1..Cn {
 FOR ALL r IN C1..Cn {
 v'(s,r) = v(s,r)
 FOR ALL i IN C1..Cn {
 v'(s,r) = max(v'(s,r),v(s,i)*v(i*r))
 }
 }
 }
 return v'
}

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 33(105)

c) The SCPA can work for a while without filtering services until the number of plans
generated is considered representative enough. Then the relevance matrix is calculated
and refined.

These options can also be combined. For instance, the heuristic a priori distribution can be
combined with the historical database as the starting matrix. In addition, if that matrix is supposed
to be insufficiently informed, then it may be completed with option c). An a priori distribution based
on expert (heuristic) knowledge can be incorporated into our model directly as the relevance matrix
but preferably as a (fictitious) historical matrix. The latter has the advantage that it can be
combined with historical records and/or other expert knowledge (there might be several expert
sources) by adding all the historical matrixes, followed by the calculus of the relevance matrix as
explained above. If the a priori distribution were included directly as a relevance matrix it could not
be combined with historical information since the relevance matrix is obtained from the historical
matrix and, in consequence, the a priori information would be lost.

2.1.3.3.3 Service Relevance Calculus
In this section we describe how the relevance of a service S for a request R is calculated using the
relevance matrix v.

The first step to calculate the relevance of a service s for a request r is the mapping of both to
classes of services. Then, the relevance between the classes is calculated. We will use the
following notation:

v(s,r): relevance of class s for the class r in the request, and

V(S,R): relevance of service S for the service request R

Depending on whether the services are mapped to one or several classes we apply the following.

1) The simplest case is a request R that only includes a class (r) in its description. Two cases are
possible:

a) The service S only belongs to one class (s): in this case V(S,R) = v(s,r)

b) The service S belongs to several classes (s1, s2 … sn). In this case we take the highest
relevance of the different classes, i.e. V(S,R) = max(v(s1,r), v(s2,r), …, v(sn,r)). Again,
although more sophisticated functions are conceivable, we use the maximum for
aggregation as it is easy to compute and intuitive for humans.

2) The request specifies a logical expression containing several classes of services (r1, r2 … rm).
Now, again we have two cases:

a) The service S only belongs to one class (s). We evaluate logical formulas using the
maximum for disjunctions and the minimum for conjunctions. For example, if the request R
includes the formula r1 ∨ (r2 ∧ r3), then V(S,R) = max(v(s,r1), min(v(s,r2), v(s,r3))).

b) The service S belongs to several classes (s1, s2 … sn). In this case we combine the two
previous options: the request formula is evaluated by decomposing it as 2a) and using
inside the maximum to aggregate the service classes specified by the provider. For
instance, if in the last example the service S belonged to the classes s1 and s2, the
calculus would be:

V(S,R) = max[max(v(s1,r1), v(s2,r1)), min(max(v(s1,r2),v(s2,r2)),max(v(s1,r3),v(s2,r3)))].

Figure 17 shows the algorithm to calculate the relevance of a service S for a request R. This is
done by the ServiceRelevance function. This function uses the SingleRelevance function, which
returns the relevance of the service advertisement S for one single request’s class r. As described
before, the request may not only include a class of service but also an expression (a disjunction of
conjunction of classes). The two loops decompose that expression, using the minimum as
combination function for the values in a conjunction and the maximum for disjunctions. Assuming
that the maximum number of classes that a service can belong to is negligible, the time complexity
of the algorithm is linear in the number literals in the query.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 34(105)

Figure 17 – Service relevance algorithm

2.1.3.3.4 Types of Generic Service Composition Filters
When a service request is analysed by our filter, the set of services are first ranked by an
estimation of the relevance of the service class for that request. Then, only the services belonging
to the best ranked classes are passed on to the planner.

In order to determine the concrete services that pass the filter we consider three major options:

a) To establish a threshold and filter out those services whose classes have a degree of
relevance lower than that threshold.

b) To return the estimated k best services based on the relevance of their corresponding
classes. In this case the number of services that pass the filter is pre-determined.

c) To return a percentage of the original set of services (based on the relevance of their
corresponding classes). In this case the number of services considered in the planning
process depends on the directory size.11

When designing the algorithms corresponding to these filters configurations, an additional problem
needs to be taken into account. Services with low (or even zero) relevance values would never be
considered for planning, so they could never be part of a plan (composite service), remaining with
low relevance forever. This is obviously too restrictive, as our relevance values are only
estimations based on the information available at some point in time. To overcome this we allow
some services to be fed into the planner even though they are not supposed to be relevant enough
according to the filter policy. Those additional services are chosen randomly. This random option is
combined with the three aforementioned filter types to allow for an exploration of the service
(class) space.

Figure 18 shows the three algorithms for class-based filtering of services, depending on the
desired filter type. The three functions receive a set of service descriptions, a service request, and
the relevance matrix.

11 Recall that, in this context, the directory size is given by the number services that the SDA provides to

the SCPA.

ServiceRelevance(S: service advertisement; R:service request; v: relevance matrix)
{
 rel = 0
 FOR ALL ConjunctionExpr IN R {
 rel' = inf
 FOR ALL r IN ConjunctionExpr {
 rel = min(rel’,SingleRelevance(r,S,v))
 }
 rel = max(rel, rel’)
 }
 return rel
}
SingleRelevance(r: request class; S: service advertisement; v: relevance matrix)
{
 rel = 0
 FOR ALL s IN S {
 rel = max(rel,v(s,r))
 }
 return rel
}

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 35(105)

The ThresholdFilter function returns all the services whose relevance is above a given threshold
(received as parameter). Its result also includes additional services which are chosen randomly
with a probability given in a parameter.

The K-Filter function returns the k best estimated services. In addition, a K-RANDOM number of
services is randomly selected among the rest of the directory.

The %-Filter function returns a pre-determined number of services. In this case the number is not
specified directly but as a percentage of the directory size. Also a percentage is specified to be
included randomly. Note that the algorithm for this function is the K-Filter where the k values are
calculated from the cardinality of the set of input services and the desired percentage.

Note that, if necessary, the random option can be inhibited by passing the value 0 in the
corresponding parameter.

Figure 18 – Filter of services. The three possible configurations are described.

The mode of operation and its parameters allow adapting the filter depending on the context
(domain, available resources, response time, etc). For instance, if the resources of the SCPA are
very limited a K-Filter with small value of k or a high value Threshold filter might be used. If more

ThresholdFilter(S: set of services; R: service request; v: relevance matrix,
 THRESHOLD: [0..1]; RANDOM_PROBABILITY: [0..1])
{
 result = ø
 FOR ALL s IN S {
 IF (ServiceRelevance(R,s,v) > THRESHOLD) OR
 (random(0..1) < RANDOM_PROBABILITY) THEN
 result = result ∪ s
 }
 return result
}

K-Filter(S: set of services; R: service request; v: relevance matrix,
 K: Integer; K-RANDOM: Integer)
{
 relevances = ø
 FOR ALL s IN S {
 SortInsert(<s, ServiceRelevance(R,s,p)>,relevances)
 }
 result = relevances[1..K]
 i = 0
 WHILE i < K-RANDOM {
 x = random(K+1..Card(relevances))
 IF relevances[x] ∉ result THEN {
 result = result ∪ relevances[x]
 i := i+1
 }
 }
 return result[1..k]
}

%-Filter(S: set of services; R: service request; v: relevance matrix,
 PERCENTAGE: [1..100]; RANDOM_PERCENT: [0..100])
{
 n = Cardinal(S)
 return K_Filter(S,R,v,n*PERCENTAGE/100,n*RANDOM_PERCENT/100)
}

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 36(105)

resources are available, the threshold can be lowered and/or a higher number of randomly
selected services may be added.

2.1.3.3.5 Service Composition Filter Instantiation
In the following we present two different approaches to apply the filtering framework proposed in
this section. For each approach the mapping of services to classes is defined. Both methods are
based on information available in the OWL-S service descriptions used by CASCOM.

a) Role-based filtering

This method is based on organizational concepts such as roles and type of social interactions. The
idea is to relate roles searched in the query to roles played by agents in the composite service,
that is, what are the roles typically involved in a plan when a role r is included in the query. For
example, it is common that a medical assistance service includes travel arrangement, arrival
notification, hospital log-in, medical information exchange and second opinion interactions.

In the CASCOM deliverable D5.1 (section 4) the role-based information included in service
advertisements and service requests is explained (Figure 19 shows part of the types of interaction
taxonomy). In CASCOM, service descriptions include information related to the interactions in
which the service provider agent can engage. Each service provider can advertise several
interactions. In the case of a service requests, it is allowed to specify the roles searched as an
expression in disjunctive normal form. This information fits in the generic framework presented
above by simply considering roles as classes of services, both for services advertisements and
requests.

Figure 19 – Partial CASCOM interaction ontology

In our role based modelling approach (deliverable D5.1), we use a role taxonomy that is supposed
to be static over significant amounts of time. Still, the ontology can be extended to include new
roles and types of interaction not considered before. In that case, the relevance matrix is updated

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 37(105)

with new rows and columns for those new roles. The relevance values for those new roles are
unknown initially, but this can be overcome by randomly including some services with low
relevance (as outlined in section 2.1.3.3.4) and, in general, by applying the bootstrapping
techniques described in section 2.1.3.3.2.

b) Category-based filtering

Another pertinent strategy for service classification is based on the categories (travel, medical…)
they belong to. Such categories are considered important information in service descriptions (in
fact, the OWL-S language includes a specific field for this characteristic). There are several well
known category taxonomies (NAICS, UNSPSC,…). However, CASCOM does not choose one in
particular, keeping it open to the service describer.

In our filter framework, each category is considered a class of service. Service descriptions include
a set of categories. In the case of a service advertisement, this fits exactly our classes approach
(set of classes). In the case of service requests, the set of categories specified are interpreted as a
logical formula by connecting them with the operator or (∨).

If the number of different classes (categories) is too big, the computational complexity (regarding
both space and time) can become rather high. In that case, the granularity of the classes can be
decreased by clustering several categories into the same class based on inheritance relations in
the taxonomy tree.

The two types of classification of services presented can be combined as follows:

Relevance(S,C) = α*RelRB(S,C) + (1-α)*RelCB(S,C), with α∈[0..1].

2.1.3.3.6 Implementation
In this section we sketch the implementation of the filter component that will be part of the SCPA,
together with the service composition planners. The general architecture of the component is
depicted in Figure 20. The RelevanceFilter is the generic interface used to filter the available
services, given a specific request. It has a unique method to be implemented, called
calculateServiceRelevance(), which returns how relevant a service is for fulfilling a user request.
The RelevanceFilter interface filters out the available services using one of the implemented filters
(PercentageFilter, KFilter or ThresholdFilter).

Two specific relevance filters use different kinds of classifications of services: roles and service
categories. The role-based relevance filter (RoleRelevanceFilter) calculates how a specified
service advertisement is relevant respecting the requested service, using the role structures
contained in both service advertisement and service request. The corresponding relational values
between roles are stored in a RoleRelevanceMatrix. In the case of category-based relevance filters
an analogous structure is used where the involved classes are CategoryRelevanceFilter and
CategoryRelevanceMatrix. Our framework is quite general and extensible, so that others relevance
filters can be implemented.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 38(105)

Figure 20 – Class diagram of the filter component

As an example, a general view of the control flow and the relations between the different classes
of the role-based filter component is depicted in Figure 21 (the category-based component is
similar). The SCPA uses the RoleRelevanceFilter to get, from the original set of services, a
reduced set of relevant services. For every service, the RoleRelevanceFilter calculates its value of
relevance, using the relation values stored in the RoleRelevanceMatrix, and then applies one of
the implemented filters, returning a reduced set of services to the SCPA. The SCPA performs its
planning action and, if a plan is found, it gives a feedback to the RoleRelevanceFilter. The
feedback is simply the original service request and the composite service created. This information
is used by the RoleRelevanceFilter to update the RoleRelevanceMatrix.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 39(105)

Figure 21 – General view of class relations

2.2 Open Service Composition
In open environments such as the CASCOM system, non-deterministically occurring events during
service composition planning or composition plan execution are possible. On the one hand, such
events might make existing plans or plan parts invalid. On the other hand, better plans might
become available. Examples for the first case include planned services becoming unavailable or
facts that belong to a precondition for a planned service. An example for the second case is that a
new service becomes available which could replace a number of services in an existing plan,
leading more directly to the plan goal.

In order to extend OWLS-XPlan such that it can dynamically react to such events, we considered
two possible techniques: contingency planning and heuristic re-planning. In a contingency
planning approach, a number of plans for recognized classes of events are pre-computed. If such
an event is then observed, the appropriate pre-computed plan is instantiated. Thus, contingency
planning anticipates possible events and allows for a quick reaction in the case that some of these
events do occur. The downside is the additional computational effort for all those possible plans,
many of which will never be instantiated.

In contrast, heuristic re-planning is a pure reactive approach, where a re-planning is carried out
only if it becomes necessary. To minimize the re-planning effort, an appropriate re-entry point in
the existing (part of) the plan is computed using the heuristic. The idea is to re-use as much as
possible of the existing plan, introducing only small changes to make it valid for the changed world
state

In the following section, we introduce OWLS-XPlan+, a dynamic extension of OWLS-XPlan with
heuristic quasi-online re-planning.

2.2.1 Dynamic Version of OWLS-XPlan
As it is described in section 2.1.3.1.1, the input for OWLS-XPlan consists of OWL ontologies and
individuals for the domain description and planning query, as well as available OWL-S services.
These inputs are then converted to PDDXML with OWLS2PDDXML converter. Thus, changes in
the OWL ontologies, individuals and the set of available services each might affect operators,
actions, predicates, facts and objects in the PDDXML problem and domain descriptions as well as
existing plan parts. The OWLS-XPlan+ API thus extends the OWLS-XPlan API such that it might
be informed about such events. In CASCOM, the SCPA will handle OWLS-XPlan+, and thus it will
also be responsible for forwarding events to the planner. The SCPA itself will learn about events
via the CASCOM context awareness subsystem.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 40(105)

Because a plan is a sequence of actions, i.e. operator instances, whose executions achieve the
goal state, the following three main cases are relevant when considering a re-planning:

1. An action becomes available. This might happen if

a. A new operator (service) is introduced.

b. The world state (set of facts) is changed such that an operator whose
instantiation was impossible before can be instantiated now.

c. New predicates which are part of the pre-conditions or effects of an operator are
introduced, making it possible to instantiate this operator.

2. An action in the plan is not possible anymore. This is possible if any of the opposites of
points 1.a – 1.c happens.

3. The goal state is changed. This is the case if the planning request is changed.

Therefore, on an incoming event, OWLS-XPlan+ first decides which of these cases are given in
the current situation. Each is handled separately by a respective algorithm. The three algorithms
are shortly outlined in the following sections.

It has, however, to be noted that some events, such as the removal of an object, might lead to an
inconsistent state if the set of facts is not also updated appropriately. Since OWLS-XPlan+ does
not include a consistency checker for its inputs or incoming events, consistency has to be ensured
by the caller (i.e. SCPA in CASCOM) to guarantee correct planning results.

2.2.1.1.1.1 New Action Becoming Available
In this case, OWLS-XPlan+ first checks whether the new operator might lead to a better plan, i.e.,
a plan containing less services. If this is the case, the point in the plan where the new operator
might first be helpful is identified to start the re-planning from there. In more detail, the individual
steps are as follows

1. Re-planning decision

a. Using the same initial state as for the original plan plus the new operator o, build
the relaxed plan graph and extract a new relaxed plan P.

b. Estimate the length L of the new plan P via the heuristic

c. If the length L is smaller than the heuristically estimated length of the relaxed plan
in the original planning process, continue with step 2. Otherwise o provides no
advantage and no re-planning is done.

2. Re-planning

a. Find the position e of the first occurrence of the new operator o in the new relaxed
Plan P. This is to find out how many operators in the old plan have to be applied
before the new operator might become helpful.

b. Apply all operators from the old plan occurring before position e in the new plan.

c. Identify instances of o which are applicable in the current state.

d. If no instance of o is applicable, apply more operators from the old plan until an
instance of o is applicable.

e. Apply the new operator o.

f. Identify a re-entry point in the old plan by searching for planned actions in the old
plan which corresponds to helpful actions in the current state. Continue with step
2.a from this position. If no such position can be found, the remainder of the plan
has to be re-planned completely.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 41(105)

2.2.1.1.1.2 Planned Action Becoming Unavailable
In this situation a re-planning has to be done because the plan is not valid anymore. OWLS-
XPlan+ tries to replace the affected action(s) by replacing it with alternative actions which achieve
the same effect. If this is possible, the remainder of the plan can be re-used, thus reducing re-
planning time significantly.

1. Re-planning decision

a. Mark all actions in the plan, which are affected (because the operator does no
exist anymore, or because a precondition does not longer hold).

b. If no actions are marked, stop.

2. Re-planning; for each affected action,

a. Create a relaxed plan.

b. Use enforced hill climbing search to circumvent the affected operator by applying
alternative operators.

c. Identify a re-entry point in the old plan by searching for planned actions in the old
plan which corresponds to helpful actions in the current state. Continue with step
2.a from this position. If no such position can be found, the remainder of the plan
has to be re-planned completely.

2.2.1.1.1.3 Goal State Change
In this situation a re-planning is necessary in the case where the new goal is not achieved by the
existing plan. Otherwise, a re-planning might still be beneficial if the new goal can be achieved by
a shorter plan than the existing one.

1. Initialization

a. Create a relaxed plan for the new goal.

b. Mark all actions in the existing plan, which are also contained in the new relaxed
plan.

2. Re-planning; for each non-marked action,

a. Use enforced hill climbing search to circumvent the action by applying alternative
operators.

b. Identify a re-entry point in the old plan by searching for planned actions in the old
plan which corresponds to helpful actions in the current state. Continue with step
2.a from this position. If no such position can be found, the remainder of the plan
has to be re-planned completely.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 42(105)

2.3 User-centered Composition of Value Added Information
Important features of the agent-based paradigm are the specialization of agents in more narrow
sub-problems than the global problem and the creation of value-added services. Information Web
Services, ontology frameworks, user preferences and intelligent agents offer the baseline for
providing a value-added service of composition of information services. In this section we describe
the design and development of an information broker agent, Fredo, reflecting the goal of providing
user-centered composition of value added information.

This technology is presented as a specialization of the composition process for information
services only and is not intended to substitute the described composition planning infrastructure of
the CASCOM Architecture. Due to the complexity that it adds to the service providers and the
communication with them, it was decided not to include this composition approach in the CASCOM
demonstration scenario.

2.3.1 Fredo, the Agent
Fredo is an information broker agent specialized in finding information about specified domains,
partially satisfying a set of given preferences, and in providing a value-added information service in
the sense that it dynamically integrates information about several domains. Although specialized in
finding and integrating information of specified domains, Fredo is a generic agent in the sense that
it is not tailored for a specific set of domains. Its functioning is absolutely domain-independent.
Fredo is a generic middle agent that can be sent off by other agents to do this and that, in any
information domain.

Fredo may be used in several scenarios, such as the one represented in Figure 22. There, a
Personal Assistant Agent (PA) sends Fredo its user preferences about restaurants. Fredo interacts
with the Ontology Agent (OA) and the Service Discovery Agent (SDA) to discover information
providers that can supply information regarding the preferences received from the PA. Then, Fredo
queries the discovered information providers in order to gather information relevant to the specified
preferences, evaluates it, sorts it and sends part of it to the PA.

In the described scenario, Fredo receives a query containing a set of preferences about possibly
different, even though related objects. Since Fredo is not supposed to have information of its own,
it must discover other agents that can provide the desired information. Therefore, it interacts with
ontology agents12 until it identifies those ontologies involved in the received query. It then asks the
SDA for agents providing information services using the identified ontologies.

12 In this context, ontology agents are perceived as being specialized agents that hold information about the

ontologies used in an environment, which are represented in a hierarchical fashion. These agents are
able to provide information on a specific ontology or elements of an ontology, such as classes, predicates
and actions.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 43(105)

Figure 22 – Fredo Scenario Example

Fredo requests the necessary information from the selected information providers. In order to
avoid information overload, Fredo uses a heuristic strategy that allows it to constrain the queries
sent to the information providers. This heuristic relies on the fuzzy evaluation of the specified
preferences. Furthermore, the interaction with each information provider is governed by a special
purpose interaction protocol in which the reply from the information provider is sent one page at a
time. If the information received until a certain point in time is good enough, Fredo can halt the
interaction with the information provider.

Since, in most cases, it is impossible to satisfy all of the specified preferences, Fredo uses a fuzzy
inference engine to evaluate the gathered information, with respect to the specified preferences.
This fuzzy evaluation mechanism is the same used in the heuristic planning of the queries sent to
the information providers. The best results are then sent to Fredo’s client.

2.3.2 Information Broker Agent
Fredo’s client (e.g, a personal agent) sends messages requesting objects that satisfy a given set
of preferences. Figure 23 depicts the format of a typical message received by Fredo: “Give me any
restaurant and its evaluation that satisfy these preferences to a degree larger than 0.8”.

(query-ref
 :sender (agent-identifier :name pa@cascom)
 :receiver (set (agent-identifier :name fredo@cascom))
 :content "((any (sequence ?rest ?eval)
 (and
 (instance ?rest Restaurant)
 (= ?eval (value Finder Evaluation
 (sequence (set <Pref1> <Pref2> …))))
 (>?eval0.8))))"
 :language fipa-sl)

Figure 23 – Request received by Fredo from its client

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 44(105)

query-ref is the FIPA ACL performative used for open questions. The content of the query-
ref message must be a referential expression. (any <Term> <Proposition>) is a FIPA SL
referential expression that refers a Term that satisfies the specified proposition. (sequence
?rest ?eval) is an ordered pair of a restaurant and its evaluation with respect to the specified
preferences. (instance ?rest Restaurant) means the variable ?rest is an instance of the
class Restaurant. (value Finder Evaluation (sequence (set <Pref1> <Pref2>…)))
represents the value returned by the invocation of the static method Evaluation of the class
Finder with a single parameter sequence: the set of specified preferences. See [BAER02] for a
more detailed explanation of the instance/2 and value/4 operators.

The method Evaluation receives a set of preferences applied to the corresponding target objects
and returns the evaluation of the target objects with respect to the specified preferences.

The evaluation of the target information with respect to the specified preferences is based on a
fuzzy reasoning process. The same fuzzy evaluation process is used by Fredo in the heuristic
planning of the queries it sends to information providers in order to obtain the required information.
The membership functions of the used fuzzy sets were empirically determined.

2.3.2.1 Representing Preferences
We decided to represent preferences as objects so that it is easy to talk about them, using a first
order logic based content language. An instance of class Preference represents the preference
itself and the target object, which is the object to which the preference is applied. A single
preference may relate several attributes of the target object. For instance, “the value of attribute A1
of the target object should be twice the value of attribute A2 of the same object”. A preference has
the following attributes: target, which is a term representing the object of the preference;
targetClass, which is a word representing the class name of the target; attributes, which is a
sequence of strings representing names of attributes involved in the preference; values, which is
an expression that evaluates to a sequence of the constrained values of the sequence of
attributes; cut-off, which is a cut-off expression (while values expresses a preference, cut-off
expresses a hard constrains that must be fulfilled); and weight, which is a float in the interval [-1, 1]
representing the importance of the preference, where -1 means the property is highly undesired, 0
means the client is indifferent with respect to the property, and 1 means the property is highly
desired.

Attributes: Ai

(Constrained) Values: Vi

Cut-off Values: Ci

Vi is the constrained value of attribute Ai, and Ci is its cut-off values

Table 5 – Preference structure

The main idea, clarified in Table 5, is the following: each specified attribute must be associated
with a constrained value and possibly with a cut-off value.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 45(105)

(Preference
 :target <Restaurant>
 :targetClass Restaurant
 :attributes (sequence maxPrice foodType)
 :values (any (sequence ?price ?type)
 (and (= ?type Italian)
 (<= ?price 10)))
 :cut-off (sequence
 (AttributeCutOff :similarity 0.8)
 (AttributeCutOff))
 :weight0.7)

Figure 24 – Preference for cheap Italian Restaurants

As shown in Figure 24, when expressing the preference for cheap Italian restaurants, the
restaurant is the target object of the preference and the target class is “Restaurant”; attributes is
(sequence maxPrice foodType); values is (any (sequence ?price ?type) (and (=
?type Italian) (<= ?price 10))); the cut-off value could be a sequence of cut-off
specifications, each one referring to the value of the corresponding attribute (sequence
(AttributeCutOff :similarity 0.8) (AttributeCutOff)), in which
(AttributeCutOff) is the null cut-off specification; and weight could be the importance of the
whole preference, say 0.7.

The cut-off specification can be a sequence of instances of the class AttributeCutOff, a single
instance of the class GlobalCutOff, or an instance of the class CutOff, which includes both the
sequence of AttributeCutOff and the GlobalCutOff.

Class AttributeCutOff

similarity: Float in the interval [0, 1]

Class GlobalCutOff

evaluation: Float in the interval [0, 1]

Class CutOff

global: GlobalCutOff

attributes: AttributeCutOff

If cut-off is a sequence of class AttributeCutOff instances, each instance corresponds to the
attribute in the same position in attributes. If cut-off is a single cut-off specification then it refers to
the degree to which the complete constraint expression is true. If cut-off is an instance of the class
CutOff, it is a global cut-off plus a sequence of cut-off specifications for all constrained attributes.
In any of the above cases, each specified cut-off value is the degree to which the target object
fulfills the preference expression, which is evaluated by a fuzzy reasoning mechanism.

2.3.2.2 Identifying Information Providers
Since Fredo is a broker of information services, it must consult agents/web services that provide
information services in the domains specified by the received set of preferences. In the first place,
Fredo must determine the domain of the received query. To accomplish this, it analyses the
received preferences in order to identify the referred classes and attributes. Since each Preference
is always about an object of a specified class and involves a set of attributes of that class, the
agent loops over all preferences and creates a data structure called domain, which identifies all the
attributes involved in the preferences for each target class:

domain = {(c1, {a1.1, …, a1.n}), (c2, {a2.1, …, a2.m}), (c3, {a31, …,
a2.k}), …}

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 46(105)

In the case of the cheap Italian restaurant, domain is represented in Prolog by the list
[class(‘Restaurant’, [maxPrice, foodType])].

Afterwards, Fredo asks ontology agents for ontologies that include each class ci containing all
attributes in Ai={ai.1, …, ai.n}. The result of this question is a data structure called ontologies
containing a set of ontologies associated to the set of pairs (<class>/<attribute set>):
ontologies = {(o1, {(c1.1, A1.1), … (c1.n, A1.n)}), (o2, {(c2.1, A2.1),
...(c2.m, A2.m)}), ...} , in which Ai.j is the set of referred attributes of class ci.j.

Often, each ontology includes more than one referred class. It is even frequent that the same
ontology includes all classes referred in the received preferences. Additionally, Fredo asks the
Ontology Agent what are the key attributes of each class in the set domain.

In the next step, Fredo asks the SDA for agents that provide information services using each of the
ontologies in the set ontologies. In the case of the cheap Italian restaurant, the set ontologies is
represented in Prolog by a list like
[ontology(‘http://.../ontologies/restaurant.owl’, class(‘Restaurant’,
[maxPrice, foodType]))]. The SDA uses this ontology information to search services
through their categories. This search can also be carried out through the Directory Facilitator (DF)
agent, using the parameter ontologies in the DF service description.

The answer provided by the SDA plus the information previously acquired about the key attributes
of each class is organized in the set called providers. providers contains the service
providers that provide the desired information associated to the relevant classes and attributes
known to the agent, plus the key attributes of each class:

providers = {(a1, {(c1.1, A1.1, K1.1), … (c1.n, A1.n, K1.n)}), (a2,
{(c2.1, A2.1, K2.1), ...(c2.m, A2.m, K2.m)}), ...}, in which ai is the
identification of agent i, and Ki.j is the set of key attributes of class ci containing attributes Ai.j.
The set providers is passed on to the next stage of Fredo’s processing.

The above process, by which Fredo identifies the necessary information providers, is absolutely
generic. There is nothing that depends on a specific domain. Furthermore, the received set of
preferences can refer to several ontologies possibly provided by several agents. Therefore, Fredo
is a generic agent (i.e., domain independent) that provides a value-added information service since
it may integrate information services using several ontologies provided by different information
providers.

2.3.2.3 Querying the Information Providers
There are three important issues that deserve mentioning about the way Fredo interacts with the
information providers to acquire the desired information: (i) what information is asked from each
provider; (ii) how to create questions that constrain the amount of information sent in the reply; and
(iii) the interaction protocol.

Using the set providers, Fredo knows what information it can request from each provider. It will
ask only for the set of attributes referred in the received preferences plus the set of attributes that
form the key for that class. We have assumed that preferences are not rigid constraints. A given
target object might be poor with respect to one of the specified preferences but it may be good with
respect to others. Therefore, Fredo cannot just request the instances of the desired classes that
satisfy all specified preferences that apply to them. That would be too rigid.

Fredo cannot also ask for the values of the selected attributes for all possible instances of each
target class. That would result in large amounts of information being exchanged requiring
considerable processing. This trade-off between the desire to evaluate all instances with respect to
all applicable preferences, and the desire to avoid information overload lead to the definition of a
heuristic strategy that is used to constrain the amount of information requested from the
information providers without ignoring instances that would likely be well evaluated.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 47(105)

The first step towards this goal is to use the cut-off values that are specified within the preferences.
Since Fredo’s clients are not interested in receiving information that does not satisfy the specified
cut-off criteria, there is no point in asking information providers to supply information that does not
meet those same cut-off criteria. This means the query to be sent to the information providers must
contain constraining clauses that exclude information that does not meet the cut-off criteria.

However, the cut-off criteria are not mandatory and therefore they may be omitted in the
specification received by Fredo. For this reason, we devised a heuristic decision rule to create a
cut-off criterion for each attribute involved in the preferences that has not been attached to one.

The general heuristic is the following: if some desired property is very important when compared to
the other desired properties, then we are interested only in instances of the specified class that
satisfy well the specified preference. If the preference is not important, we are less restrictive – we
may even be interested in instances that are not very good with respect to that preference. For
negative preferences, similar criteria apply mutatis mutandis.

The above principle is used by Fredo to create constraining clauses that will be used in the queries
it sends to the providers. The queries sent to the information providers request information about
the instances of a given class that satisfy the cut-off criteria, either explicitly specified or
heuristically created by Fredo.

Fredo uses a fuzzy approach to determine the heuristic cut-off value of an attribute. The desired
value of an attribute of the target object as specified in a given preference is construed as a fuzzy
set. Within this framework, the degree to which the actual value of the target object attribute
matches the preference is determined by the membership function of the fuzzy set representing
that preference. For instance, the preference of a restaurant with maxPrice less than 10 € may
be represented by the fuzzy set shown in Figure 25. With a maxPrice of 12 €, the degree to
which it matches this particular preference is 0.5.

Figure 25 – Fuzzy lessThan(10)

Suppose that, given the specified preference weight, Fredo wants to exclude all restaurants whose
price matches the preference to a degree of 0.75 or less. Fredo uses the fuzzy set membership
function to determine the prices that belong to the desired set with a degree of 0.75 or less. Then,
it creates a logical expression that excludes (restaurants having) those prices. This logical
expression is included in the query sent by Fredo to the restaurant information service in order to
constrain the amount of returned information. In this case, that logical constraint would exclude all
restaurants with price greater then 11 € (i.e., prices that belong to the desired fuzzy set with a
degree equal to or less than 0.75):

(and (instance ?rest Restaurant) (≤ (value ?rest maxPrice) 11))

According to the heuristic already explained, the cut-off value for an attribute depends on the
weight of the preference defined for that attribute. The higher the weight, the higher the heuristic
cut-off value should be. That is, the target object must meet a given preference to the degree to
which the preference is important. (E1) is the empirically determined expression used by Fredo to
compute the membership degree of the cut-off value (d) of an attribute for a preference with weight
w.

(E1) d = 3/4 × |w|

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 48(105)

As can be seen, this empiric expression is general, in the sense that it does not depend on the
particular fuzzy set being used to represent the preference.

Notice that Fredo does not assume that information providers have fuzzy inference engines. Fredo
uses its fuzzy evaluation engine to compute the applicable cut-off criteria. Then, it uses the
computed criteria in the queries it sends to information providers.

The fuzzy sets used in the heuristic planning of the queries to be sent to information providers are
the same used in the evaluation of the received information with respect to the specified
preferences.

Even though Fredo uses explicitly stated or heuristically determined cut-off values to limit the
amount of information asked to the providers, there is still the possibility of information overload.
Therefore the interaction between Fredo and providers must be governed by a special purpose
interaction protocol aimed at dealing with large amounts of information being returned by
information providers. In the remaining of this section, we describe the paged information-request
protocol, according to which, information providers send the requested information, one page at a
time. Using the paged information-request protocol, Fredo can interrupt the process at any
moment in time if it is satisfied with the information already received.

In the paged information-request protocol (Figure 26), the initiator (Fredo) sends a query to the
participant (the provider) containing also the specification of the page size, that is, the number of
items that may be received in each page. The page size is specified by the user parameter
Xreply-page-length of the ACL message (ACL user parameters start with an X). This query
is called the information request. After receiving the query, the participant has three alternatives: it
does not understand the query, it refuses to provide the requested information one page at a time,
or it agrees to reply one page at a time. If the participant does not understand or if it refuses, the
protocol halts. If the participant agrees, the protocol internal state changes to the agreed state.

Figure 26 – Paged Information-Request Protocol

In the agreed state, the participant must send the first page of the reply to the initiator (Fredo).
When the initiator receives one page of the requested information, it may request the participant to
stop sending more pages of the requested information, or request the next page. If the initiator
requests the participant to stop sending information, the protocol halts. If the participant exhausts
the information to be sent it sends a message informing the initiator that no more information is
available.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 49(105)

Any instance of the paged information-request protocol forms a context in which, each of the
several pages of the information sent by the participant (provider) to the initiator (requester) may
be associated to a sequence number. In this context, the page number has a precise meaning: it is
the order by which the page is sent to the initiator. The sender alone exclusively determines the
sequencing number of each page. There is no way the requester can reasonably assume any
thing about the specific content associated to a given page number. However, the requester may
assume that the sender preserves the coherence among page numbers. That is, the same page is
not sent twice with different page numbers. And no two different pages are associated with the
same page number. As soon as the protocol ends, the page numbers associated to the several
sent / received pages loose their meaning. That is, if the protocol was executed again, no one
would be entitled to believe that the same information would be paged in the same sequence as in
another instance of the protocol.

Given the context mechanism provided by the paged information-request protocol, it is possible to
clearly define the operator page/2, such that (page N InformationDescription) means
the Nth page of the information referred to by InformationDescription within a given
instance of the protocol.

The mechanism described in this section allows Fredo to create the queries it must send to the
identified information providers, trying to constrain the amount of returned information to a
minimum without discarding possibly relevant information. This mechanism is a generic
mechanism in the sense that none of its stages depends on any specific domain.

2.3.2.4 Evaluating Gathered Information
A single preference specifies a preferred condition and its importance. Other components of
preferences such as the cut-off values were omitted because they are irrelevant to the present
explanation. If the agent can determine the degree to which the preferred condition is satisfied by
the target object, than it is easy to evaluate a given object with respect to a set of preferences
P={(φ1, w1), …, (φn, wn)}, in which φi is the preferred condition specified in preference i,
and wi is the importance of preference i.

Let the closed proposition φx denote the application of the preferred condition φ to the object x,
and let also μ(Ψ) denote the degree to which the closed proposition Ψ is satisfied. The evaluation
of object x with respect to the set of preferences P={(φ1, w1), …, (φn, wn)} is given by ε
(x) = (Σi wi×μ(φix))/(Σi |wi|) for all preferences in P.

If the closed sentence Ψ is a proposition of the first order predicate calculus, μ(Ψ)=1 iff Ψ is true,
and μ(Ψ)=0 iff Ψ is false. If Ψ is a fuzzy proposition, then μ(Ψ) is the truth-value of Ψ. μ(Ψ) takes
values in the interval [0, 1].

Let us now describe the way the preferred condition is applied to the target object of the
preference exemplified in Figure 24. The application of the preferred condition to the specified
target restaurant results in the closed proposition Prop ≡ (and (= (value <Restaurant>
foodType) Italian) (<= (value <Restaurant> maxPrice) 10)) in which
<Restaurant> is a specific restaurant. This application is a simple process if we remember that
the variable ?price (i.e., the first variable) in values corresponds to the attribute maxPrice (i.e.,
the first attribute) in attributes, and the variable ?type (i.e., the second variable) in values
corresponds to the attribute foodType (i.e., the second attribute) in attributes.

The degree to which the preferred condition is satisfied by the target object is the truth-value of
Prop (considering that <Restaurant> is a concrete restaurant), for which we propose to use a
fuzzy evaluation mechanism.

For using the fuzzy evaluation mechanism we have to convert propositions such as (and (=
(value <Restaurant> foodType) Italian) (≤ (value <Restaurant> maxPrice)
10)) into fuzzy propositions. In this case we end up with [value(<Restaurant>, foodType) is
ItalianFood] ∧ [value(<Restaurant>, maxPrice) is lessThan(10)], in which

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 50(105)

value(<Restaurant>, foodType) and value(<Restaurant>, maxPrice) play the role
of fuzzy variables, and ItalianFood and lessThan(10) are fuzzy values.

It is necessary to define the universes and membership functions of the fuzzy values
ItalianFood and lessThan(10). lessThan(N) represents a family of fuzzy values whose
membership functions are shifted versions of one another.

Figure 27 – Membership functions: a) lessThan(N) b) equalTo(N)

For each value of N, lessThan(N) is a fuzzy value. An alternative solution could be used, where
the slope of the lessThan(N) membership function would be less pronounced for larger values
of N in order to reflect the fact that 1010 is as less than 1000, as 101 is less than 100. Each of
these alternatives is more adequate for specific domains. Other fuzzy values could be defined,
such as greaterThan(N), which would be defined in the same way as lessThan(N), and
equalTo(N), which would have a representation as shown in Figure 27 b). A possible alternative
would be to use Gaussian instead of triangular membership functions.

Figure 28 – Fuzzy value Italian Food

For the fuzzy value ItalianFood we assumed that the universe of discourse is formed by the set
of all food types in the domain (e.g., Italian, Portuguese, Greek, Spanish, French, German). Maybe
Greek and Spanish food can be considered more similar to Italian than other food types (Figure
28). In order to use this approach, for each food type, we must define the degree to which the
other food types are similar to it.

Certainly, a finer grained fuzzy value could be defined, for instance one in which the universe of
discourse would contain several food types for the same country, such as food from Toscana,
Neapolitan food, Milanese food and so on.

One problem of using a fuzzy evaluation is to preserve the generality of the approach. In general,
the definition of fuzzy concepts such as “Italian food” is dependent of the domain. Most often these
concepts even depend on the point of view of the evaluator. One way to go about this would be to
include the definition of fuzzy concepts in the domain ontology. However, no work has yet been
done about the representation of fuzzy values in commonly used formalisms for ontology
representation such as OWL.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 51(105)

Another alternative is to put the responsibility of maintaining these domain specific fuzzy sets on
the side of the Personal Agent (PA). This alternative is more realistic and even more appropriate
since such subjective concepts as being similar to “Italian food” should be tailored to each user.
PAs can easily build such fuzzy sets through simple statistical analysis of their user preferences
and feed back. Currently the required membership functions are kept in Fredo, but this is only a
temporary solution.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 52(105)

3 Service Execution in IP2P Environments
This task develops a reliable service execution platform which takes into account both single and
composite services. This includes augmenting the planned service composition with monitoring
assertions that can be checked to verify successful execution of services, and in the case of
failure, will allow necessary re-planning.

As input, service execution takes service descriptions represented by the Web Ontology Language
for Services (OWL-S) and a set of actual input values which are associated to the services input
parameters. On successful execution a set of output values (results) will be returned to the invoker
whereby the values are associated to the output parameters in the service description. Both input
and output sets might be empty—in this case invoked service(s) produce just side effects.
Furthermore, execution requires grounding for each service, that is, a reference (address) to a
concrete service endpoint (instance) and information about the protocol to be used to interact with
the service instance. We use OWL-S in combination with WSDL to specify the grounding for
services (see section 3.1).

Two approaches were developed for delivering the service execution functionality in the CASCOM
environment: a distributed approach (see Section 3.2), where different agents in the environment,
well coordinated and co-operating, can contribute to the execution of parts of a composite service;
and a centralized approach (see Section 3.3), where a single specialized agent can execute an
entire composite service.

Even though the term “Service Execution Agent” is used to represent the agents capable of
executing services in both approaches, it does not denote the same agent in different approaches.

In the distributed approach, a Service Execution Agent is an agent that, after being added a
specific behaviour, is capable of contributing to parts of the execution of a composite service. In
spite of being able to execute a complete composite service, the distributed approach’s Service
Execution Agent cooperates with other Service Execution Agents to avoid scalability and
robustness problems.

In the centralized approach, a Service Execution Agent is not a normal agent that was extended to
be able to contribute to the execution of parts of a composite service. It is a specialized agent
capable of executing any composite service described in OWL-S. This specialized agent should be
used by other agents that do not have any execution capabilities (such as the Personal Agent) and
yet need to execute some specific composite service.

3.1 Executing OWL-S/WSDL Services
OWL-S is an OWL-based (Web Ontology Language) ontology used to describe semantic web
services. OWL-S Services are described in three parts: a Profile (which tells "what the service
does"); a Process Model (which tells "how the service works"); and a Grounding (which tells "how
to access the service"). The Profile and Process Model are considered to be abstract
specifications, in the sense that they do not specify the details of particular message formats,
protocols, and network addresses by which a Web service is instantiated. This role of providing
more concrete details belongs to the grounding part. WSDL (Web Service Description Language)
provides a well-developed means of specifying these kinds of details. For the execution process,
the most relevant parts of an OWL-S service description are the Process Model and the
Grounding. The Profile part is more relevant for discovery, matchmaking and composition
processes, hence no further details will be provided in this section.

Process Model. The Process Model (or Service Model) describes the steps that should be done
for a successful execution of the service. These steps represent two different views of the process:
first, a process produces a data transformation of the set of given inputs into the set of produced
outputs; second, a process produces a transition in the world from one state to another. This
transition is described by the pre-conditions and effects of the process [OWLS03]. The Process
Model identifies three types of processes: atomic, simple, and composite. Atomic processes are

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 53(105)

directly invokable (by passing them the appropriate messages). Atomic processes have no sub-
processes, and can be executed in a single step, from the perspective of the service requester.
Simple processes are not invokable and are not associated with a grounding description, but, like
atomic processes, they are conceived of as having single-step executions. Composite processes
are decomposable into other (non-composite or composite) processes. These represent several
steps of executions, which can be described using different control constructs, such as sequence
(representing a sequence of steps) or If-Then-Else (representing conditioned steps).

Grounding. The Grounding specifies the details of how to access the service. These details
mainly include protocol and message formats, serialization, transport, and addresses of the
service provider. The central function of an OWL-S Grounding is to show how the abstract inputs
and outputs of an atomic process are to be concretely realized as messages, which carry those
inputs and outputs in some specific format. The Grounding can be extended to represent specific
communication capabilities, protocols or messages. WSDL and AgentGrounding (described in the
next sub-section) are two possible extensions. WSDL is an XML format for describing network
services as a set of endpoints operating on messages containing either document-oriented or
procedure-oriented information. The operations and messages are described abstractly, and then
bound to a concrete network protocol and message format to define an endpoint. Related concrete
endpoints are combined into abstract endpoints (services). WSDL is extensible to allow description
of endpoints and their messages regardless of what message formats or network protocols are
used to communicate [CCMW01].

Execution process. The execution of an OWL-S service is made in the following steps:

1. Validation of the service’s pre-conditions. The execution process continues only if all
preconditions are true;

2. If the service to be executed is a composite service, it must be recursively decomposed
into individual atomic services, which are executed by evoking their service providers.
Invocation is done through the description of the service providers (and their interfaces)
contained in the grounding section of the service description (WSDL or AgentGrounding –
see section 3.3.1.4);

3. After execution, validation of the service’s effects is made by comparing them with the
actual service execution results (if the service was executed as expected in the effects,
then proceed);

4. Collect the results (if any – the service may be only a “change-the-world” kind of service).

3.2 Distributed Approach
The distributed approach for service execution differs from the centralised approach (see Section
3.1) in the sense that at runtime execution is not limited to take place at just one software entity but
might involve several distinct entities. Since functionality of the execution system is encapsulated
by agents the term distinct software entity referrers to distinct agent instances. Whether they are
actually physically separated, i.e., run on different hosts13, is a matter of the agent platform used
and the concrete deployment of agent instances. In other words, the distributed approach imposes
no constraints on the organisation of agents beyond what is implicated by the agent platform used.

Distributed execution requires a certain strategy to organise and co-ordinate distribution. Several
approaches exist and we will describe our approach used in Section 3.2.1. We begin by describing
the general software structure of the execution agent implementation in Section 3.2.1 and the
agent interface for ACL messages exchange in Section 3.2.3.

13 on the other hand, not physically separated would mean that they run on one host within different threads

or processes

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 54(105)

3.2.1 Execution Strategy
Carring out execution of composite services in a distributed environment consisting of more than
one execution agent requires the definition of a certain strategy. The strategy basically defines tree
properties. First, it defines how to divide the composite service into sections which can be
executed in a distributed way afterwards. Second, it defines where and when to distribute those
sections to different execution agents. Finally, it defines a mechanism for control between the
participating agents to guarantee consistent execution. Altogether they imply the way execution
will be actually done at runtime.

There are various possibilies to define such strategies all of them contain advantages as well as
disadvantages when being applied to different kinds of service environments, i.e., their usefulness
strongly depends on the setting and characteristics of the environment. Consequently, selection or
design of a certain execution strategy should always be accompanied by an analysis of the service
environment, in particular the technologies used (like SOAP based Web service interactions) and
the deployment structure of service providers and their (physical) relation to service clients (agents
in the CASCOM architecture). In the following, we will shortly describe three different dimensions
for categorisation of execution strategies. In Section 3.2.1.1 and 3.2.1.2 we describe two
general-purpose approaches which can be further optimised for specific environments. The latter
one was choosen for implementation of the distributed service execution agent and we will outline
some advantages and disadvantages.

In general, a strategy for distributed execution of composite services must initially define whether
execution control takes place in a centralised or decentralised way. The centralised approach
requires a dedicated agent who manages and co-ordinates execution after receipt of the
composite service and co-ordinates execution. In doing so, the manager agent invokes according
to the structure of the composite service the actual execution agents which in turn invoke the
actual services and awaits the results of the service invocations from the agents. In contrast to the
centralised approach the decentralised approach does not require a dedicated agent. Whereas the
manager agent in the centralised approach turns out to become a bottleneck and a single point of
failure both problems are eliminated in the decentralised approach. On the other hand, a
decentralised approach comes with the tradeoff that more advanced control mechanisms are
required, accompanied by higher (communication) efforts in case of failure handling and initial
preparation before execution (see Section 3.2.1.1). In addition, the decentralized approach allows
for balancing the load among different agents and for taking into account the dynamics of a system
where agents might leave or others join.

Starting from the process model/structure of OWL-S services, execution can be further classified
depending on whether the services are atomic or composite (see Section 3.1). Whereas execution
of an atomic OWL-S service implicates just one service invocation, the number of service
invocations for composite OWL-S services intuitively relates to the number of atomic services out
of which they are composed. In general, we always refer to composite services since execution of
atomic services in fact does not require an execution strategy. It can not be considered useful
even possible to distribute a service consisting of exactly one service invocation between different
agents. The reason is that invocation of a (Web) service is defined as a request-reply pattern
between a service client and the provider and cannot be further split up. As a conclusion, it is now
obvious what the smallest granularity for sections of a composite service is: the atomic services. At
the same time it is also the preferred granularity as it directly maps to the OWL-S process model14.
Hence, it is not remarkable that most execution strategies would size the sections for distribution
equal to the atomic services. Finally, the general assumption is that agents execute those sections
of the composite service. For instance, the most straightforward approach would associate each
atomic service within a composite service to one execution agent which invokes it, i.e., a
composite service consisting of n atomic services would require n execution agents.

14 The process model basically relates to a directed graph, whereby the nodes are (atomic) services and

vertices represent the control flow.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 55(105)

Yet another dimension for categorisation of execution strategies relates to whether execution
agents and (Web) service providers are tightly integrated/coupled or not. By tightly integrated we
mean that an execution agent basically wraps one or more services, that is, both run on the same
machine probably in the same process – or virtual machine in case of Java. In addition, the
implementation of the invocation of the Web service by the wrapper agent itself might bypass the
whole Web services communication stack and might be done without this overhead by direct
programmatic calls. Furthermore, this type mostly comes along with the intention that an execution
agent wraps a fixed set of services, i.e., the set of services is expected to never change. As
opposed to tight integration, remote coupling means that the execution agent and the (Web)
service provider are distant from each other, that is, the execution agent invokes the service in the
standard way using its communication layer and protocol – for instance, the common Web service
stack, that is HTTP based SOAP or REST. Finally, this type mostly comes along with a generic
design of the execution agent which is able to invoke any remote service.

3.2.1.1 Fully-Decentralised Execution Strategy with Tight Integration of Execution Agent
and Web Services

The determinative characteristic of this strategy is the assumption that execution agents and
(Web) service providers are tightly or locally integrated, as described above. Consequently,
execution agents need to be deployed and made available for every pre-existing service provider
in the infrastructure.

Figure 29 illustrates the course of a very simple scenario where a composite service containing a
sequence of three Web service invocations WS1 to WS3 should be executed. The client agent –
according to the setting in the CASCOM architecture this would actually be the SCPA – submits
the valid OWL-S composite service description together with the input data to any available
execution agent, for instance SEA0. This execution agent parses the given service description for
the first atomic service provider, which is WS1. With this information the agent resolves the
execution agent SEA1 as it is the wrapper of WS1 – note that we assume the availability of some
kind of directory containing a mapping from service providers to execution agents. In the next step
SEA0 forwards the complete service description and input data to SEA1 co-requesting execution
start. By forwarding the complete service description each agent is able to resolve the next agent
to forward control and results to because this information can be resolved from the process model
of the service description. In the scenario, after completion of execution of WS1, SEA1 would
resolve the agent for WS2 which is SEA2 and again forward the complete service description
together with the input data and result 1 produced by WS1. This procedure continues until SEA3
has finished invocation of WS3 with result 3. In step 5 SEA3 sends results 1 to 3 back to SEA0
which just maps them to the composite service’s output (result). Finally, in step 6 the result is sent
back to the client agent.

In case of failures on one execution agent or in case of violated pre- or post-conditions execution
either has to be rolled back or a re-planning could be initiated trying to find alternative services and
continue execution if an alternative was found. Assuming transactional properties of the services a
roll back can be done based on the fact that each execution agent knows its adjacent
predecessor(s) from the process model of the composite service. A rollback then requires moving
back along the control path step by step and rolling back each service invocation done.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 56(105)

Figure 29 – Course of fully-decentralised execution strategy with tight integration of SEA and

service provider

The downside of the simple variant of this approach is that intermediate results produced by
service invocations and input data will be forwarded in any case no matter if they are actually
required on every execution agent, i.e., the data flow is not optimal. For instance, in the scenario
illustrated in Figure 29, if WS1 produces large volumes of data as result 1 they will be forwarded to
SEA2 and SEA3 in any case. In a first optimised version data (input and output data, intermediate
results) would only be forwarded between the agents where it is required, thus reducing the overall
data communication amount. Furthermore, it is not necessary to forward the composite OWL-S
service description from agent to agent. In a second optimisation step this can be optimised to split
the composite service into its atomic services sections and extend the execution strategy with an
initial distribution of the sections to each agent, i.e., each execution agent receives just its own
task within the composite service. In the scenario above this initial step could be done by SEA0. To
complete this optimisation each agent also needs knowledge about its adjacent predecessor(s)
and successor(s) for control flow navigation. The successor(s) is/are required for normal forward
navigation whereas the predecessor(s) is/are required for backwards navigation in case of roll
back.

3.2.1.2 Dynamically-Decentralised Execution Strategy with Remote Coupling of Execution
Agent and Web Services

This approach was designed to address the development in current service oriented architectures
in which the spreading and application of Web service standards like WSDL and SOAP have
reached a level where Web service providers almost always apply those technologies to publish
and provide access to their Web services. As a matter of fact, the question had to be raised
whether a tight coupling of execution agents and Web services is appropriate, assumable, even
feasible in practice or whether a strategy can be found which fits well to the the current exploitation
of Web services which considers remote invocation of services using the common Web services
communication stack and which is still robust against failures. All in all, this approach supports the
requirement that service providers want to remain Web services conform with respect to the
service interfaces.

Figure 30 illustrates the course of the quasi-decentralised and distributed execution strategy.
Likewise Figure 29 it also assumes a very simple scenario where a composite service containing a
sequence of three Web service invocations WS1 to WS3 should be executed. It is also assumed
that a composite service is split up into sections equal to the atomic services inside. The client
agent submits a valid OWL-S composite service description together with the input data to one
available execution agent, SEA1 in this case. After that SEA1 parses the service description and

Client Agent SEA1

 SEA3

 SEA2

1. submit composite service,
input data, and request execution

3. service and result 1

4. service and result 1, 2

5. service and result 1, 2, 3

6 . send result data

WS1

WS2

WS3

 SEA0

2. start

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 57(105)

immediately starts invocation of the first Web service WS1. After return of the result from WS1 the
the first section is finished and the strategy now continues with a decision step to determine
whether execution of the next section should be made by the same agent or whether the execution
state should be transferred to another execution agent and continue there. In this decision step
arbitrary heuristics can be used to figure out how to continue, i.e., on which agent to continue. For
instance, it would be possible to design context based heuristics making it possible to adapt
dynamically to overloaded, slow, expensive, or failure-prone context situations and transfer
execution state to other execution agents with superior context situations. Additionally, it is also
possible to face the effort for transferring execution state to another execution agent with the
benefit available there. However, the design of this heuristics based continuation decision is
generic and allows configuring a custom implementation for the execution agent. For the prototype
we have implemented a very basic CPU load based heuristics, that is, transfer of the execution
state takes place if the average CPU load on the current execution agent exceeded a certain
threshold in a preceding timeframe. To come back to the sample scenario in Figure 30, after the
decision step execution of the next section might continue on SEA1 until WS3 returned its result.
Finally, in step 5 the composite service output (result) is returned to the client agent.

The heuristics based approach for distribution is able to cope with external failure situations but not
with crash situations of the current execution agent itself. To overcome this problem, two
possibilities exist. It is either possible to persist the current execution state at the current agent, or
to replicate the execution state online to another execution agent. Whereas the first solution is only
appropriate for short interruptions whereby the agent gets rebooted immediately afterwards and
restarts the interrupted execution, the second solution is more robust since execution can be
immediately overtaken by the agent which has the replicated execution state. Therefore we intend
to extend the implementation of the execution agent with the latter solution.

Figure 30 – Dynamically-decentralised execution strategy with remote coupling of execution agent

and Web services

Provided that the heuristics based decision computation always returns with the result to continue
at the same execution agent, execution is in fact not distributed and the communication effort is
minimal. According to the actual heuristic used, this situation represents the optimal execution
environment then. On the opposite side, transfer to another agent on each decision computation
represents the most suboptimal execution environment according to the heuristic and also involves
the highest communication overhead. Therefore it turns out that the more precarious the context
environment is the more efforts must be undertaken.

Another characteristic of this strategy is that its properties do not deteriorate assuming that (Web)
service providers would be tightly integrated with agents. Assuming this change the execution
agent which currently does invocations should then communicate to other agents using ACL
messages instead of using the Web services stack. Consequently, only the message layer for
service invocations needs to be replaced/extended by a communication layer for ACL messages.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 58(105)

3.2.2 General Structure
The distributed execution system has an agent based structure. All its functionality is represented
to the outside by agents, whereby for a minimum deployment just one agent is sufficient (of
course, such a deployment is in fact not distributed). Furthermore, all execution agents in a
distributed deployment are equal in their functionality accessible by client agents, which means
that all of them are available to be used in the same way, thus presenting a true P2P structure.

As illustrated in Figure 31, the service execution agent (SEA) is represented first by the class
OnAgent and secondly by the behaviour OnBehaviour15. The OnAgent has no functionality
implemented except to register itself to the JADE directory facilitator (DF) and to instantiate and
add the OnBehaviour to itself. This means that the OnBehaviour comprises the execution
functionality completely. This way, a great flexibility is achieved with respect to who can implement
OWL-S service execution functionality: The class OnBehaviour can be added to any agent, thus
extending the agent to which it is added with OWL-S service execution functionality.

Figure 31 – Execution Agent – General Class structure

Figure 32 shows the dependencies and how the On system is integrated into the OnBehaviour,
i.e., the execution agent. Basically, the lifecycle of the On system is managed by the class
BasicController which contains methods for startup, reboot and shutdown of the system. After
the OnAgent has instantiated a new OnBehaviour in its setup() method it calls startOn(),
which simply delegates the call to BasicController.init() followed by
BasicController.start(). On successful start up of the On System, the agent adds the
behaviour instance to itself and is then able to accept execution requests. In case start up fails the
agent won’t add the behaviour to itself and deactivates itself. In case the agent was requested to
shut down externally or by the agent platform its takeDown() method is called which delegates
the call to OnBehaviour.shutDownON() which in turn delegates to
BasicController.shutdown().

Receiving and sending of ACL messages is not done in the usual way by using the receive()
and send() methods of the agent since this is handled by the OnBehaviour implementation,
which extends an interaction protocol, see section 3.2.3.1.

15 The prefix „On“ stands for OSIRIS next, for further information see Section 3.2.1.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 59(105)

Figure 32 – On Execution System to Agent integration – Class structure

Figure 32 also displays the interface ActionHandler and the class ActionHandlerMapper.
These two represent the link from a received ACL message which contains a AgentAction (see
Section 3.2.3.2) to associated action commands which encapsulate the logic associated to a
certain action. ActionHandlerMapper contains the mapping for each AgentAction to exactly
one ActionHandler. For each arriving request message the mapper resolves an implementation
of ActionHandler and instantiates it. Consequently, for each AgentAction which the
execution agent is supposed to understand and handle one action handler has to be implemented.
After instantiation each ActionHandler might need to do several initialisation steps in order to
execute the actual action logic afterwards. This has to be done inside the init() method. In
order to signal initialisation failures, the implementor might throw an exception in which case the
agent refuses the request message. To undo side effects which might have been created during a
failed initialisation the implementor can implement undoInit(), i.e., this method is called
whenever init() returned prematurely with an exception. Finally, the implementor has to
implement handle() which contains the actual action logic. The method neither has a return
value nor does it throw an exception. This means that it forces an asynchronous semantic for

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 60(105)

action handling and thus decouples the actual execution logic from the agent thread. This was
necessary since the JADE framework carries out a round-robin non-preemptive scheduling policy16
among all behaviours attached to an agent and thus ensures that OnBehaviour does not
interfere with other behaviours since it releases control at the time handling of an action starts. So
from the point on of invoking handle() a new thread has to be spawn and any further internal
progress is done based on the notify/wait pattern realised by the specific protocol implementation,
see Section 3.2.3.1.

3.2.3 Interaction Interface
SEA publishes one interaction interface by which all ACL message interactions are to be done. As
the SEA currently does not show any proactive behavior, i.e., it has to be accessed actively by
other agents, the type of supported interactions are similar to asynchronous remote procedure
calls (RPC). Not just because of the asynchronous invocation model but especially because of the
required usage patterns which are beyond the simple request/reply pattern, all interactions
between calling agent and execution agent are stateful, thus forming an interaction protocol. Each
new invocation of one of the execution agents methods implicitly creates a new session which
lasts until the final result – no matter if the result is positive or negative – was sent back to the
invoking agent. The state on both sides is encapsulated by finite state automata as provided by the
JADE framework. As a recommended starting point for simple request/reply agent conversations
FIPA has specified the standard Achieve Rational Effect protocol [FIPA00a], implemented in
JADE by the Java classes pair jade.proto.AchieveREInitiator and
jade.proto.AchieveREResponder. However, since the protocol is not sufficient with respect
to the requirements of service execution interaction, see Deliverable 3.2, an extended version of
the protocol, named Achieve Rational Effect * protocol, was implemented. For instance, when
some agent requests execution of some composite OWL-S service to the execution agent, it was
specified that the requestor might want to get notified about execution progress, that is, the
position of control flow within the composite service, respectively the effects achieved so far.

In the following section we will describe the protocol and the implementation in detail.

3.2.3.1 Achieve Rational Effect * Protocol
In short, the Achieve Rational Effect * protocol extends the standard FIPA Achieve Rational Effect
protocol [FIPA00a] with two optional features:

1. The possibility to send any kind of intermediate or feedback ACL messages (information)
to the initiator before the final result (inform or failure) is sent to the initiator. Consecutive
messages of this kind can be sent, but may alternate with 2.)

2. The possibility to send return requests (ACL messages) back to the initiator to “ask” for
additional information which might be required to achieve the original rational effect. A
return request must be answered by the initiator until a new return request can be done or
a new feedback message can be sent.

Both parts are designed and implemented generically to be (re)used in any situation which would
fit to the functionality provided. Consequently, the protocol and the implementation are not limited
to be used within CASCOM and can be delivered back to the FIPA, JADE community. However,
for the interfacing with the execution agent the first part is used to provide the requesting agent
with up to date information about the current state of the execution. The second part is used to
trigger re-planning of composite OWL-S services in case of problems during execution, for
instance, if a certain atomic service part of the composite service became suddenly unavailable.

Whereas the standard FIPA Achieve Rational Effect protocol supports 1:N conversations, i.e., can
handle several responders at the same time, the extended version has been tested only for 1:1

16 In a non-preemptive scheduling policy multiple tasks (behaviours) execute by voluntarily ceding control to

other tasks at programmer-defined points within each task, i.e., programmers control when to return from
their task.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 61(105)

conversations, although its implementation was not restricted with respect to the number of
responders.

Figure 33 shows the defined order and cardinalities of the ACL message flow for the standard
Achieve Rational Effect protocol and the newly integrated ACL messages, altogether comprising
the Achieve Rational Effect * protocol. As it can be seen, the protocol starts with the mandatory
ACL message from the initiator to the responder, whereby the performative is set to request,
followed by the optional ACL message with performative set to either refuse, not understood, or
agree. After that zero to n propagate or return request messages can be sent to the initiator. In
case a return request message is sent it must be answered with inform or failure message by the
initiator. Each return request is encapsulated by a sub Achieve Rational Effect protocol on both
initiator and responder side. Finally the protocol ends with the final result message, whereby the
performative is set to either inform or failure depending on whether the responder succeeded in
achieving the effect or not.

The protocol identifies the proper association of ACL messages in an ongoing conversation with
more than two partners based on the FIPA ACL slot conversion-id. Furthermore, the proper order
of messages is ensured by the slots reply-with and in-reply-to. This way, and by the internal state
model of initiator and responder (see Figure 34 and Figure 35), it can be ensured that all
messages arriving out of sequence will be discarded. Nevertheless, the protocol defines methods
which make it possible to process them, but they do not show any effect to the flow of the protocol.

Figure 33 – Message Flow

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 62(105)

For the intermediate/feedback messages the ACL performative propagate had to be chosen since
all other ACL performatives either do not fit according to their associated semantics or would
interfere with the protocols semantics. However, in case of the general CASCOM architecture the
performative propagate truly fits to the setting since the client for the SEA is the service
composition planner agent (SCPA) which propagates the current execution state to the personal
agent anyway.

The Java implementation of the protocol is provided by the two correlating classes (they always
have to be used in combination) AchieveRESInitiator and AchieveRESResponder, see
Figure 36. Each of them implements finite state automata for the initiator and responder part,
altogether realising the whole protocol.

Figure 34 – Achieve Rational Effect * Protocol – Initiator state model

Figure 34 and Figure 35 show the state models of the initiator and responder. In case of the
initiator the relevant states are all the handler states containing the prefix HANDLE_. Each of them
gets activated after an ACL message was received and it was checked according to its
performative and slot in-reply-to to be in defined sequence order. Furthermore, each handler state
corresponds to a handle… method and registerHandle… respectively. For the extension to the
Achieve Ration Effect * protocol basically two changes had to be made, i.) alignment of the
CHECK_IN_SEQ state, and ii.) addition of the handler states HANDLE_RETURN_REQUEST and
HANDLE_PROPAGATE. For this reason it was possible to directly derive the implementation from
AchieveREInitiator, see Figure 36.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 63(105)

Figure 35 – Achieve Rational Effect * Protocol – Responder state model

Parts of the state model for the responder part, see Figure 35, were reused from the existing class
AchieveREResponder class but had to extend essentially. The relevant handler states are the
PREPARE_... states and RETURN_REQUEST. Except for PREPARE_RESPONSE they get activated
depending on the outcome of the TEST state. After the responder part of the protocol finishes by
sending the final result notification the state machine does not terminate but transits to its initial
state RECEIVE_REQUEST. This is done on purpose as an object resources optimisation during
runtime and allows instances of the class to get reused after each cycle.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 64(105)

Figure 36 – Achieve Rational Effect * Protocol – Class structure

Figure 36 displays the general class structure of both implementations AchieveRESInitiator
and AchieveRESResponder. In general, they follow the JADE framework conventions for
naming of state handler methods. AchieveRESInitiator contains four new methods required
to represent the processing of intermediate/feedback messages and return requests. The class
can be easily extended by overriding one of the handle… call back methods, which provide hooks
to handle the corresponding states of the protocol. For instance, handlePropagate() is called
when a propagate message is received. The more advanced possibility would be instead of
extending the class and overriding some of its methods to register application-specific behaviours
by using one of the register… methods. With respect to each state both possibilities are
mutuallly exclusive but for different states both can be mixed. The same principles for handling the
protocol states apply for the AchieveRESResponder class except that for handling the return
request state, registration of a subsequent AchieveREInitiator is mandatory, i.e., no
handle… method exists.

As noted in Section 3.2.1, progress of the protocol has to be achieved by an asynchronous
notify/wait interaction pattern in order not to conflict with the round-robin non-preemptive
scheduling policy for behaviours within agents. Support for this pattern is provided by the interface
UpdateHandler and the class Update. This means that transitions between the states of the
protocol are achieved by sending updates to the update handler – note that

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 65(105)

AchieveRESResponder implements UpdateHandler. Each update will be processed and
according to pre-defined markers part of each update it can be decided which handler state to
choose next. Each update also stores the data to be used for sending ACL messages within each
handler state. As soon as an update was processed the behaviour gives control back to the
agent’s behaviour scheduler and waits until the next update arrives.

3.2.3.2 Agent Ontology
This section describes the set of concepts, predicates, and actions and the semantics attached to
them, i.e., the ontology used to create meaningful ACL message content for every interaction with
the SEA, thus comprising the content definition of the speech act of the SEA. Generally, content
expressions inside ACL messages are represented using the content language SL0 as it is
common to the CASCOM agent architecture. The ontology is formally described based on the
concepts realised inside the JADE platform, which means that it consists first of the vocabulary
used within the content expressions and second a set of Java classes (see Figure 37) which
directly reflect the concepts, predicates, and actions. The vocabulary is omitted here for
convenience since its literals directly map to the attribute names of the Java classes.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 66(105)

Figure 37 – Overview of ontology of execution agent

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 67(105)

3.2.3.2.1 Description of Predicates
The following tables describe the semantics of all predicates and their attributes.

Class ch.unibas.on.jade.onto.schema.Status

Description Abstract class which contains common attributes used as content for replies
of the SEA.

Attribute Description Cardinality Type

message A human readable string containing
informal information about the status.

0…1 String

statusType The type of the status. 1 StatusType

owlsServiceID The identifier to which OWL-S service
the status relates.

0…1 OWLSServiceID

payload A list of Concept objects representing
the result content.

0…* Concept

Table 6 – Description of the predicate object Status

The classes (predicates) IntermediateInform, IntermediateProblem, ResultInform,
and ResultFailure are subclasses of Status and do not add new attributes nor overwrite
functionality of the super class except that the attribute statusType is fixed set to one of the
constant StatusType instances.

Class ch.unibas.on.jade.onto.schema.Statistic

Description Class which contains a list of measurement values sent as reply to agent
action StatisticsAction.

Attribute Description Cardinality Type

measurements The list of measurement objects. 0…* Measurement

Table 7 – Description of the predicate object Statistic

3.2.3.2.2 Description of Concepts
The following tables describe the semantics of all concepts and their attributes.

Class ch.unibas.on.jade.onto.schema.OWLSServiceID

Description Class which contains the unique identifier associated to each OWL-S service
uploaded to the SEA, i.e., the identifier is assigned globally unique within the
distributed execution system. Optionally, it stores a unique service instance
identifier associated as soon as the service gets executed.

Attribute Description Cardinality Type

host The agent where the identifier was
created.

1 String

serviceId The service identifier (alphanumerical). 1 String

serviceInstanceId The service instance identifier
(alphanumerical)

0…1 String

Table 8 – Description of the concept object OWLSServiceID

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 68(105)

Class
ch.unibas.on.jade.onto.schema.OWLSService and

ch.unibas.on.jade.onto.schema.OWLSServiceFragment

Description Both classes hold an OWL-S service description XML string. They are used
either for initial execution of services or for execution after re-planning.

Attribute Description Cardinality Type

serialisation The XML document of the OWL-S
service.

1 String

Table 9 – Description of the concepts OWLSService and OWLSServiceFragment

Class ch.unibas.on.jade.onto.schema.StatusType

Description Class used to identify the available status types within agent replies.
Furthermore, it is used to specify which kind of status messages a initiator
agent is interested in. The class contains four constants of this type which
represent the pre-defined status types: INTERMEDIAT_INFORM,
INTERMEDIATE_PROBLEM, RESULT_INFORM, RESULT_FAILURE.

Attribute Description Cardinality Type

value A unique identifier to distinguish each
status type from each other.

1 String

Table 10 – Description of the concept StatusType

Class ch.unibas.on.jade.onto.schema.Measurement

Description Class used to store single, generic runtime measurements of the execution
system which can be queried actively by other agents.

Attribute Description Cardinality Type

name A formal or informal description of what
the measurement represents.

1 String

value The numerical or alphanumerical
measurement value.

1 String

timestamp Optional date when the measurement
was taken.

0…1 Date

Table 11 – Description of the concept Measurement

Class ch.unibas.on.jade.onto.schema.StatisticOptions

Description Class used to store the keys of measurements/statistic values to query for.
Note that the syntax and semantics of key names is application specific.

Attribute Description Cardinality Type

measurementKeys A list of keys identifying each
measurement/statistic value.

1…* String

Table 12 – Description of the concept StatisticOptions

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 69(105)

Class ch.unibas.on.jade.onto.schema.ValueMapping

Description Class used to store input and output data associated to a (composite) service for
execution. The key references a certain input or output parameter of the OWL-S
service profile and the value stores the concrete value used as input or output

Attribute Description Cardinality Type

complexValue A flag which indicates whether the value is
simple or complex.

1 Boolean

key The key which maps to an existing input or
output parameter within the OWL-S service
profile.

1 String

value Stores the concrete input or output value.
In case of a simple type (number, boolean,
string) the value is represented as string. In
case of a complex type it stores an XML
document.

1 String

Table 13 – Description of the concept ValueMapping

3.2.3.2.3 Description of Agent Actions
The following tables describe the semantics of all agent actions and their attributes. The tables
also contain descriptions of the final reply messages sent back in either case failure or success.

Class ch.unibas.on.jade.onto.schema.DownloadAction

Description Agent action used to download an OWL-S service description which was
uploaded before.

Failure
message
content

Agent answers with ResultFailure status predicate containing informal text
message pre-defined in the ontology vocabulary.

Success
message
content

Agent answers with ResultInform status predicate containing informal text
message pre-defined in the ontology vocabulary and the concept OWLSService
containing the XML document of the service description.

Attribute Description Cardinality Type

serviceID The identifier to indicate which OWL-S
service to download.

1 OWLSServiceID

Table 14 – Description of the agent action DownloadAction

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 70(105)

Class ch.unibas.on.jade.onto.schema.UploadAction

Description Agent action used to upload an OWL-S service description. Start of execution
has to be requested afterwards.

Failure
message
content

Agent answers with ResultFailure status predicate containing informal text
message pre-defined in the ontology vocabulary.

Success
message
content

Agent answers with ResultInform status predicate containing informal text
message pre-defined in the ontology vocabulary and the concept
OWLSServiceID containing the unique service identifier.

Attribute Description Cardinality Type

service The service to upload. 1 OWLSService

Table 15 – Description of the agent action UploadAction

Class ch.unibas.on.jade.onto.schema.UploadExecuteAction

Description Agent action used to upload an OWL-S service description and immediately
trigger execution of the given service.

Failure
message
content

Agent answers with ResultFailure status predicate containing informal text
message pre-defined in the ontology vocabulary.

Success
message
content

Agent answers with ResultInform status predicate containing informal text
message pre-defined in the ontology vocabulary and zero to more concepts
ValueMapping containing the output values.

Attribute Description Cardinality Type

service The service to upload and execute. 1 OWLSService

statusType Indicates whether only final result
message should be sent back or
intermediate execution progress
messages should be sent too.

1 StatusType

valueMappings The set of input value associated to the
input parameters of the service profile.

0…* ValueMapping

Table 16 – Description of the agent action UploadExecuteAction

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 71(105)

Class ch.unibas.on.jade.onto.schema.ExecuteAction

Description Agent action used to trigger execution of an OWL-S service description which
was uploaded already before.

Failure
message
content

Agent answers with ResultFailure status predicate containing informal text
message pre-defined in the ontology vocabulary.

Success
message
content

Agent answers with ResultInform status predicate containing informal text
message pre-defined in the ontology vocabulary and zero to more concepts
ValueMapping containing the output values.

Attribute Description Cardinality Type

serviceID The identifier of the OWL-S service to
execute.

1 OWLSServiceID

statusType Indicates whether only final result
message should be sent back or
intermediate execution progress
messages should be sent too.

1 StatusType

valueMappings The set of input value associated to the
input parameters of the service profile.

0…* ValueMapping

Table 17 – Description of the agent action ExecuteAction

Class ch.unibas.on.jade.onto.schema.UpdateAction

Description Agent action used to update an OWL-S service description which was
uploaded before either completely or.

Failure
message
content

Agent answers with ResultFailure status predicate containing informal text
message pre-defined in the ontology vocabulary.

Success
message
content

Agent answers with ResultInform status predicate containing informal text
message pre-defined in the ontology vocabulary.

Attribute Description Cardinality Type

serviceID The identifier indicating which OWL-S
service should be updated.

1 OWLSServiceID

serviceFragment The new service (fragment) replacing
the old one.

1 OWLSServiceFragment

Table 18 – Description of the agent action UpdateAction

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 72(105)

Class ch.unibas.on.jade.onto.schema.UpdateExecuteAction

Description Agent action used to update an OWL-S service description which was
uploaded before either completely or partially and immediately trigger
execution of the given service.

Failure
message
content

Agent answers with ResultFailure status predicate containing informal text
message pre-defined in the ontology vocabulary.

Success
message
content

Agent answers with ResultInform status predicate containing informal text
message pre-defined in the ontology vocabulary and zero to more concepts
ValueMapping containing the output values.

Attribute Description Cardinality Type

serviceID The identifier indicating which OWL-S
service should be updated and
executed.

1 OWLSServiceID

serviceFragment The new service (fragment) replacing
the old one.

1 OWLSServiceFragment

statusType Indicates whether only final result
message should be sent back or
intermediate execution progress
messages should be sent too.

1 StatusType

Table 19 – Description of the agent action UpdateExecuteAction

Class ch.unibas.on.jade.onto.schema.StatisticsAction

Description Agent action used to query for certain statistics/measurements of the execution
system.

Failure
message
content

Agent answers with ResultFailure status predicate containing informal text
message pre-defined in the ontology vocabulary.

Success
message
content

Agent answers with ResultInform status predicate containing informal text
message pre-defined in the ontology vocabulary and zero to more concepts
Measurement according to the query parameters.

Attribute Description Cardinality Type

statisticOptions The identifier to which OWL-S service the
status relates.

1 StatisticOptions

Table 20 – Description of the agent action StatisticsAction

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 73(105)

Class ch.unibas.on.jade.onto.schema.RemoveAction

Description Agent action used to remove an OWL-S service description which was
uploaded before.

Failure
message
content

Agent answers with ResultFailure status predicate containing informal text
message pre-defined in the ontology vocabulary.

Success
message
content

Agent answers with ResultInform status predicate containing informal text
message pre-defined in the ontology vocabulary.

Attribute Description Cardinality Type

serviceID The identifier indicating which OWL-S
service should be removed.

1 OWLSServiceID

Table 21 – Description of the agent action RemoveAction

Class ch.unibas.on.jade.onto.schema.AbortAction

Description Agent action used to abort ongoing execution of an OWL-S service instance.

Failure
message
content

Agent answers with ResultFailure status predicate containing informal text
message pre-defined in the ontology vocabulary.

Success
message
content

Agent answers with ResultInform status predicate containing informal text
message pre-defined in the ontology vocabulary.

Attribute Description Cardinality Type

serviceID The identifier indicating which OWL-S
service should be removed. Note that
both the service and instance identifier
must be given within the object.

1 OWLSServiceID

Table 22 – Description of the agent action AbortAction

3.2.4 Execution Monitoring
Service execution monitoring addresses activities that seek to acquire and distribute the extent to
which progress is being made according to some reference. This includes time tracking
information as well action tracking information and enables that timely actions can be taken in view
of detected changes or deficiencies. However, the term execution monitoring here is only to be
seen as an functionality for remote event monitoring and does not relate to local logging
functionalities in the sense that execution monitoring realises local (and persistant) logging of
execution checkpoints used for failure recovery.

For the service execution agent, monitoring is realised in a domain-independent way trying to
complement integrated exception and failure handling within the agent infrastructure. Additionally,
configuration of which data to collect can be done for each (composite) service execution
independently as integral part of the message content, that is, monitoring properties are not
globally configured.

In particular, execution monitoring of the implementation comprises the following functionality:

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 74(105)

• Progress during execution used as the basis to create monitoring information is defined
according to the sections in which a composite OWL-S service is split up, i.e., its atomic
services. Consequently, progress can be monitored at the beginning and finish of each
atomic service invocation. In particular, if an atomic service contains definition of post-
conditions (effects) in its profile those post conditions are directly used together with the
service name. If the service profile does not define post-conditions just the service name
of the profile is used.

• Each client agent who submits and initiates execution of an OWL-S composite service can
monitor execution progress of the submitted service. Client agents can only monitor their
own submitted services.

• Client agents can set as part of each action message the monitoring properties. For
instance, the agent actions ExecuteAction and UploadExecuteAction of the agent
ontology – see Section 3.2.3.2 – contain the slot statusType to configure which
monitoring information they are interested in. The properties can be set for each service
execution independently.

• Client agents who have submitted execution of one OWL-S composite service will be
actively notified after a certain progress was made according to some reference. In other
words, the push based monitoring information delivery does not require client agents to
actively poll for monitoring information.

3.2.5 Context-awareness
In the distributed approach the service execution agents interact with the generic CASCOM
context system to both obtain and provide relevant contextual information. Provision and
acquisition of context information is done throughout execution process by using the specific
interface of the context framework. For example, each service execution agent constantly provides
average CPU load information within a preceding time interval and the average time for service
execution. This would allow other agents to select non-busy execution agents. Furthermore, each
execution agent uses its own context information and probably context information from other
sources as input to decide about where to continue with an ongoing execution – see description of
the execution strategy in Section 3.2.1.2. Nevertheless, the design of the distributed execution
agent aimed at preventing the situation where the usage of the context system becomes
indispensable to proper functioning, i.e., integration of context-awareness is meant to be a
benefitial but not crucial component.

3.3 Centralised Approach
Both approaches for Service Execution in IP2P environments that were implemented in the scope
of the service coordination layer of the CASCOM Architecture present some (dis)advantages.

In the distributed approach (see Section 3.1) the execution process is carried out by a group of
different entities (agents running in different places). Even though this prevents the single point of
failure problem, it requires coordination mechanisms, which may be lengthy, to avoid conflicts in
the execution of a composite service carried out by several different agents. In the centralized
approach, the execution process is carried out by a single agent that has the necessary skills to
execute complex composite services. Although it avoids having coordination mechanisms, it
doesn’t prevent the single point failure problem.

Even though the distributed approach has managed to avoid heavy (time and resource
consuming) coordination mechanisms (see section 3.2.1), it still requires agent developers to add
a specific behavior in their agents in order to be able to be a part of the cooperative execution
environment. Also, this extra development is only available for a single programming language
(Java) and a single FIPA-complaint platform (JADE).

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 75(105)

To complement the distributed approach, the centralized approach was designed to offer an
alternative in a form of a single specialized execution agent, which can easily be contacted by a
client agent (an agent requesting the execution of a certain service), using FIPA-compliant
communication mechanisms and languages (quite in the same way as a client agent can contact a
service execution agent in the distributed approach), thus avoiding any work performed by the
agent developer.

3.3.1 Service Execution Agent
The Service Execution Agent (SEA) was implemented using Java and component-based software
as well as other tools that were extended to incorporate new functionalities into the service
execution environment. These tools are the JADE agent platform [BPR99] and the OWL-S API
[S04].

The agent was developed with an internal architecture that was clearly designed to enable the
agent to engage in these required interactions: receive and reply to requests from client agents;
acquire\provide relevant context information; request for re-discovering and re-planning of
services; and execute remote semantic web services.

3.3.1.1 Agent’s Interface
When requesting the execution of a specified service, client agents interact with SEA through the
FIPA-request interaction protocol [FIPA00a]. This protocol states that when the receiver agent
receives an action request, it can either agree or refuse to perform the action. It should then notify
the other agent of its decision through the corresponding communicative act (FIPA-agree or FIPA-
refuse).

SEA performs this decision process through a service execution’s request evaluation algorithm
that involves acquiring adequate context information. SEA will only agree to perform a specific
execution if it is possible to execute it, according to currently available context information. For
example, if necessary service providers (for the execution of the service) are not available and the
time that takes to find alternatives is longer than the timeframe the client agent expects to obtain a
reply to the execution request, then SEA refuses to perform it.

On the other hand, if SEA is able to perform the execution request (because service providers are
immediately available), but not in the time frame requested by the client agent (again, according to
available context information) it also refuses to do so. SEA can also refuse to perform execution
requests if its work-load is already too high (if its requests queue is bigger than a certain defined
constant).

The FIPA-request also states that after successful execution of the requested action, the executer
agent should return the corresponding results through a FIPA-inform message. After executing a
service, SEA can send one of two different FIPA-inform messages: one sending the results
obtained from the execution of the service; other sending just a notification that the service was
successfully executed (when no results are produced by the execution).

3.3.1.2 Context-awareness
Context-aware computing is a computing paradigm in which applications can discover and take
advantage of contextual information. A general mechanism for context-aware computing is
summarized in the following steps [ADOB98]:

1. Collect information on the user's physical, informational or emotional state;

2. Analyze the information, either by treating it as an independent variable or by combining it
with other information collected in the past or present;

3. Perform some action based on the analysis;

4. And repeat from step 1, with some adaptation based on previous iterations.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 76(105)

SEA uses a similar approach to [ADOB98] to enhance its activity, by adapting it to the specific
situation that the agent and its client are involved in, at the time of the execution process. SEA
interacts with the CASCOM’s context system in order to obtain context information, subscribe
desired context events and to provide relevant context information. Other agents, web services
and sensors (both software and hardware) in the environment will interact with the context system
as well, by providing relevant context information related to their own activities, which may be
useful to other entities in the environment.

Acquisition of context information is made through a specific interface of the context framework by
querying it in a pre-determined query language. Context events are event listeners that monitor
certain changes in context. Whenever context information changes, the system notifies the entities
that subscribed the corresponding class of events. This is useful for SEA to be aware of availability
of certain entities in the environment on which it operates.

Throughout the execution process, SEA provides and acquires context information from and to this
context system. For example, SEA provides relevant information such as the queue of its service
execution requests and the average time of service execution. This will allow other entities in the
environment to determine the service execution agent with the smallest work-load, and hence that
can provide a faster execution service. During the execution of a composite service, SEA invokes
atomic services from specific service providers (both web services, and service provider agents).
SEA also provides valuable information regarding these service providers’ availability and average
execution time. Other entities can use this information to rate service providers or to simply
determine the best service provider to use in a specific situation. Furthermore, SEA uses its own
context information (as well as information from other sources and entities in the environment) to
adapt the execution process to a specific situation. For instance, when selecting among several
providers of some desirable atomic service, SEA will choose the one with better availability (lesser
history of down time) and lower average execution time.

In situations such as the one where service providers are unavailable, it is faster to obtain the
context information from the context system (as long as service providers can also provide their
own availability context information) than by simply trying to use the services and discover that
they are unavailable (because of the time lost waiting for connection time-outs to occur). After
obtaining this relevant information, SEA can then contact other service-oriented agents (such as
service discovery and composition agents) for requesting the re-discovering of service providers
and/or re-planning of composite services. This situation-aware approach using context information
on-the-fly helps SEA to provide a value-added execution service.

3.3.1.3 Internal Architecture
The developed agent is composed of three components: the Agent Interaction Component (AIC),
the Engine Component (EC) and the Service Execution Component (SEC). Figure 38 illustrates
the internal architecture of the agent and the interactions that occur between the components.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 77(105)

Figure 38 – Internal Architecture of the Service Execution Agent

The AIC was developed as an extension of the JADE platform and its goal is to provide an
interaction framework to FIPA-compliant agents, such as SEA’s clients (requesting the execution
of specified services – Figure 38, step 1) and service discovery and composition agents (when
SEA is requesting the rediscovering and re-planning of specific services – Figure 38, steps *). This
component extends the JADE platform to provide extra features regarding language processing,
behavior execution, database information retrieval and components’ communication.

Among other things, the AIC is responsible for receiving messages, parsing them and processing
them into a suitable format for the EC to use it (Figure 38, step 2). The reverse process is also the
responsibility of AIC – receiving data from the EC and processing it into the agents’ suitable format
to be sent as messages (Figure 38, step 9). The EC is the main component of SEA as it controls
the agent’s overall activity. It is responsible for pre-processing service execution requests,
interacting with the context system and deciding when to interact with other agents (such as
service discovery and composition agents). When the EC receives an OWL-S service execution
request (Figure 38, step 2), it acquires suitable context information (regarding potential service
providers and other relevant information, such as client location – Figure 38, step 3) and plans the
execution process.

If the service providers of a certain atomic service (invoked in the received composite service) are
not available, SEA interacts with a service discovery agent (through the AIC – Figure 38, steps *)
to discover available providers for the atomic services that are part of the OWL-S composite
service. If the service discovery agent cannot find adequate service providers, the EC can interact
with a service composition agent (again through the AIC – Figure 38, steps *) asking it to create an
OWL-S composite service that produces the same effects as the original service.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 78(105)

After having a service ready for execution, with suitable context information, the EC sends it to the
SEC (Figure 38, step 4), for execution. Throughout the execution process, the EC is also
responsible for providing context information to the context system, whether it is its own
information (such as service execution requests’ queue, average time of execution), or other
entities’ relevant context information (such as availability of providers and average execution time
of services).

The SEC was developed as an extension of the OWL-S API [S04] and its goal is to execute
semantic web services (Figure 38, steps 5a and 6a) described using OWL-S service descriptions
and WSDL grounding information. The extension of the OWL-S API allows for the evaluation of
logical expressions in conditioned constructs, such as the If-then-Else and While constructs, and in
the service’s pre-conditions and effects. OWL-S API was also extended17 in order to support the
execution of services that are grounded on service provider agents (Figure 38, steps 5b, 6b). This
extension is called AgentGrounding and it is explained in detail in section 3.3.1.4.

When the SEC receives a service execution request from the EC, it executes it according to the
description of the service’s process model. This generic execution process is described in section
3.1.

During the execution process, SEC collects relevant context information (such as providers’
availability, quality of service and execution times). After execution of the specified service and
generation of its results, the SEC sends them to the EC (Figure 38, step 7) for further analysis and
post-processing, which includes sending gathered context information to the context system
(Figure 38, step 8) and sending the results to the client agent (through the AIC – Figure 38, steps
9, 10).

3.3.1.4 OWL-S Grounding Extension: AgentGrounding
WSDL describes the access to a network service, more specifically, web services provided by
network service providers. However, WSDL currently lacks a way of representing agent bindings,
i.e., a representation for complex interactions such as the ones that take place with service
provider agents. To overcome this limitation, we decided to create an extension of the OWL-S
Grounding specification, named AgentGrounding. This extension is the result of an analysis of the
necessary requirements for interacting with agents when evoking the execution of atomic services.

The AgentGrounding definition includes the following elements:

• agentName – the name of the service provider agent

• agentAddress – the address of the service provider

• serviceName – name of the service to be evoked

• serviceType – type of the service to be evoked (action, referential expression, proposition)

• hasArgumentParameter – used to represent arguments of the service

o argumentType – type of the argument (string, integer)

o owlsParameter – reference to OWL-S service defined parameters (inputs)

o paramIndex – order on which the argument appears in the service invocation

• serviceOutput – used to represent the outputs of the service

o argumentType

o owlsParameter

• protocol – communication protocol to be used when invoking the service

17 This extension constitutes an add-on to the original Service Execution Agent and it was done only to

increase the range of classes of service providers that can be used in the CASCOM environment.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 79(105)

• serviceOntology – ontology which describes the terms to be used in the invocation of the
service

• agentCommunicationLanguage – agent communication language to be used when
communicating with the agent (FIPA-ACL, KQML)

• contentLanguage – content language to be used when communicating with the agent
(FIPA-SL, KIF)

Figure 39 is an example of an OWL-S service Grounding description using the proposed
AgentGrounding extension. This description illustrates a service, provided by a FIPA compliant
agent, of finding books (within several different sources) with a given input title.

<!-- Grounding description -->
<agentGrounding:AgentGrounding rdf:ID="BookFinderGrounding">
 <service:supportedBy rdf:resource="#BookFinderService"/>
 <grounding:hasAtomicProcessGrounding
rdf:resource="#BookFinderProcessGrounding"/>
</agentGrounding:AgentGrounding>
<agentGrounding:AgentAtomicProcessGrounding
rdf:ID="BookFinderProcessGrounding">
 <grounding:owlsProcess rdf:resource="#BookFinderProcess"/>
 <agentGrounding:agentName>bookeeper@cascom
 </agentGrounding:agentName>
 <agentGrounding:agentAddress>http://...
 </agentGrounding:agentAddress>
 <!-- Service Identification -->
 <agentGrounding:serviceName>find-book
 </agentGrounding:serviceName>
 <!-- Service Arguments -->
 <agentGrounding:hasArgumentParameter>
 <agentGrounding:ArgumentParameter rdf:ID="input-string">
 <agentGrounding:argumentType>java.lang.String
 </agentGrounding:argumentType>
 <agentGrounding:owlsParameter rdf:resource="#InputString"/>
 <agentGrounding:paramIndex>1</agentGrounding:paramIndex>
 </agentGrounding:ArgumentParameter>
 </agentGrounding:hasArgumentParameter>
 <agentGrounding:serviceOutput>
 <agentGrounding:ArgumentVariable rdf:ID="book-info">
 <agentGrounding:argumentType>java.lang.String
 </agentGrounding:argumentType>
 <agentGrounding:owlsParameter rdf:resource="#BookInfo"/>
 </agentGrounding:ArgumentVariable>
 </agentGrounding:serviceOutput>
 <!-- Other information -->
 <agentGrounding:serviceType>action</agentGrounding:serviceType>
 <agentGrounding:protocol>fipa-request</agentGrounding:protocol>
 <agentGrounding:agentCommunicationLanguage>fipa-acl
 </agentGrounding:agentCommunicationLanguage>
 <agentGrounding:contentLanguage>
 fipa-sl</agentGrounding:contentLanguage>
 <agentGrounding:serviceOntology>book-finder-ontology
 </agentGrounding:serviceOntology>
</agentGrounding:AgentAtomicProcessGrounding>

Figure 39 – Example of AgentGrounding description

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 80(105)

The extension made to the OWL-S API, allows the execution of groundings such as the one
described in Figure 39 by invoking the specified service. This invocation is made by sending a
message directly to the agent providing the service. All the information that is needed for sending
the message is included in the AgentGrounding description.

The example depicted in Figure 39 describes a service named BookFinderService, which is
grounded to an action find-book that accepts as input a single string named inputstring. This input-
string argument is linked to the OWL-S service input parameter InputString. The action returns as
output, also a string, named book-info, which is linked to the OWL-S service output parameter
BookInfo. Other information that can be extracted from this grounding is the protocol (fipa-request),
the agent communication language (fipa-acl), the ontology (book-finder-ontology) and the content
language (fipa-sl) to be used in the invocation message. SEA can use this information to send the
FIPA message that is described in Figure 40.

(REQUEST
 :sender (agent-identifier :name sea@cascom)
 :receiver (set (agent-identifier :name bookeeper@cascom
 :addresses (sequence http://...)))
 :content "((action
 (agent-identifier :name bookeeper@cascom)
 (find-book
 :input-string \"Da Vinci Code\")))"
 :language fipa-sl
 :ontology book-finder-ontology
 :protocol fipa-request
 :conversation-id SEA-AGR-CID-1117800292257)

Figure 40 – Message generated from the example in Figure 39

The information extracted from the AgentGrounding example in Figure 39 is enough for the agent
to be able to create the message. However, the agent must also add the OWL-S Service Input
information to the generated grounding message. In this case, the client agent requested the
execution of the service with the input “Da Vinci Code”.

The AgentGrounding specification allows the representation of several instances of messages that
can be sent to FIPA compliant agents, including the use of different message performatives, agent
communication languages and content languages. However, this is a work in progress and some
possibilities are not yet covered.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 81(105)

References
[ADOB98] Abowd, G. D., Dey, A., Orr, R. and Brotherton, J., 1998, “Context-awareness in

wearable and ubiquitous computing”, Virtual Reality, 3:200–211.

[BPR99] Bellifemine, F., Poggi, A., Rimassa, G., 1999, “JADE – a FIPA-compliant agent
framework”, CSELT internal technical report. Part of this report has been also
published in Proceedings of PAAM'99, London, pp.97-108.

[BAER02] Botelho, L.M.; Antunes, N.; Ebrahim, M.; and Ramos, P., 2002, “Greeks and Trojans
Together”, In Proc. of the Workshop “Ontologies in Agent Systems” of the
AAMAS2002 Conference.

[CCMW01] Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S., 2001, “Web
Services Description Language (WSDL) 1.1”. Available on-line at
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[DFKI05] DFKI - Die Deutsche Forschungszentrum für Künstliche Intelligenz, 2005,
“OWLS2PDDL converter“, at http://projects.semwebcentral.org/projects/owls2pddl/

[DK01] Do, M.B., Kambhampati, S., 2001, “Sapa: A Domain-Independent Heuristic Metric
Temporal Planner”, in Proceedings of the 6th European Conference on Planning

[FIPA00a] Foundation for Intelligent Physical Agents, 2000, “FIPA Communicative Act Library
Specification”, Specification number SC00037, Geneva, Switzerland.

[FIPA00b] Foundation for Intelligent Physical Agents, 2000, “FIPA ACL Message Structure
Specification”, Specification number SC00061, Geneva, Switzerland

[FIPA00c] Foundation for Intelligent Physical Agents, 2000, “FIPA SL Content Language
Specification”, Specification Number SC00008, Geneva, Switzerland

[FIPA02] FIPA Members, 2002, “Foundation for Intelligent Physical Agents website”,
http://www.fipa.org/

[HN01] Hoffmann, J., and Nebel, B., 2001, “The FF Planning System: Fast Plan Generation
Through Heuristic Search”, Journal of Artificial Intelligence Research (JAIR) (14):253–
302.

[KGS05] Klusch, M.; Gerber, A.; Schmidt, M., 2005, “Semantic Web Service Composition
Planning with OWLS-Xplan”, Proceedings 1st Intl. AAAI Fall Symposium on Agents
and the Semantic Web, Arlington VA, USA

[M98] McDermott, D., 1998, “PDDL - The Planning Domain Definition Language”, AIPS-98
Competition Committee, draft 1.6 edition

[MBHL04] Martin, D.; Burstein, M.; Hobbs, J.; Lassila, O.; McDermott, D.; McIlraith, S.;
Narayanan, S.; Paolucci, M.; Parsia, B; Payne, T.; Sirin, E.; Srinivasan, N. and
Sycara, K., 2004, "OWL-S 1.1 Release", http://www.daml.org/services/owl-
s/1.1/overview/

[OWL03] OWL Coalition, 2003, “OWL – Web Ontology Language Reference W3C Working
Draft”, at http://www.w3.org/TR/owl-ref/

[OWLS03] OWL Services Coalition, 2003, “OWL-S: Semantic Markup for Web Services”,
DARPA Markup Language Program

[S04] Sirin, E., 2004, “OWL-S API project website”, http://www.mindswap.org/2004/owl-
s/api/

[SPW04] Sirin, E.; Parsia, B.; Wu, D.; Hendler, J.; and Nau, D. 2004. “HTN planning for web
service composition using SHOP2”. Journal of Web Semantics, 1(4) 377–396.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 82(105)

Annexes
This section presents the annexes that are referred throughout the entire deliverable.

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 83(105)

A. OMS_InitialOntology.owl file content

In this section we can see the OWL description of the ontology representing the initial state of the
world before the service is executed.

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xml:base="http://localhost/OMSOntology.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Account">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Object"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Location">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Object"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Medicine">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Product"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Object"/>
 <owl:Class rdf:ID="Patient">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Person"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Product">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Object"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Person">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Object"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Store">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Object"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="wants_account">
 <rdfs:range rdf:resource="#Patient"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="Patient_hasAccount">
 <rdfs:domain rdf:resource="#Patient"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="Patient_ownsMedicine">

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 84(105)

 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Medicine"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="Patient_hasValidData">
 <rdfs:domain rdf:resource="#Patient"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="bill">
 <rdfs:range rdf:resource="#Medicine"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="link">
 <rdfs:domain rdf:resource="#Object"/>
 <rdfs:range rdf:resource="#Object"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="at">
 <rdfs:domain rdf:resource="#Object"/>
 <rdfs:range rdf:resource="#Object"/>
 </owl:ObjectProperty>
 <Location rdf:ID="location0">
 <at>
 <Patient rdf:ID="patient0">
 <Patient_hasValidData>
 </Patient_hasValidData>
 <wants_account>
 </wants_account>
 </Patient>
 </at>
 </Location>
 <Location rdf:ID="location1">
 <link>
 <Store rdf:ID="store0">
 <link>
 <Medicine rdf:ID="medicine0"/>
 </link>
 </Store>
 </link>
 </Location>
 <Location rdf:ID="location0">
 <link>
 <Patient rdf:ID="patient0"/>
 </link>
 </Location>
</rdf:RDF>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 85(105)

B. OMS_GoalOntology.owl file content

In this section we can see the OWL description of the goal that the composite service is supposed
to achieve.

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xml:base="http://localhost/OMSOntology.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Account">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Object"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Location">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Object"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Medicine">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Product"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Object"/>
 <owl:Class rdf:ID="Patient">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Person"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Product">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Object"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Person">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Object"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Store">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Object"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="wants_account">
 <rdfs:range rdf:resource="#Patient"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="Patient_ownsMedicine">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Medicine"/>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 86(105)

 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="Patient_hasValidData">
 <rdfs:domain rdf:resource="#Patient"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="Patient_hasAccount">
 <rdfs:domain rdf:resource="#Patient"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="bill">
 <rdfs:range rdf:resource="#Medicine"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="link">
 <rdfs:domain rdf:resource="#Object"/>
 <rdfs:range rdf:resource="#Object"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="at">
 <rdfs:domain rdf:resource="#Object"/>
 <rdfs:range rdf:resource="#Object"/>
 </owl:ObjectProperty>
 <Location rdf:ID="location0">
 <at>
 <Medicine rdf:ID="medicine0">
 <Patient_ownsMedicine>
 <Patient rdf:ID="patient0"/>
 </Patient_ownsMedicine>
 </Medicine>
 </at>
 </Location>
 </rdf:RDF>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 87(105)

C. RegisterPatientService.owl file content

This section describes the OWL-S description of the first retrieved service by the SDA. This is a
typical OWL-S format description, which means that we can find certain things that we need.
Things like IOPEs, that later will be used by Sapa to produce the specified chaining of services,
based on their pre-conditions and effects. This exact service will be the first of that chain.

<?xml version="1.0"?>
<!DOCTYPE uridef [
<!ENTITY ontology "http://localhost/ontologies/Ontology.owl">
]>
<rdf:RDF
 xmlns:expr="http://www.daml.org/services/owl-
s/1.1/generic/Expression.owl#"
 xmlns:process="http://www.daml.org/services/owl-
s/1.1/Process.owl#"
 xmlns:shadow-rdf="http://www.daml.org/services/owl-
s/1.1/generic/ObjectList.owl#"
 xmlns:service="http://www.daml.org/services/owl-
s/1.1/Service.owl#"
 xmlns="http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:ontology= "&ontology;#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:swrl="http://www.daml.org/services/owl-
s/1.1/generic/swrlx.owl#"
 xmlns:j.0="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
 xml:base="http://localhost/oms/RegisterPatientService.owl">
 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Service.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Profile.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Process.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Grounding.owl"/>
 </owl:Ontology>
 <process:Input rdf:ID="RegisterPatientService_p">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://localho
st/OMS_InitialOntology.owl#Patient</process:parameterType>
 </process:Input>

 <j.0:Profile rdf:ID="RegisterPatientService_profile">
 <j.0:hasInput rdf:resource="#RegisterPatientService_p"/>
 <j.0:textDescription>This is the description of thehealthcare
profile</j.0:textDescription>
 <j.0:has_process>

 <j.0:serviceCategory>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 88(105)

 <ontology:NAICS rdf:ID="NAICS-category">
 <j.0:value>Register-Patient</j.0:value>
 <j.0:code>561599</j.0:code>
 </ontology:NAICS>
 </j.0:serviceCategory>

<process:AtomicProcess rdf:ID="RegisterPatientService">
 <process:name>RegisterPatientService</process:name>
 <process:hasInput rdf:resource="#RegisterPatientService_p"/>
 <process:hasPrecondition>
 <expr:Condition rdf:ID="atomic1_precond1">
 <expr:expressionLanguage>
 <expr:LogicLanguage rdf:ID="PDDL">

<expr:refURI>http://localhost/PDDL</expr:refURI>
 </expr:LogicLanguage>
 </expr:expressionLanguage>
 <expr:expressionBody>
 <and>
 <pred name="Patient_hasValidData">
 <param>?RegisterPatientService_p</param>
 </pred>
 <pred name="wants_account">
 <param>?RegisterPatientService_p</param>
 </pred>
 </and>
 </expr:expressionBody>
 </expr:Condition>
 </process:hasPrecondition>
 <process:hasResult>
 <process:Result>
 <process:hasEffect>
 <expr:Expression rdf:ID="atomic1_effect1">
 <expr:expressionLanguage
rdf:resource="#PDDL"/>
 <expr:expressionBody>
 <and>
 <not>
 <pred name="wants_account">
 <param>?RegisterPatientService_p</param>
 </pred>
 </not>
 <pred name="Patient_hasAccount">
 <param>?RegisterPatientService_p</param>
 </pred>
 </and>
 </expr:expressionBody>
 </expr:Expression>
 </process:hasEffect>
 </process:Result>
 </process:hasResult>
 </process:AtomicProcess>
</j.0:has_process>
 <j.0:hasResult>
 <process:Result>
 <process:hasEffect rdf:resource="#atomic1_effect1"/>
 </process:Result>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 89(105)

 </j.0:hasResult>
 <j.0:hasPrecondition rdf:resource="#atomic1_precond1"/>
 <j.0:serviceName>healthcare</j.0:serviceName>
 </j.0:Profile>
 <service:Service rdf:ID="RegisterPatientService_service">
 <service:presents
rdf:resource="#RegisterPatientService_profile"/>
 <service:describedBy rdf:resource="#RegisterPatientService"/>
 </service:Service>
</rdf:RDF>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 90(105)

D. SellMedicineService.owl file content

This annex describes the OWL-S description of the second retrieved service by the SDA.

<?xml version="1.0"?>
<!DOCTYPE uridef [
<!ENTITY ontology "http://localhost/ontologies/Ontology.owl">
]>
<rdf:RDF
 xmlns:expr="http://www.daml.org/services/owl-
s/1.1/generic/Expression.owl#"
 xmlns:process="http://www.daml.org/services/owl-
s/1.1/Process.owl#"
 xmlns:shadow-rdf="http://www.daml.org/services/owl-
s/1.1/generic/ObjectList.owl#"
 xmlns:service="http://www.daml.org/services/owl-
s/1.1/Service.owl#"
 xmlns="http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:swrl="http://www.daml.org/services/owl-
s/1.1/generic/swrlx.owl#"
 xmlns:ontology= "&ontology;#"
 xmlns:j.0="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
 xml:base="http://localhost/oms/SellMedicineService.owl">
 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Service.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Profile.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Process.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Grounding.owl"/>
 </owl:Ontology>
 <process:Input rdf:ID="SellMedicineService_p">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://localho
st/OMS_InitialOntology.owl#Patient</process:parameterType>
 </process:Input>
 <process:Input rdf:ID="SellMedicineService_m">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://localho
st/OMS_InitialOntology.owl#Medicine</process:parameterType>
 </process:Input>
 <process:Input rdf:ID="SellMedicineService_s">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://localho
st/OMS_InitialOntology.owl#Store</process:parameterType>
 </process:Input>
 <process:Input rdf:ID="SellMedicineService_from">

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 91(105)

 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://localho
st/OMS_InitialOntology.owl#Location</process:parameterType>
 </process:Input>

 <j.0:Profile rdf:ID="SellMedicineService_profile">
 <j.0:hasInput rdf:resource="#SellMedicineService_p"/>
 <j.0:textDescription>This is the description of thehealthcare
profile</j.0:textDescription>
 <j.0:has_process>

 <j.0:serviceCategory>
 <ontology:NAICS rdf:ID="NAICS-category">
 <j.0:value>Sell-Medicine</j.0:value>
 <j.0:code>561599</j.0:code>
 </ontology:NAICS>
 </j.0:serviceCategory>

 <process:AtomicProcess rdf:ID="SellMedicineService">
 <process:name>SellMedicineService</process:name>
 <process:hasInput rdf:resource="#SellMedicineService_p"/>
 <process:hasInput rdf:resource="#SellMedicineService_m"/>
 <process:hasInput rdf:resource="#SellMedicineService_s"/>
 <process:hasInput rdf:resource="#SellMedicineService_from"/>
 <process:hasPrecondition>
 <expr:Condition rdf:ID="atomic2_precond1">
 <expr:expressionLanguage rdf:resource="#PDDL"/>
 <expr:expressionBody>
 <and>
 <pred name="Patient_hasAccount">
 <param>?SellMedicineService_p</param>
 </pred>
 <pred name="link">
 <param>?SellMedicineService_s</param>
 <param>?SellMedicineService_from</param>
 </pred>
 <pred name="link">
 <param>?SellMedicineService_m</param>
 <param>?SellMedicineService_s</param>
 </pred>
 </and>
 </expr:expressionBody>
 </expr:Condition>
 </process:hasPrecondition>
 <process:hasResult>
 <process:Result>
 <process:hasEffect>
 <expr:Expression rdf:ID="atomic2_effect1">
 <expr:expressionLanguage
rdf:resource="#PDDL"/>
 <expr:expressionBody>
 <and>
 <pred name="Patient_ownsMedicine">
 <param>?SellMedicineService_p</param>
 <param>?SellMedicineService_m</param>
 </pred>
 <pred name="bill">

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 92(105)

 <param>?SellMedicineService_m</param>
 </pred>
 <pred name="at">
 <param>?SellMedicineService_m</param>
 <param>?SellMedicineService_from</param>
 </pred>
 </and>
 </expr:expressionBody>
 </expr:Expression>
 </process:hasEffect>
 </process:Result>
 </process:hasResult>
 </process:AtomicProcess>
 </j.0:has_process>
 <j.0:hasResult>
 <process:Result>
 <process:hasEffect rdf:resource="#atomic2_effect1"/>
 </process:Result>
 </j.0:hasResult>
 <j.0:hasPrecondition rdf:resource="#atomic2_precond1"/>
 <j.0:serviceName>healthcare</j.0:serviceName>
 </j.0:Profile>
 <service:Service rdf:ID="SellMedicineService_service">
 <service:presents
rdf:resource="#SellMedicineService_profile"/>
 <service:describedBy rdf:resource="#SellMedicineService"/>
 </service:Service>
</rdf:RDF>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 93(105)

E. DeliverService.owl file content

This annex presents the OWL-S description of the third and final retrieved service by the SDA.

<?xml version="1.0"?>
<!DOCTYPE uridef [
 <!ENTITY ontology "http://localhost/ontologies/Ontology.owl">
]>
<rdf:RDF
 xmlns:expr="http://www.daml.org/services/owl-
s/1.1/generic/Expression.owl#"
 xmlns:process="http://www.daml.org/services/owl-
s/1.1/Process.owl#"
 xmlns:shadow-rdf="http://www.daml.org/services/owl-
s/1.1/generic/ObjectList.owl#"
 xmlns:service="http://www.daml.org/services/owl-
s/1.1/Service.owl#"
 xmlns="http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:swrl="http://www.daml.org/services/owl-
s/1.1/generic/swrlx.owl#"
 xmlns:ontology= "&ontology;#"
 xmlns:j.0="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
 xml:base="http://localhost/oms/DeliverService.owl">
 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Service.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Profile.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Process.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Grounding.owl"/>
 </owl:Ontology>
 <process:Input rdf:ID="DeliverService_m">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://localho
st/OMS_InitialOntology.owl#Medicine</process:parameterType>
 </process:Input>
 <process:Input rdf:ID="DeliverService_p">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://localho
st/OMS_InitialOntology.owl#Patient</process:parameterType>
 </process:Input>
 <process:Input rdf:ID="DeliverService_from">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://localho
st/OMS_InitialOntology.owl#Location</process:parameterType>
 </process:Input>
 <process:Input rdf:ID="DeliverService_to">

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 94(105)

 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://localho
st/OMS_InitialOntology.owl#Location</process:parameterType>
 </process:Input>

 <j.0:Profile rdf:ID="DeliverService_profile">
 <j.0:hasInput rdf:resource="#DeliverService_p"/>
 <j.0:textDescription>This is the description of thehealthcare
profile</j.0:textDescription>
 <j.0:has_process>

 <j.0:serviceCategory>
 <ontology:NAICS rdf:ID="NAICS-category">
 <j.0:value>Deliver-Service</j.0:value>
 <j.0:code>561599</j.0:code>
 </ontology:NAICS>
 </j.0:serviceCategory>

<process:AtomicProcess rdf:ID="DeliverService">
 <process:name>DeliverService</process:name>
 <process:hasInput rdf:resource="#DeliverService_m"/>
 <process:hasInput rdf:resource="#DeliverService_p"/>
 <process:hasInput rdf:resource="#DeliverService_from"/>
 <process:hasInput rdf:resource="#DeliverService_to"/>
 <process:hasPrecondition>
 <expr:Condition rdf:ID="atomic3_precond1">
 <expr:expressionLanguage rdf:resource="#PDDL"/>
 <expr:expressionBody>
 <and>
 <pred name="at">
 <param>?DeliverService_m</param>
 <param>?DeliverService_from</param>
 </pred>
 <pred name="bill">
 <param>?DeliverService_m</param>
 </pred>
 <pred name="link">
 <param>?DeliverService_p</param>
 <param>?DeliverService_to</param>
 </pred>
 </and>
 </expr:expressionBody>
 </expr:Condition>
 </process:hasPrecondition>
 <process:hasResult>
 <process:Result>
 <process:hasEffect>
 <expr:Expression rdf:ID="atomic3_effect1">
 <expr:expressionLanguage rdf:resource="#PDDL"/>
 <expr:expressionBody>
 <and>
 <not>
 <pred name="at">
 <param>?DeliverService_m</param>
 <param>?DeliverService_from</param>
 </pred>
 </not>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 95(105)

 <pred name="at">
 <param>?DeliverService_m</param>
 <param>?DeliverService_to</param>
 </pred>
 </and>
 </expr:expressionBody>
 </expr:Expression>
 </process:hasEffect>
 </process:Result>
 </process:hasResult>
 </process:AtomicProcess>
</j.0:has_process>

 <j.0:hasResult>
 <process:Result>
 <process:hasEffect rdf:resource="#atomic3_effect1"/>
 </process:Result>
 </j.0:hasResult>
 <j.0:hasPrecondition rdf:resource="#atomic3_precond1"/>
 <j.0:serviceName>healthcare</j.0:serviceName>
 </j.0:Profile>
 <service:Service rdf:ID="DeliverService_service">
 <service:presents rdf:resource="#DeliverService_profile"/>
 <service:describedBy rdf:resource="#DeliverService"/>
 </service:Service>
</rdf:RDF>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 96(105)

F. CompositeService.owl file content

<?xml version="1.0"?>
<rdf:RDF
 xmlns:expr="http://www.daml.org/services/owl-
s/1.1/generic/Expression.owl#"
 xmlns:process="http://www.daml.org/services/owl-
s/1.1/Process.owl#"
 xmlns:shadow-rdf="http://www.daml.org/services/owl-
s/1.1/generic/ObjectList.owl#"
 xmlns:service="http://www.daml.org/services/owl-
s/1.1/Service.owl#"
 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
 xmlns="http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:j.0="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
 xml:base="http://localhost/compositeService.owl">
 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Service.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Profile.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Process.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/Grounding.owl"/>
 </owl:Ontology>
 <expr:Expression rdf:ID="Composite1_effect1">
 <expr:expressionLanguage>
 <expr:LogicLanguage rdf:ID="PDDL">
 <expr:refURI>http://localhost/PDDL</expr:refURI>
 </expr:LogicLanguage>
 </expr:expressionLanguage>
 <expr:expressionBody>
 <and>
 <pred name="patient_hasaccount">
 <param>patient0</param>
 </pred>
 <pred name="patient_ownsmedicine">
 <param>patient0</param>
 <param>medicine0</param>
 </pred>
 <pred name="bill">
 <param>medicine0</param>
 </pred>
 <pred name="at">
 <param>medicine0</param>
 <param>location0</param>
 </pred>
 <not>
 <pred name="wants_account">

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 97(105)

 <param>patient0</param>
 </pred>
 </not>
 </and></expr:expressionBody>
 </expr:Expression>
 <process:Input rdf:ID="DeliverService_deliverservice_m">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost/OMSOntology.owl#Medicine</process:parameterType>
 </process:Input>
 <process:Perform rdf:ID="RegisterPatientService">
 <process:process>
 <process:AtomicProcess
rdf:ID="RegisterPatientServiceProcess">

<process:name>RegisterPatientServiceProcess</process:name>
 <process:hasInput>
 <process:Input
rdf:ID="RegisterPatientService_registerpatientservice_p">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost/OMSOntology.owl#Patient</process:parameterType>
 </process:Input>
 </process:hasInput>
 <process:hasPrecondition>
 <expr:Condition rdf:ID="atomic1_precond1">
 <expr:expressionLanguage
rdf:resource="#PDDL"/>
 <expr:expressionBody>
 <and>
 <pred name="patient_hasvaliddata">
 <param>patient</param>
 </pred>
 <pred name="wants_account">
 <param>patient</param>
 </pred>
 </and></expr:expressionBody>
 </expr:Condition>
 </process:hasPrecondition>
 <process:hasResult>
 <process:Result>
 <process:hasEffect>
 <expr:Expression
rdf:ID="atomic1_effect1">
 <expr:expressionLanguage
rdf:resource="#PDDL"/>
 <expr:expressionBody>
 <and>
 <pred name="patient_hasaccount">
 <param>patient</param>
 </pred>
 <not>
 <pred name="wants_account">
 <param>patient</param>
 </pred>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 98(105)

 </not> </and></expr:expressionBody>
 </expr:Expression>
 </process:hasEffect>
 </process:Result>
 </process:hasResult>
 </process:AtomicProcess>
 </process:process>
 <process:hasDataFrom>
 <process:Binding>
 <process:toParam
rdf:resource="#RegisterPatientService_registerpatientservice_p"/>
 <process:valueSource>
 <process:ValueOf>
 <process:fromProcess
rdf:resource="http://www.daml.org/services/owl-
s/1.1/Process.owl#TheParentPerform"/>
 <process:theVar>
 <process:Input rdf:ID="patient0">
 <process:parameterType rdf:datatype=

"http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost/OMSOntology.owl#Patient</process:parameterType>
 </process:Input>
 </process:theVar>
 </process:ValueOf>
 </process:valueSource>
 </process:Binding>
 </process:hasDataFrom>
 </process:Perform>
 <process:Input
rdf:ID="SellMedicineService_sellmedicineservice_m">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost/OMSOntology.owl#Medicine</process:parameterType>
 </process:Input>
 <expr:Expression rdf:ID="atomic2_effect1">
 <expr:expressionLanguage rdf:resource="#PDDL"/>
 <expr:expressionBody>
 <and>
 <pred name="patient_ownsmedicine">
 <param>patient</param>
 <param>medicine</param>
 </pred>
 <pred name="bill">
 <param>medicine</param>
 </pred>
 <pred name="at">
 <param>medicine</param>
 <param>location</param>
 </pred>
 </and></expr:expressionBody>
 </expr:Expression>
 <process:Input rdf:ID="location1">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 99(105)

>http://localhost/OMSOntology.owl#Location</process:parameterType>
 </process:Input>
 <process:Perform rdf:ID="SellMedicineService">
 <process:process>
 <process:AtomicProcess
rdf:ID="SellMedicineServiceProcess">

<process:name>SellMedicineServiceProcess</process:name>
 <process:hasInput>
 <process:Input
rdf:ID="SellMedicineService_sellmedicineservice_p">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost/OMSOntology.owl#Patient</process:parameterType>
 </process:Input>
 </process:hasInput>
 <process:hasInput>
 <process:Input
rdf:ID="SellMedicineService_sellmedicineservice_s">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost/OMSOntology.owl#Store</process:parameterType>
 </process:Input>
 </process:hasInput>
 <process:hasInput>
 <process:Input
rdf:ID="SellMedicineService_sellmedicineservice_from">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost/OMSOntology.owl#Location</process:parameterType>
 </process:Input>
 </process:hasInput>
 <process:hasInput
rdf:resource="#SellMedicineService_sellmedicineservice_m"/>
 <process:hasPrecondition>
 <expr:Condition rdf:ID="atomic2_precond1">
 <expr:expressionLanguage
rdf:resource="#PDDL"/>
 <expr:expressionBody>
 <and>
 <pred name="patient_hasaccount">
 <param>patient</param>
 </pred>
 <pred name="link">
 <param>store</param>
 <param>location</param>
 </pred>
 <pred name="link">
 <param>medicine</param>
 <param>store</param>
 </pred>
 </and></expr:expressionBody>
 </expr:Condition>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 100(105)

 </process:hasPrecondition>
 <process:hasResult>
 <process:Result>
 <process:hasEffect
rdf:resource="#atomic2_effect1"/>
 </process:Result>
 </process:hasResult>
 </process:AtomicProcess>
 </process:process>
 <process:hasDataFrom>
 <process:Binding>
 <process:toParam
rdf:resource="#SellMedicineService_sellmedicineservice_p"/>
 <process:valueSource>
 <process:ValueOf>
 <process:fromProcess
rdf:resource="http://www.daml.org/services/owl-
s/1.1/Process.owl#TheParentPerform"/>
 <process:theVar rdf:resource="#patient0"/>
 </process:ValueOf>
 </process:valueSource>
 </process:Binding>
 </process:hasDataFrom>
 <process:hasDataFrom>
 <process:Binding>
 <process:toParam
rdf:resource="#SellMedicineService_sellmedicineservice_m"/>
 <process:valueSource>
 <process:ValueOf>
 <process:fromProcess
rdf:resource="http://www.daml.org/services/owl-
s/1.1/Process.owl#TheParentPerform"/>
 <process:theVar>
 <process:Input rdf:ID="medicine0">
 <process:parameterType rdf:datatype=

"http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost/OMSOntology.owl#Medicine</process:parameterType>
 </process:Input>
 </process:theVar>
 </process:ValueOf>
 </process:valueSource>
 </process:Binding>
 </process:hasDataFrom>
 <process:hasDataFrom>
 <process:Binding>
 <process:toParam
rdf:resource="#SellMedicineService_sellmedicineservice_s"/>
 <process:valueSource>
 <process:ValueOf>
 <process:fromProcess
rdf:resource="http://www.daml.org/services/owl-
s/1.1/Process.owl#TheParentPerform"/>
 <process:theVar>
 <process:Input rdf:ID="store0">
 <process:parameterType rdf:datatype=

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 101(105)

"http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost/OMSOntology.owl#Store</process:parameterType>
 </process:Input>
 </process:theVar>
 </process:ValueOf>
 </process:valueSource>
 </process:Binding>
 </process:hasDataFrom>
 <process:hasDataFrom>
 <process:Binding>
 <process:toParam
rdf:resource="#SellMedicineService_sellmedicineservice_from"/>
 <process:valueSource>
 <process:ValueOf>
 <process:fromProcess
rdf:resource="http://www.daml.org/services/owl-
s/1.1/Process.owl#TheParentPerform"/>
 <process:theVar rdf:resource="#location1"/>
 </process:ValueOf>
 </process:valueSource>
 </process:Binding>
 </process:hasDataFrom>
 </process:Perform>
 <expr:Condition rdf:ID="Composite1_precond1">
 <expr:expressionLanguage rdf:resource="#PDDL"/>
 <expr:expressionBody>
 <and>
 <pred name="patient_hasvaliddata">
 <param>patient0</param>
 </pred>
 <pred name="wants_account">
 <param>patient0</param>
 </pred>
 <pred name="link">
 <param>store0</param>
 <param>location1</param>
 </pred>
 <pred name="link">
 <param>medicine0</param>
 <param>store0</param>
 </pred>
 <pred name="link">
 <param>patient0</param>
 <param>location0</param>
 </pred>
 </and></expr:expressionBody>
 </expr:Condition>
 <process:Perform rdf:ID="DeliverService">
 <process:process>
 <process:AtomicProcess rdf:ID="DeliverServiceProcess">
 <process:name>DeliverServiceProcess</process:name>
 <process:hasInput
rdf:resource="#DeliverService_deliverservice_m"/>
 <process:hasInput>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 102(105)

 <process:Input
rdf:ID="DeliverService_deliverservice_from">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost/OMSOntology.owl#Location</process:parameterType>
 </process:Input>
 </process:hasInput>
 <process:hasInput>
 <process:Input
rdf:ID="DeliverService_deliverservice_p">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost/OMSOntology.owl#Patient</process:parameterType>
 </process:Input>
 </process:hasInput>
 <process:hasInput>
 <process:Input
rdf:ID="DeliverService_deliverservice_to">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost/OMSOntology.owl#Location</process:parameterType>
 </process:Input>
 </process:hasInput>
 <process:hasPrecondition>
 <expr:Condition rdf:ID="atomic3_precond1">
 <expr:expressionLanguage
rdf:resource="#PDDL"/>
 <expr:expressionBody>
 <and>
 <pred name="at">
 <param>medicine</param>
 <param>location</param>
 </pred>
 <pred name="bill">
 <param>medicine</param>
 </pred>
 <pred name="link">
 <param>patient</param>
 <param>location</param>
 </pred>
 </and></expr:expressionBody>
 </expr:Condition>
 </process:hasPrecondition>
 <process:hasResult>
 <process:Result>
 <process:hasEffect>
 <expr:Expression
rdf:ID="atomic3_effect1">
 <expr:expressionLanguage
rdf:resource="#PDDL"/>
 <expr:expressionBody>
 <and>
 <pred name="at">
 <param>medicine</param>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 103(105)

 <param>location</param>
 </pred>
 <not>
 <pred name="at">
 <param>medicine</param>
 <param>location</param>
 </pred>
 </not> </and></expr:expressionBody>
 </expr:Expression>
 </process:hasEffect>
 </process:Result>
 </process:hasResult>
 </process:AtomicProcess>
 </process:process>
 <process:hasDataFrom>
 <process:Binding>
 <process:toParam
rdf:resource="#DeliverService_deliverservice_m"/>
 <process:valueSource>
 <process:ValueOf>
 <process:fromProcess
rdf:resource="http://www.daml.org/services/owl-
s/1.1/Process.owl#TheParentPerform"/>
 <process:theVar rdf:resource="#medicine0"/>
 </process:ValueOf>
 </process:valueSource>
 </process:Binding>
 </process:hasDataFrom>
 <process:hasDataFrom>
 <process:Binding>
 <process:toParam
rdf:resource="#DeliverService_deliverservice_p"/>
 <process:valueSource>
 <process:ValueOf>
 <process:fromProcess
rdf:resource="http://www.daml.org/services/owl-
s/1.1/Process.owl#TheParentPerform"/>
 <process:theVar rdf:resource="#patient0"/>
 </process:ValueOf>
 </process:valueSource>
 </process:Binding>
 </process:hasDataFrom>
 <process:hasDataFrom>
 <process:Binding>
 <process:toParam
rdf:resource="#DeliverService_deliverservice_from"/>
 <process:valueSource>
 <process:ValueOf>
 <process:fromProcess
rdf:resource="http://www.daml.org/services/owl-
s/1.1/Process.owl#TheParentPerform"/>
 <process:theVar rdf:resource="#location1"/>
 </process:ValueOf>
 </process:valueSource>
 </process:Binding>
 </process:hasDataFrom>
 <process:hasDataFrom>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 104(105)

 <process:Binding>
 <process:toParam
rdf:resource="#DeliverService_deliverservice_to"/>
 <process:valueSource>
 <process:ValueOf>
 <process:fromProcess
rdf:resource="http://www.daml.org/services/owl-
s/1.1/Process.owl#TheParentPerform"/>
 <process:theVar>
 <process:Input rdf:ID="location0">
 <process:parameterType rdf:datatype=

"http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost/OMSOntology.owl#Location</process:parameterType>
 </process:Input>
 </process:theVar>
 </process:ValueOf>
 </process:valueSource>
 </process:Binding>
 </process:hasDataFrom>
 </process:Perform>
 <j.0:Profile rdf:ID="oms_initialontology_profile">
 <j.0:has_process>
 <process:CompositeProcess rdf:ID="Composite1">
 <process:composedOf>
 <process:Sequence>
 <process:components>
 <process:ControlConstructList>
 <shadow-rdf:first
rdf:resource="#RegisterPatientService"/>
 <shadow-rdf:rest>
 <process:ControlConstructList>
 <shadow-rdf:first
rdf:resource="#SellMedicineService"/>
 <shadow-rdf:rest>

<process:ControlConstructList>
 <shadow-rdf:first
rdf:resource="#DeliverService"/>
 <shadow-rdf:rest
rdf:resource="http://www.daml.org/services/owl-
s/1.1/generic/ObjectList.owl#nil"/>

</process:ControlConstructList>
 </shadow-rdf:rest>
 </process:ControlConstructList>
 </shadow-rdf:rest>
 </process:ControlConstructList>
 </process:components>
 </process:Sequence>
 </process:composedOf>
 <process:hasInput rdf:resource="#patient0"/>
 <process:hasInput rdf:resource="#store0"/>
 <process:hasInput rdf:resource="#location1"/>
 <process:hasInput rdf:resource="#medicine0"/>
 <process:hasInput rdf:resource="#location0"/>

Document: D 5.2: Service Composition and Execution in IP2P

Environments
Date: 2006-08-31
Type: Deliverable Security: Public

Status: Released Version: 1.0

CASCOM 105(105)

 <process:hasPrecondition
rdf:resource="#Composite1_precond1"/>
 <process:hasResult>
 <process:Result>
 <process:hasEffect
rdf:resource="#Composite1_effect1"/>
 </process:Result>
 </process:hasResult>
 </process:CompositeProcess>
 </j.0:has_process>
 <j.0:hasResult>
 <process:Result>
 <process:hasEffect
rdf:resource="#Composite1_effect1"/>
 </process:Result>
 </j.0:hasResult>
 <j.0:hasPrecondition rdf:resource="#Composite1_precond1"/>
 <j.0:hasInput rdf:resource="#location1"/>
 <j.0:textDescription>This is the description of
theoms_initialontology profile</j.0:textDescription>
 <j.0:serviceName>oms_initialontology</j.0:serviceName>
 <j.0:hasInput rdf:resource="#location0"/>
 <j.0:hasInput rdf:resource="#medicine0"/>
 <j.0:hasInput rdf:resource="#patient0"/>
 <j.0:hasInput rdf:resource="#store0"/>
 </j.0:Profile>
 <service:Service rdf:ID="oms_initialontology_service">
 <service:presents
rdf:resource="#oms_initialontology_profile"/>
 <service:describedBy rdf:resource="#Composite1"/>
 </service:Service>
</rdf:RDF>

