
Auton Agent Multi-Agent Sys (2006) 13: 119–154
DOI 10.1007/s10458-005-6825-4

An integrated trust and reputation model for open
multi-agent systems

Trung Dong Huynh · Nicholas R. Jennings ·
Nigel R. Shadbolt

Published online: 10 March 2006
Springer Science+Business Media, LLC 2006

Abstract Trust and reputation are central to effective interactions in open multi-agent sys-
tems (MAS) in which agents, that are owned by a variety of stakeholders, continuously enter
and leave the system. This openness means existing trust and reputation models cannot read-
ily be used since their performance suffers when there are various (unforseen) changes in
the environment. To this end, this paper presents FIRE, a trust and reputation model that
integrates a number of information sources to produce a comprehensive assessment of an
agent’s likely performance in open systems. Specifically, FIRE incorporates interaction trust,
role-based trust, witness reputation, and certified reputation to provide trust metrics in most
circumstances. FIRE is empirically evaluated and is shown to help agents gain better utility
(by effectively selecting appropriate interaction partners) than our benchmarks in a variety
of agent populations. It is also shown that FIRE is able to effectively respond to changes that
occur in an agent’s environment.

Keywords Trust · Reputation · Multi-agent systems

1. Introduction

A wide variety of networked computer systems (such as the Grid [11], the Semantic Web
[3], pervasive computing systems [28], and peer-to-peer systems [33]) can be viewed as

T. D. Huynh (B)· N. R. Jennings · N. R. Shadbolt
School of Electronics and Computer Science,
University of Southampton,
Southampton SO17 1BJ,
UK

T. D. Huynh
e-mail: tdh02r@ecs.soton.ac.uk

N. R. Jennings
e-mail: nrj@ecs.soton.ac.uk

N. R. Shadbolt
e-mail: nrs@ecs.soton.ac.uk

120 Auton Agent Multi-Agent Sys (2006) 13: 119–154

multi-agent systems (MAS) in which the individual components act in an autonomous and
flexible manner in order to achieve their objectives [16]. An important class of these systems
are those that are open; here defined as systems in which agents can freely join and leave at
any time and where the agents are owned by various stakeholders with different aims and
objectives. From these two features, it can be assumed that in open MAS:

1. because of different ownership, the agents are likely to be self-interested and may be
unreliable;

2. no agent can know everything about its environment because in such environments it is
impossible or too costly to obtain such a global perspective; and

3. because of different ownership, no central authority can control all the agents.

Despite these many uncertainties, a key component of such systems is the interactions
that necessarily have to take place between the agents. Moreover, as the individuals only
have incomplete knowledge about their environment and their peers, trust plays a central
role in facilitating these interactions [12, 24]. Here, trust can be viewed as the expectation
or the belief that a party will act benignly and cooperatively with the trusting party [8, 12].
Evaluating this expectation before making interactions is important because it can help an
agent to estimate the trustworthiness of each potential partner and thus to decide whether the
partner is reliable enough to interact with. Specifically, trust is here defined as the subjective
probability with which an agent a assesses that another agent b will perform a particular
action, both before a can monitor such action and in a context in which it affects its own
action (adapted from [12]). Generally speaking, trust can arise from two views: the individual
and the societal. The former consists of agent a’s direct experiences from interactions with
agent b and the various relationships that may exist between them (e.g. owned by the same
organisation, relationships derived from links between the agents’ owners in real life such
as friendship or kinship, or relationships between a service provider agent and its registered
consumer agents). The latter consists of observations by a society of agent b’s past behaviour
(here termed its reputation) that are then made available to agents who themselves have not
interacted with b. These indirect observations are aggregated in some way to define agent
b’s past behaviour based on the experiences of participants in the system.

Given its importance, a number of computational models of trust and reputation have
been developed (see Section 2 for a more detailed review). However, as they stand, none of
them are well suited to open MAS. Typically, they are centralised models, designed with the
assumption that they are accepted and trusted by all the individuals that join the system. How-
ever, in an open MAS, agents (of various ownerships) may well question the trustworthiness
of a centralised reputation service and may not use it (see Property 2 below). On the other
hand, in order to work as intended, some of the current models require particular knowledge
that is, in general, not readily available. Given the above characteristics of an open MAS, a
trust model for such environments needs to possess the following properties:

1. It should take into account a variety of sources of trust information in order to have a
more robust trust measure (by cross correlating several perspectives) and to cope with
the situation that some of the sources may not be available.

2. Each agent should be able to evaluate trust for itself. Given the “no central authority”
nature of an open MAS, agents will typically be unwilling to rely solely on a single
centralised reputation service.

3. It should be robust against possible lying from agents (since the agents are self-interested).

Auton Agent Multi-Agent Sys (2006) 13: 119–154 121

To deal with these requirements, we have developed a new trust and reputation model
called FIRE1 (preliminary versions of which are described in [14,15]). In so doing, we
advance the state of the art in a number of ways. First, we have developed a modular model
that integrates four different types of trust and reputation:

– interaction trust resulting from past experience of direct interactions,
– role-based trust defined by various role-based relationships between the agents,
– witness reputation built from reports of witnesses about an agent’s behaviour, and
– certified reputation built from third-party references provided by the agent itself.

This breadth is important in our domain because it enables an agent to combine a variety of
alternative sources of information (to cope with the inherent uncertainties) and because, in
various circumstances, not all of these sources will be readily available (but a measure of trust
is nevertheless needed to interact). Second, we empirically evaluate our model in a simulated
open MAS where provider agents offer services of various quality levels to consumer agents.
In this case, trust models are used by consumer agents to select good providers (i.e. those that
yield high utility gain to their consumers) for interactions. In our evaluation, it is shown that
the integration of these sources of trust/reputation results in better performance of our model
(in terms of the level of utility gain of agents) as against only using one or two of these sources.
Third, and of particular relevance, is the introduction of a novel type of reputation—certified
reputation. The other, more traditional, ways of building a trust measure (i.e. interaction trust,
role-based trust and witness reputation) have certain limitations. For example, if agent a has
not interacted with b before, it has no information to calculate its interaction trust. In the
case of witness reputation, a may not be able to find relevant witness ratings about b, or the
search process may take too long. Finally, there may be no role-base relationships with b. If
all these things happen at the same time (e.g. agent a has just joined the environment), agent
a will not be able to assess agent b’s trustworthiness. In such situations, if agent b can present
certified information about its past performance to a (in the form of references from other
agents who have interacted with it), agent a will then be able to make some assessment of
its trustworthiness. Not only does the addition of certified reputation make our model more
applicable than without it, but our evaluation also shows that it significantly increases our
model’s robustness.

The remainder of the paper is organised as follows. In the next section, we review a number
of trust/reputation models against our requirements for trust models in open MAS. In Section
3 we present the FIRE model and its components. Then the testbed and the methodology
described in Section 4 will be used to empirically evaluate the model in Section 5. Finally,
Section 6 concludes this paper and outlines future work.

2. Related work

A wide variety of trust and reputation models have been developed in the last few years
(e.g. [1], [4] [5], [17], [19], [20], [21], [22], [23], [26], [30], [31], [34], [38], [40]). This
section reviews a selection of notable models and shows how computational trust models
have evolved in recent years with a particular emphasis on their applicability in open MAS
(see [24] for a more complete review). Specifically, we divide our discussion into three areas.
First, Section 2.1 presents mechanisms that derive trust using certificates, rules, and policies.
Second, Section 2.2 surveys the popular trust models that follow the centralised approach in

1 FIRE is from “fides” (Latin for “trust”) and “reputation”. In the Ramayana legend of India, Sita proved the
purity of her character by passing through the raging flames.

122 Auton Agent Multi-Agent Sys (2006) 13: 119–154

which witness observations are reported to a central authority. Finally, Section 2.3 presents
notable models that follow the decentralised approach in which no central authority is needed
for trust evaluations. From now on, for the convenience in referring agents, we call the agent
evaluating the trustworthiness of another the evaluator, or agent a; and the agent being
evaluated by a the target agent, or agent b.

2.1. Trust policy management

In general, security systems are designed to protect resources from harmful accesses. They do
so by restricting access to the resources to authorised users only. After having been authen-
ticated by the system (e.g. logging in), an authorised user is granted a clearly defined set of
rights, which allows it to access a certain set of resources [13]. In traditional security systems,
the set of rights for each user is set manually by system administrators and, therefore, which
user and how much it is trusted is determined by them. In order to automate this process,
several trust policy management systems have been developed (such as PolicyMaker [13],
Trust-Serv [32], and KAoS [35]). In these systems, an agent or user may present information
to seek the trust of the system. An agent/user is granted rights based on its certificates of
its identity according to predefined policies (i.e. rules such as “if a is a registered user and
it possesses a valid credit card then it can book flights”). These systems regard an agent as
trusted when it can present sufficient certificates about its identity. This is called access trust
[13] since the agent is trusted to access the system’s resources. However, the situation is
reversed in MAS. A typical scenario in MAS is that an agent usually needs to use services
provided by others to achieve its goals. It frequently has to decide on which agents’ services
it should rely. In such situations, it does not need to protect itself from unauthorised accesses,
but, rather, needs to protect itself from relying on unreliable service providers. In security or
trust policy management systems, the certificates an agent presents cannot provide further
information on whether it will act in a trustworthy/reliable manner. Therefore, in scenarios in
which an agent needs to protect itself from unreliable providers, such systems are not useful.

In this respect, Maximilien and Singh introduce the concept of endorsements [21]—
certificates endorsing that a service (provider) is trusted and preferred by their issuers. How-
ever, such endorsements can only let an agent know that the service may be trusted because it
is preferred by other agents. This information is typically somewhat vague and does not reveal
the expected or achievable performance of that service. Moreover, a service provider may
serve different consumers differently. Therefore, endorsements have little utility in identify-
ing unreliable providers. Although endorsements may appear somewhat similar to certified
reputation, they are different. Certified reputation are references valuing how good an agent
is with respect to an aspect of its service. Therefore, certified reputation provides more useful
information for estimating an agent’s performance than endorsements. The idea of certified
reputation is also similar to the RCertPX protocol [23] in storing ratings at the ratee. However,
the work in [23] does not provide a trust model based on these ratings, but focuses instead on
designing a sophisticated protocol for peer-to-peer systems that ensures ratings are protected
from tampering and can be verified through communication with the raters.

Certificates are also used by Mass and Shehory [20] for trust establishment in open MAS.
In their system, an agent presents certificates about itself given by third-parties to gain the
trust of another agent. The content of such certificates can be freely defined to certify virtually
any facts (e.g. “agent X was developed by IBM”, “agent X has a good service quality”, “agent
X is recommended with a recommendation value 9”). Having been presented with a set of
such certificates, an agent uses rules to assign the certified agent to predefined roles (with
predefined trust levels) based on these certificates. In contrast, certificates in our approach

Auton Agent Multi-Agent Sys (2006) 13: 119–154 123

provide quantified information about an agent’s past performance which are used to compu-
tationally estimate that agent’s future performance and then the estimated performance will
determine the trustworthiness of that agent.

2.2. Centralised reputation mechanisms

Reputation mechanisms have been widely used in online electronic commerce systems (e.g.
eBay, Amazon) which typically manage the reputation of all its users in a centralised manner.
This section surveys the reputation model of EBay and SPORAS, which are the most popular
in this approach.

2.2.1. EBay reputation model

Since traditional security mechanisms cannot protect an agent from unreliable service pro-
viders, novel models have been developed to model service provision trust—the trust that
a service provider is competent and will provide a service in a reliable manner [13]. The
main building block of these models is information about an agent’s past behaviours. This
information is used to deduce the trustworthiness of that agent in terms of its competency and
reliability. Online reputation mechanisms (e.g. those on eBay [10, 25] and Amazon Auctions
[2]) are probably the most widely used such models. They are implemented as a centralised
rating system so that their users can report about the behaviour of one another in past trans-
actions via rating and leaving textual comments. In so doing, users in their communities
can learn about the past behaviour of a given user to decide whether it is trustworthy to do
business with. For example, an eBay user, after an interaction, can rate its partner on the scale
of −1, 0, or +1, which means positive, neutral and negative rating respectively. The ratings
are stored centrally and the reputation value is computed as the sum of those ratings over
six months. Thus, reputation in these models is a global single value representing a user’s
overall trustworthiness. However, this is too simple for applications in MAS since they only
consider the trustworthiness of an agent as one dimension.2 Since the ratings are aggregated
equally, the mechanism cannot adapt well to changes in a user’s performance (e.g. a user may
cheat in a few interactions after obtaining a high reputation value, but still retains a positive
reputation).

In summary, the reputation values in these systems contain very little information, and
users of these systems need to look for textual comments providing more information. There-
fore, such mechanisms are not well suited to computational agents, which must usually make
decisions autonomously. In addition, since there is no central authority that can control all
the agents in an open MAS, an agent may well question the credibility of those centralised
reputation models and decide not to use them.

2.2.2. SPORAS

SPORAS [40] extends the online reputation models mentioned above by introducing a new
method for rating aggregation. Specifically, instead of storing all the ratings, each time a rat-

2 Decisions associated with task delegation in MAS usually involve considering numerous factors. Therefore,
a single overall trustworthiness value is likely be too abstract to be used to differentiate between similar service
providers. For example, a news provider who may not always provide the latest news first, but always has
correct news, may or may not be preferable over the one who can have all the latest news but cannot guarantee
its accuracy.

124 Auton Agent Multi-Agent Sys (2006) 13: 119–154

ing is received it updates the reputation of the involved party using an algorithm that satisfies
the following principles:

1. New users start with a minimum reputation value and they build up reputation during
their activity on the system.

2. The reputation value of a user never falls below the reputation of a new user.
3. After each transaction, the reputation values of the involved users are updated according

to the feedback provided by other parties, which reflect their trustworthiness in the latest
transaction.

4. Users with very high reputation values experience much smaller rating changes after
each update.

5. Ratings must be discounted over time so that the most recent ratings have more weight
in the evaluation of a users’s reputation.

In general, SPORAS is a centralised reputation model with more sophisticated characteristics
to model the trust dynamics than the simple models in the previous section. For example,
Principles 1 and 2 above are to prevent a user with a bad reputation leaving the community
and entering with a fresh reputation (since the reputation of a new user is the lowest repu-
tation possible). However, at the same time, this penalises newcomers and may discourage
them from participating in the community. In addition, SPORAS also introduces a reliability
measure based on the deviation of rating values. This is an indication of the predictive power
of SPORAS for that user’s reputation. For instance, a high deviation value can mean either
that the user has not been active enough to be able to generate a more accurate prediction
for his/her reputation, or that the user’s behaviour has a high degree of variation. Hence,
each user has a reputation value and a reliability value globally available to other users. In
SPORAS, the reputation value of a user and its reliability are discounted over time as a new
rating is received. Therefore, SPORAS can adapt to changes in a user’s behaviour according
to the latest rating.

In summary, SPORAS provides a trust measure that has more desirable features than that
of similar online models such as eBay’s, or Amazon’s. However, as discussed in the previous
section, its centralised design is not suitable for applications in an open MAS. Moreover, as
shown by our experiments in Section 5, SPORAS is very susceptible to rating noise resulted
from agents’ subjective views that are commonplace in open MAS.

2.3. Decentralised trust models

As more and more computational systems of all kinds move toward large-scale, open and
dynamic architectures, more and more trust models are designed such that each agent can
carry out trust evaluation themselves without a central trust authority. This section surveys
several models that follow this approach.

2.3.1. Jurca and Faltings

Jurca and Faltings [17] introduce a reputation mechanism where agents are incentivised to
report truthfully about their interactions’ results. They define a set of broker agents (called
R-agents) whose tasks are buying and aggregating reports from other agents and selling back
reputation information to them when they need it. All reports about an agent are simply aggre-
gated using the averaging method to produce the reputation value for that agent. Although the
R-agents are distributed in the system, each of them collects and aggregates reputation reports
centrally. Hence this approach still possesses the inherent shortcoming of centralised models

Auton Agent Multi-Agent Sys (2006) 13: 119–154 125

above (i.e. the questionable objectiveness of R-agents in open MAS). In order to incentivise
agents to share their reports truthfully, Jurca and Faltings propose a payment scheme for
reputation reports. This scheme guarantees that agents who report incorrectly will gradually
lose money (during the process of selling reports and buying reputation information), while
honest agents will not. Therefore, this mechanism makes it rational for an agent to report its
observations honestly and this is the main contribution of their work. However, reputation
reports are limited to the values 0 and 1 (0 for cheating agents and 1 for cooperating agents
in an iterated Prisoner’s Dilemma environment [7]), and the rational property may not hold
if an application requires reports represented by more than these particular values (e.g. 0.1,
0.75).

2.3.2. Regret

Regret [27, 26] is a reputation model in which the trust evaluation process is completely
decentralised. Employing Regret, each agent is able to evaluate the reputation of others by
itself. In order to do so, each agent rates its partner’s performance after every interaction and
records its ratings in a local database. The relevant ratings will be queried from this database
when trust evaluation is needed. The trust value derived from those ratings is termed direct
trust and is calculated as the weighed means of all ratings. Each rating is weighed according
to its recency. Intuitively, a more recent rating is deemed to be more current and is weighted
more than those that are less recent. However, the method Regret uses to calculate the weights
for each rating has a shortcoming regarding time granularity control and does not actually
reflect a rating’s recency (see Appendix A.) Like SPORAS, Regret also provides a reliability
value for each trust value to represent its predictive power. The reliability value is calculated
from two reliability measures: the number of ratings taken into account in producing the trust
values and the deviation of these ratings.

In addition, agents are assumed to be willing to share their opinions about one another.
Based on this, Regret develops a witness reputation component along with a sophisticated
method for aggregating witness reports taking into account the possibility of dishonest reports.
The operation of this component depends on the social network3 built up by each agent.
In particular, Regret uses the social network to find witnesses, to decide which witnesses
will be consulted, and how to weight those witnesses’ opinions. However, Regret does not
specify how such social networks are to be built, and, thus, this component is of limited
use.

Besides direct trust and witness reputation, Regret also introduces the concepts of neigh-
bourhood reputation and system reputation. The former is calculated from the reputation
of the target’s neighbour agents based on fuzzy rules. However, this again requires a social
network to work. The system reputation is a mechanism to assign default trust values to the
target agent based on its social role in an interaction (e.g. buyer, seller). However, this is only
useful if additional domain-specific information is available.

In summary, the decentralising approach of Regret allows agents to evaluate trust by
themselves without relying on a centralised mechanism. It also takes various sources of
trust information into account and consider the possibility of disinformation. Therefore, the
approach Regret adopts is compatible with the requirements for a trust model in open MAS.
However, apart from the direct trust component, the rest of the model is not readily applicable.

3 A social network is a graph whose nodes represent agents in a society and whose edges represent social
relationships between them (see [36] for more detail). It can be viewed as an agent’s (limited) knowledge
about the social structure of the world in which it is situated.

126 Auton Agent Multi-Agent Sys (2006) 13: 119–154

The main reason is that Regret does not show how each agent can build the social network
on which Regret heavily depends.

2.3.3. Referral System

In building a reputation system based on witness information, Yu and Singh [38, 39] develop a
mechanism to locate information sources (i.e. witnesses) based on individual agents’ knowl-
edge and help (through each agent’s contacts) without relying on a centralised service. Hence,
this approach is well suited for applications in an open MAS which is distributed by nature.
In particular, in this system, agents cooperate by giving, pursuing, and evaluating referrals
(a recommendation to contact another agent). Each agent in the system maintains a list of
acquaintances (other agents that it knows) and their expertise. Thus, when looking for a
certain piece of information, an agent can send the query to a number of its acquaintances
who will try to answer the query if possible or, if they cannot, they will send back referrals
pointing to other agents that they believe are likely to have the desired information (based on
those agent’s expertise). Yu and Singh’s referral system uses a vector space model (VSM)
[29] to model agents’ expertise. An agent’s expertise is then used to determine how likely it
is to have interaction with or to know witnesses of the target agent.

2.3.4. TRAVOS

TRAVOS [34] is a trust model that is built upon probability theory and based on observations
of past interaction between agents. In this model, the outcome of an interaction is simplified
into a binary rating (i.e. 1 for a successful interaction, 0 for a unsuccessful one). Using binary
ratings allows TRAVOS to make use of the beta family of probability density functions (PDF)
[9] to model the probability of having a successful interaction with a particular given agent.
This probability is then used as that agent’s trust value. In addition, using PDFs, TRAVOS
also calculates the confidence of its trust values given an acceptable level of error. If the
confidence level of a trust value is below a predetermined minimum level, TRAVOS will
seek witness information about the target agent’s past performance. Witness information is
shared in the form of frequencies of successful and unsuccessful interactions that the witness
has had with the target agent. After interacting with the target agent itself, the evaluator
compares the received witness report with its own observations. By this means, the evaluator
calculates the probability that the witness’s information supports the true behaviour of the
target agent within a reasonable margin of error, and uses this probability to weight the impact
of the witness’ opinions on future decisions made be the evaluator. However, as discussed in
Section 2.2, TRAVOS’s simplified representation of interaction ratings is rather limited and
not suitable for a wide range of applications in open MAS.

3. The FIRE model

This section presents our model of trust and reputation for applications in open MAS. First,
we present the sources of trust information that FIRE uses for trust evaluation (Section 3.1).
Then Section 3.2 shows how a trust value is calculated. The individual components of FIRE
are subsequently described in Sections 3.3–3.6. Finally, Section 3.7 describes how an overall
trust value is produced by combining these components.

Auton Agent Multi-Agent Sys (2006) 13: 119–154 127

3.1. Sources of trust information

As can be seen in the previous section, trust can come from a number of information sources:
direct experience, witness information, rules or policies. However, due to the openness of
a MAS, the level of knowledge of an agent about its environment and its peers may vary
greatly during its life cycle. Therefore, at any given time, some information sources may
not be available, or adequate, for deducing trust. For example, the following situations may
(independently) happen:

– An agent may never have interacted with a given target agent and, hence, its experience
cannot be used to deduce how trustworthy the target agent is.

– An agent may not be able to locate a witness for the target agent (because of a lack
of knowledge about the target agent’s society) and, therefore, it cannot obtain witness
information about that agent’s behaviours.

– The current set of rules to determine the level of trust is not applicable for the target
agent.

In such scenarios, trust models that use only one source of information will fail to provide
a trust value of the target agent. For that reason, FIRE adopts a broader base of information
than has hitherto been used for providing trust-related information. Although the number
of sources that provide trust-related information can be greatly varied from application to
application, we consider that most of them can be categorised into the four main sources as
follows:

– Direct experience: The evaluator uses its previous experiences in interacting with the
target agent to determine its trustworthiness. This type of trust is called Interaction Trust.

– Witness information: Assuming that agents are willing to share their direct experiences,
the evaluator can collect experiences of other agents that interacted with the target agent.
Such information will be used to derive the trustworthiness of the target agent based on
the views of its witnesses. Hence this type of trust is called Witness Reputation.

– Role-based rules: Besides an agent’s past behaviours (which is used in the two previous
types of trust), there are certain types of information that can be used to deduce trust.
These can be the various relationships between the evaluator and the target agent or its
knowledge about its domain (e.g. norms, or the legal system in effect). For example, an
agent may be preset to trust any other agent that is owned, or certified, by its owner;
it may trust that any authorised dealer will sell products complying to their company’s
standards; or it may trust another agent if it is a member of a trustworthy group.4 Such
settings or beliefs (which are mostly domain-specific) can be captured by rules based on
the roles of the evaluator and the target agent to assign a predetermined trustworthiness
to the target agent. Hence this type of trust is called Role-based Trust.

– Third-party references provided by the target agents: In the previous cases, the evaluator
needs to collect the required information itself. However, the target agent can also actively
seek the trust of the evaluator by presenting arguments about its trustworthiness. In this
paper, such arguments are references produced by the agents that have interacted with
the target agents certifying its behaviours.5 However, in contrast to witness information

4 This belief is similar to the neighbourhood reputation in Regret, which calculates the reputation of an agent
from the reputation of the agents that it is connected to.
5 The arguments can also be the target agent’s identity, its certifications (e.g. “authorised dealer”, performance
awards), its sources of products (to guarantee their quality), and so on. However, deducing trust (or the expected
performance) of the target agent from such information requires knowledge about the application domain.

128 Auton Agent Multi-Agent Sys (2006) 13: 119–154

which needs to be collected by the evaluator, the target agent stores and provides such
certified references on request to gain the trust of the evaluator. Those references can be
obtained by the target agent (assuming the cooperation of its partners) from only a few
interactions, thus, they are usually readily available. This type of trust is called Certified
Reputation.

FIRE integrates all four sources of information and is able to provide trust metrics in
a wide variety of situations. Certified Reputation, in particular, greatly enhances FIRE in
this respect since the evaluator does not have to obtain this type of information itself (as
is the case with other types of trust). Hence, the addition of certified reputation decreases
the possibility that the evaluator fails to evaluate the trustworthiness of the target agent due
to a lack of information. Our hypothesis is that integrating these various sources will also
enhance the precision of the trust model. This will be verified subsequently in our empirical
evaluation. Here, each type of trust information is processed by a particular component of
FIRE: interaction trust (IT), witness reputation (WR), role-based trust (RT), and certified
reputation (CR) components.

It should be noted that the WR and CR components depend on third-party information
(witness experiences and references) and, therefore, they are susceptible to any inaccuracy
of such information. Since agents in an open MAS are self-interested, they may provide
false ratings to gain unwarranted trust for their partners. However, in this paper, we have
not considered the problem of lying and inaccuracy. Therefore, we currently assume that all
agents are honest in exchanging information. Although this is unrealistic for an open MAS,
our aim now is to ascertain that our philosophy and trust components are actually effective.
The problem of various sorts of disinformation in reporting ratings will be considered in
future work.

In addition to the characteristics of an open MAS, we have made a number of assump-
tions about the agents and their environment. Before going on to discuss FIRE, we state these
assumptions:

Assumption 1. Agents are willing to share their experiences with others (as witnesses or as
referees).

Assumption 2. Agents are honest in exchanging information with one another.

In FIRE, except the RT component, which deduces trust based on rules, the other com-
ponents deduce trust from information about the target agent’s behaviour. We use ratings to
capture this type of information. Here, a rating is the evaluation about an agent’s performance
given by its partner in an interaction between them. For instance, consider an example where
agent a subscribes to a news service provided by agent b. Each time a receives a piece of
news from b, it can evaluate the news provided in terms of topicality, quality, and honesty.
From its evaluation, agent a may give ratings about agent b’s service in those terms for that
particular interaction. Ratings are thus tuples in the following form: r = (a, b, c, i, v), where
a and b are the agents that participated in the interaction i , and v is the rating value a gave b
for the term c (e.g. topicality, quality, honesty). The range of v is [−1,+1], where −1 means
absolutely negative, +1 means absolutely positive, and 0 means neutral.

Each time agent a gives a rating, it will be stored in the agent’s local rating database.
Ratings in this database will be retrieved when needed for trust evaluation or for sharing with

This is dealt with in Role-based Trust based on rules encoding an agent’s beliefs. Therefore, we only consider
third-party references here because they can be quantified and computationally aggregated in a standardised
way as we show later in this section.

Auton Agent Multi-Agent Sys (2006) 13: 119–154 129

other agents. However, an agent does not need to store all ratings it makes. As the environ-
ment of an open MAS is dynamic, old ratings usually become out-of-date due to changes
in the environment. In addition, since each agent has limited resource (i.e. memory), storing
all ratings about various agents is not necessarily an option. Therefore, each agent will only
store at maximum the H latest ratings given to another agent. Here H is called the rating
history size. This parameter is adjustable according to a particular agent’s situation.

3.2. Trust formula

In order to calculate the trust value of a target agent, the components of FIRE will have to
collect relevant ratings about that agent’s past behaviour. The subsequent sections will define
how and which ratings are collected by each component. This section describes how the set
of ratings each component collects is used to estimate the target agent’s future behaviour, or
more specifically, the expected rating value that agent is likely to receive in a future inter-
action. It is also viewed as the target agent’s trust value. A common way to estimate that
value is to calculate it as the arithmetic mean of all the rating values in the set. However,
these ratings are usually not equally relevant when estimating the expected rating value. For
example, some ratings may be older than others and, thus, are deemed to be out-of-date; some
may come from a more reliable source that suggests a higher level of credibility compared
to others. Therefore, we devise a rating weight function ωK for each component of FIRE6

which calculates the relevance of each given rating. K is thus one of I, R, W, and C standing
for interaction trust, role-based trust, witness reputation, and certified reputation respectively.
Then instead of considering all ratings equally, the trust value is calculated as the weighted
mean of all the ratings available7, whose weights are given by the corresponding weight
function:

TK(a, b, c) =
∑

ri ∈RK(a,b,c) ωK(ri) · vi
∑

ri ∈RK(a,b,c) ωK(ri)
(1)

where TK(a, b, c) is the trust value that agent a has in agent b with respect to term c, which
is calculated by the component K; RK(a, b, c) is the set of ratings collected by component K
for calculating TK(a, b, c); ωK(ri) is the rating weight function that calculates the relevance
or the reliability of the rating ri (ωK(ri) ≥ 0); and vi is the value of the rating ri . In short,
the trust value is calculated as the sum of all the available ratings weighted by the rating
relevance and normalised to the range of [−1, 1] (by dividing the sum by the sum of all the
weights). The rating weight function ωK(ri) is later defined for each component.

As we have discussed, the trust value given above lets an agent know the expected per-
formance of the target agent. However, the trust value alone is not enough. For example, a
trust value of +1 calculated from only 1 rating or from 10 ratings may have different effects
on an agent’s decision. Therefore, an agent usually also needs to know how likely it is that
the target agent will perform at that expected performance (similar to the expected value
and deviation measures in statistics). In other words, apart from the trust value, its reliability
should also be provided by a trust model. Here, we define a reliability measure that reflects
the confidence of the trust model in producing each trust value given the data it took into
account. This is given in the form of a reliability value that ranges in [0, 1], where 0 is for

6 Since each component of FIRE collects ratings from a different source, it also needs a different way to calcu-
late the relevancy of ratings. For example, the WR component may have information about witness credibility
to take into account when weighing ratings, while this information is not relevant to the IT or RT components.
7 We choose the weighted mean method here because it allows us to take the relevance of each rating into
account. Other aggregation methods could equally well be used if desired.

130 Auton Agent Multi-Agent Sys (2006) 13: 119–154

complete uncertainty and 1 for total confidence. The reliability value is given based on the
two following measures:

– Rating reliability: Since the rating weight function ωK gives us the relevancy — in other
words, the quality or the reliability — of each rating taken into account, the sum of all
rating weights reflects the reliability of the rating set taken into account in computing
TK(a, b, c) in (1) above. Therefore, we devise a rating reliability measure based on this
sum:

ρRK (a, b, c) = 1 − e
−γK ·

(∑
ri ∈RK (a,b,c) ωK(ri)

)

(2)

where ρRK(a, b, c) is the reliability value of the rating set RK(a, b, c), γK is a parameter
used to adjust the slope of the reliability function to suit the rating weight function of
each component (see Fig. 1). Since each component has its own rating weight function,
it also has a rating reliability function of its own—ρRK. As above, K is one of I, R, W,
and C. R in ρRK stands for “rating reliability”. Intuitively, the rating reliability should
increase proportionally to the sum of the rating weights. However, since this sum is not
limited, we choose the (increasing) function 1 − e−x in order that the resulted reliability
value is limited in [0, 1]. This normalisation is required because the trust and reliability
values of FIRE’s components will be combined later on in Section 3.7. Moreover, since
each rating weight function is defined differently and may have an inconsistent range
compared to one another’s, the parameter γK is introduced in order to adjust the rate of
the rating reliability in (2) according to each rating weight function’s range. In sum, the
rating reliability function ρRK (a, b, c) gradually increases from 0 (the lowest reliability)
to 1 (the highest reliability) when the sum of rating weights increases from 0 to +∞.

– Deviation reliability: The greater the variability in the rating values, the more volatile
the other agent is likely to be in fulfilling its agreements. Therefore, the deviation in the
ratings’ values is also a metric that reflects a trust value’s reliability:

ρDK(a, b, c) = 1 − 1

2
·
∑

ri ∈RK(a,b,c) ωK(ri) · |vi − TK(a, b, c)|
∑

ri ∈RK(a,b,c) ωK(ri)
, (3)

where ρDK(a, b, c) is the deviation reliability value of the trust value TK(a, b, c). Here,
D in ρDK stands for “deviation”. Basically, (3) calculates the deviation of ratings’ values
in the set of ratings RK(a, b, c) around the “expected” value (i.e. the trust value); the
calculated deviation is then normalised to [0,1]. Intuitively, when there is no deviation in
the rating’s value (i.e. the target agent performs consistently), the deviation reliability is
1 (i.e. the most reliable); and it decreases proportionally to 0 (i.e. the least reliable) when
the deviation increases.

Fig. 1 Rating reliability function ρRK (a, b, c)

Auton Agent Multi-Agent Sys (2006) 13: 119–154 131

In order to take both of these reliability factors above into account, the reliability value of
the produced trust value, denoted by ρK(a, b, c), is defined as the combination of the rating
and the deviation reliabilities:

ρK(a, b, c) = ρRK(a, b, c) · ρDK(a, b, c) (4)

3.3. Interaction trust

As introduced in Section 3.1, interaction trust is built from the direct experience of an agent.
It models the trust that ensues from the direct interactions between two agents. Here we
simply exploit the direct trust component of Regret (see Section 2.3) since this meets all our
requirements for dealing with direct experiences. In more detail, each agent rates its partner’s
performance after every transaction and stores its ratings in a local rating database. When
calculating the IT value for agent b with respect to term c, agent a has to query its database
for all the ratings that have the form (a, b, c, _, _), where the “_” symbol can be replaced by
any value. We call the set of those ratings RI(a, b, c).

Since older ratings may become out-of-date quickly, we use the recency of the ratings
as a rating weight function to give recent, and likely more updated, ratings more weights
than older ratings in IT evaluation. However, as pointed out in Section 2.3, Regret’s method
of calculating rating recency has several unfavourable aspects. Therefore, we devise a new
rating recency function based on the time difference between current time and the rating time
as this metrics reflects precisely how old (i.e. how recent) a rating is. In order to make our
rating recency function adjustable to suit the time granularity in different applications, the
parameter λ, called the recency scaling factor, is introduced in the function (to scale time
values). Our rating recency function, which is also used as the rating weight function for IT,
is given by the following formula:

ωI(ri) = e− �t (ri)
λ (5)

where ωI(ri) is the weight for the rating ri (used in (1)), �t (ri) is the time difference between
the current time and the time when the rating ri is recorded. In our model, analogously to
human perception, we view the time difference of two recent events as more significant than
the same one of two older events (see Appendix A for an example). Hence, the exponential
function above is chosen for rating recency because its shape over time fits our view on how
the recency of ratings should affect an agent’s decision about trust (see Fig. 2). Our intuition
is that new ratings are deemed to reflect the target agent’s current performance more appro-
priately than old ratings, and our recency function here is to help FIRE adapt quickly to any
changes in that agent’s performance. In (5), the parameter λ is hand-picked for a particular
application depending on the time unit used. For instance, if the time unit used is day and we
want a rating obtained five days earlier to only have half the effect of a new rating obtained
today (i.e. rating weights of 0.5 and 1, respectively; �t (ri) = 5) then λ = − 5

ln(0.5)
.

Given the rating set RI(a, b, c) and the rating weight function ωI(ri) as specified above,
the IT value TI(a, b, c) and its reliability ρI(a, b, c) are calculated as defined in (1) and (4)
(Section 3.2).

3.4. Role-based trust

Role-based trust models the trust resulting from the role-based relationships between two
agents (e.g. owned by the same company, a service provider and its registered user, or a

132 Auton Agent Multi-Agent Sys (2006) 13: 119–154

Fig. 2 Rating weight function of interaction trust component

friendship relationship between their owners). Since there is no general method for com-
putationally quantifying trust based on this type of relationship, we use rules to assign RT
values. As previously discussed, those rules are used to encode knowledge about the trust
dynamics in the application domain. Therefore, they are usually domain-specific and must
be specified by an agent’s designer or its owner. In other words, this component provides the
means of adapting FIRE to a particular environment and, thus, making it perform better in
that environment. Here, rules are tuples of the following form: rul = (rolea, roleb, c, e, v),
which describes a rule that if rolea and roleb are the roles of agent a and b, respectively,
then the expected performance of b with respect to the term c in an interaction with a is v

(v ∈ [−1, 1]); e ∈ [0, 1] is the level of influence of this rule on the resulting RT value or the
belief strength of agent a on the rule. For example, possible rules may be:

rul1 = (buyer, seller, quality, 0.3,−0.2),
rul2 = (_, government-seller, quality, 0.8, 0.0),
rul3 = (_, team-mate, honesty, 1.0, 1.0).

Here rul1 expresses an agent’s belief that an ordinary seller will usually sell a product of
slightly lower quality than agreed, but the reliability of this belief is low (0.3); rul2 expresses
a stronger belief that an agent can expect a governmental seller to do what is agreed in terms
of product quality; rul3 tells an agent to expect total honesty from its team mate (e.g. agents
of the same owner). Here, rul1 and rul2 encode norms of the environment, while rul3 is
the belief based on an arrangement between agents. Such rules are given to the agent by its
owner. Additional rules can naturally be added during an agent’s life cycle.

Each agent has its own set of rules which are stored in a (local) rule database. In order to
determine the RT of agent b with respect to term c, agent a looks up the relevant rules from
its rule database. We call the set of those rules RR(a, b, c). Since the form of a rule is very
analogous to that of a rating, the general trust formula in (1) can be used to calculate the RT
of b, which is denoted by TR(a, b, c), from this set. Here, the level of influence of each rule
is used as the weight for that rule: ωR(ri) = ei . Therefore, it should be noted that in case
there exist conflicts in the applicable rules (i.e. contradicting expected performance values),
all these rules will be taken into account but the deviation measure reliability (ρDK) of the
resulted trust value will be low (because of the high deviation of the rules used). This, in turn,
will result in a low reliability of the RT trust value, which shows that the RT trust value has
a low predictive power and so it will be weighted accordingly in calculating the overall trust
value (see Section 3.7).

3.5. Witness reputation

The witness reputation of a target agent b is built on observations about its behaviour by
other agents (witnesses). In order to evaluate the WR of b, an agent a needs to find the

Auton Agent Multi-Agent Sys (2006) 13: 119–154 133

witnesses that have interacted with b. Here, it is assumed that agents in open MAS are
willing to share ratings that they made and to help others search witnesses. In order to find
relevant witnesses, we implement a variant of Yu and Singh’s referral system (Section 2.3)
without using the VSM model for modelling expertise.8 Instead, our system assumes that
each agent has a measure of the degree of likeliness with which an agent can fulfil an informa-
tion query about witness information and witness locating. This measure needs to be defined
in an application specific manner. For example, in our testbed (described in Section 4.1), an
agent is assumed to know local agents (those that are near to it) better and, therefore, we use
the distance between an acquaintance and the target agent as the knowledge measure. Thus
the nearer to the target agent, the more likely the acquaintance is to know it. This measure
is used in the referral process to help locate witnesses. However, it should be noted that the
resources available to each agent are limited (in terms of its memory, its communication cost,
or some other measure) and the evaluator (agent a) usually has limited time for trust evalua-
tion (before it has to initiate an interaction). Thus, the process of locating witnesses should be
limited according to an agent’s time constraints, though this may result in no witnesses being
located (even though appropriate agents are available in the system). Here, the parameters
nBF (called the branching factor [39]) and nRL (called the referral length threshold, or the
depth of referral graphs in [39]) are introduced for that purpose. Specifically, nBF is used to
limit the number of acquaintances to which a query is forwarded, and nRL to limit the length
of referral chains. Besides restricting the search range of agent a due to time constraints, the
referral length threshold also helps an agent not to waste its effort querying agents that are too
distant because the further the witness is from a (in terms of the length of the referral chain
to the witness from a), the less reliable or relevant its information. At present, nBF and nRL
need to be hand-picked according to an agent’s resources constraints and its environment’s
acquaintance networks.

Specifically, the process of evaluating WR is as follows:

1. When agent a assesses the WR of agent b with respect to term c, denoted by TW(a, b, c),
it sends out a query for ratings of the form (_, b, c, _, _) to nBF acquaintances that are
likely to have relevant ratings on agent b and term c (see Fig. 3, where nBF = 2).

2. These acquaintances, upon receiving the query, try to match it to their own (local) rating
databases. If they find matching ratings, it means they have had interactions with b, and
they will return the ratings found to a.

3. If they cannot find the requested information, they will return referrals identifying their
nBF acquaintances that they believe are most likely to have the relevant ratings to the
query (based on the knowledge measure) so that a can look further.

4. This process continues until a finds sufficient witnesses or the length of its referral chains
reach the defined threshold nRL.

It should be noted here that in this process we implicitly assume that agents in a’s refer-
ral network are willing to help a finding the required witness ratings. This is not a trivial
assumption and needs to be guaranteed for this referral process (as for any mechanism based
on third-party information) to work, especially in open MAS where agents are self-interested.
However, we do not consider how such a guarantee can be obtained in this paper because
that task would very much depend on the particular application domain being considered.
Thus, end-users who wish to make use of WR need to provide necessary measures for this

8 As pointed out in [37], the VSM model does not support hierarchy in expertise types, which can be better
represented by service graphs. In this respect (i.e. modelling expertise), there is no universal model for all
applications. Therefore, we leave the choice of expertise model to end users as they can evaluate which method
is best suited to their particular applications.

134 Auton Agent Multi-Agent Sys (2006) 13: 119–154

Fig. 3 Referral process

willingness assumption to hold (e.g. obtaining an agreement between agents on sharing wit-
ness information or paying for any information request).

The set of ratings collected from the referral process, denoted by RW(a, b, c), is then used
to calculate the WR of agent b (i.e. TW(a, b, c)) following (1). Here, the rating weight func-
tion for WR, ωW(ri), is intended to reflect the quality of a witness rating which also includes
the rating’s credibility (since in realistic environments agents may give false or inaccurate
ratings). However, as we currently assume all agents are honest, only the recency of ratings
is used as per Section 3.3 (i.e. ωW(ri) = ωI(ri), see (5)). A model of witness credibility will
be developed and incorporated into FIRE in future work.

3.6. Certified reputation

Certified reputation of a target agent b consists of a number of certified references9 about
its behaviour on particular tasks that are provided by third-party agents. Such information
is obtained and stored by the target agent itself and is then made available to any other
agent that wishes to evaluate its trustworthiness for further interactions (somewhat like a
reference when a person is applying for a job). The agents giving references are called the
referees. Here, references are in the form of ratings given by b’s partners about its perfor-
mance in (past) interactions between them. These ratings allow b to prove its (achievable)

9 It is assumed that some form of security mechanism (such as a public-key infrastructure) is employed to
ensure that the provided references cannot be tampered with. For instance, all references could be accompanied
by digital signatures from the issuers using their private keys [41]. By so doing, any change to a reference will
be easily detected. Digital signatures are also a means to verify the references’ origins.

Auton Agent Multi-Agent Sys (2006) 13: 119–154 135

performance as viewed by its previous interaction partners and then to gain the trust of its
potential partners. However, since b can choose which ratings to put forward, a rational agent
will only present its best ones. Therefore, it should be assumed that CR information probably
overestimates an agent’s expected behaviour. Thus, although it cannot guarantee b’s minimal
performance in future interactions, the CR information does reveal a partial perspective on
agent b’s capabilities (which is certainly useful for trust evaluation in the absence of other
sources of information).

Though CR may have lower predictive power than the other types of trust (where all bad
and good ratings can be collected), it is useful because of its wide applicability. With the
cooperation of its partners, agent b can obtain their references from just a small number of
interactions.10 From our evaluation, for instance, in a society where 100 agents provide a
service to 500 others, agents using direct experience to evaluate trust require more than 100
interactions to achieve a reasonable level of utility gain, which is still less than that achieved
by agents using CR after five interactions (see Section 5.2 for more detail). In addition to
its high availability, since references are stored by the target agent and provided directly to
the evaluator, CR has a very low running cost (i.e. time, communication, processing cost)
compared to sources like witness reputation. Since CR information comes from the target
agent, the CR component complements the other components of FIRE, which use informa-
tion collected by the evaluator, reducing the chances that they may fail to calculate trust due
to lack of input (see Section 3.1). Thus, incorporating the CR component makes FIRE able
to provide a trust value in most circumstances.

In more detail, the process of CR is as follows:

– After every transaction, agent b asks its partners to provide their certified ratings about
its performance from which it can choose the best ratings to store in its (local) rating
database.

– When agent a contacts b to express its interest in using b’s service, it asks b to provide
references about its past performance with respect to an interested term c.

– Agent a receives the set of certified ratings of b from b, which we call RC(a, b, c) (C to
denote this set is obtained via the CR mechanism), and calculates the CR of b based on
this set.

In this process, since agent b relies on its interaction partners’ cooperation to get references,
agents may refuse to give out their ratings (as in the case of witness reputation). However,
this is a much smaller problem than that in witness reputation because this information is
requested far less frequently (each referee is requested to give its rating only once). Moreover,
giving such information could be made a standard part of any agreement for task allocation
and so agents could be forced to give it. The most notable point in this process is that when
agent a makes the trust evaluation, it only involves agents a and b. Since the certified ratings
about b are stored by b itself, they are immediately available to a as in the case when a
uses its own experience. It should also be noted that when a referee provides references to
an interaction partner, it surrenders its privacy with respect to how it values that partner’s
performance. This may lead to various possible reactions of that partner (e.g. it may retaliate
against the referee for a bad reference, it may treat the referee differently the next time to get
a better reference). However, due to the vast number of possibilities in the reactions of both

10 In many scenarios, such as those in the Internet, established service providers (e.g. news service, online
merchants) usually have high volumes of interactions (at any time). Therefore, if they adopt the CR process
outlined here, we can reasonably expect that such providers will have an abundance of performance ratings
readily available.

136 Auton Agent Multi-Agent Sys (2006) 13: 119–154

agents (i.e. the referee and the referred agent), we do not consider the effects of giving up
privacy in CR here and defer it to future work.

Having obtained the references of b, a can calculate the CR value of b using the formula
in (1). However, since there is no guarantee about the honesty of agents in an open MAS, we
need measures to prevent, or to minimise the adverse effects of, lying (e.g. collusion between
the target agent and its referees in producing falsely inflated references). Here, we use the
rating weight function ωC(ri) to reflect the credibility of a reference (i.e. rating). Again, since
we are not considering the problem of lying in this paper, the rating weight function for CR
is defined based only on the recency of ratings as per Section 3.3 (i.e. ωC(ri) = ωI(ri)).
The value of CR, TC(a, b, c), and its reliability, ρC(a, b, c), are calculated as defined in
Section 3.2.

3.7. An overall value

When using FIRE to evaluate trust, an agent can decide which components it will use for
trust evaluation according to its needs and situation. However, as each component produces
trust values from a separate source of information, we believe that combining the four com-
ponents, and effectively the four information sources, will in most cases yield a higher level
of precision (as confirmed by the empirical evaluation in Section 5.2). Thus, we recommend
combining all the aforementioned trust values into a single composite measure to give an
overall picture of an agent’s likely performance. As all trust values in FIRE come with reli-
ability values, instead of averaging the trust values from the four components, we again use
the weighted mean method to calculate the composite trust value, denoted by T (a, b, c), to
take each trust value’s reliability into account:

T (a, b, c) =
∑

K∈{I,R,W,C} wK · TK(a, b, c)
∑

K∈{I,R,W,C} wK
(6)

where wK = WK · ρK(a, b, c), and WI, WR, WW, WC are the coefficients corresponding to
the IT, RT, WR, and CR components. These coefficients are set by end users to reflect the
importance of each component in a particular application. The reliability of the composite
trust value, denoted by ρT (a, b, c), is calculated from the components’ reliability values in
a similar manner:

ρT (a, b, c) =
∑

K∈{I,R,W,C} wK
∑

K∈{I,R,W,C} WK
(7)

4. Experimental setup and methodology

In order to empirically evaluate FIRE, we designed a testbed that simulates the relationships
and interactions between agents in which trust models are used for selecting interaction
partners (Section 4.1). The testbed’s environment characterises that of an open MAS. The
methodology used for FIRE’s evaluation is described in Section 4.2.

4.1. The testbed

The testbed environment for evaluating FIRE is a multi-agent system consisting of agents
providing services (called providers) and agents using those services (called consumers). We
assume that the performance of a provider (and effectively its trustworthiness) in a particular
service it provides (e.g. news services) is generally independent from that in another service

Auton Agent Multi-Agent Sys (2006) 13: 119–154 137

Fig. 4 The spherical world and an example referral chain from consumer C1 (through C2 and C3) to provider
P via acquaintances

(e.g. weather services or banking services). Therefore, without loss of generality, and in order
to reduce the complexity of the testbed’s environment, it is assumed that there is only one type
of service in the testbed. Hence, all the provider agents offer the same service. However, their
performance (i.e. the quality of the service) differs and determines the utility that a consumer
gains from each interaction (called UG). The agents are situated randomly on a spherical
world whose radius is 1.0 (see Fig. 4). Each agent has a radius of operation (ro—depicted
by a dotted circle around an agent in Fig. 4) that models the agent’s capability in interacting
with others (e.g. the available bandwidth or the agent’s infrastructure) and any agents situated
in that range are the agent’s acquaintances. In the case of a provider, its radius of operation
serves as the normal operational range in which it can provide its service at its full capability
without loss of quality. For consumers outside that provider’s normal operational range, the
quality of service they receive from it gradually degrades. This simulates the phenomenon
that each agent usually has particular circumstances (here its location) which affect service
delivery. For example, two distant agents may experience significant network latency during
their interactions, or a seller agent in the UK may charge another agent extra for shipping
goods abroad and the goods may arrive much later than usual.

Simulations are run in the testbed in rounds (of agent interactions). Events that take place
in the same round are considered simultaneous. The round number is used as the time value
for events. In each round, if a consumer agent needs to use the service it can contact the
environment to locate nearby provider agents11 (in terms of the distance between the agents
on the spherical world). The consumer agent will then select one provider from the list to use
its service. The selection process relies on the agent’s trust model to decide which provider
is likely to be the most reliable. Consumer agents without a trust model randomly select a
provider from the list. On the other hand, an agent with a trust model selects a provider as
follows:

11 This is to simulate a situation in which only a portion of the provider population is available to a given agent.
For example, a retail banking agent can only serve customers in its country. In addition, as the degradation
of service quality is proportional to the distance between a provider and its consumer, providers that are too
distant may not be useful.

138 Auton Agent Multi-Agent Sys (2006) 13: 119–154

1. It evaluates the trustworthiness of all the providers in the list. Providers whose trust-
worthiness cannot be determined (due to no available rating) are placed in the set
NoTrustValue. The rest, whose trustworthiness has been determined, are placed in the
set HasTrustValue.

2. There can be up to two options available to the agent:
(a1) select the provider with the highest trust value in the set HasTrustValue, which
according to the trust model is likely to yield the highest UG; and
(a2) select a random provider from the set NoTrustValue, allowing it to learn about the
performance of an unknown provider (i.e. exploring the provider population).

3. Obviously, if the set HasTrustValue is empty, it can only choose (a2); if the set NoTrust-
Value is empty, it can only chose (a1).

4. Otherwise, it needs to determine which action it should take. Choosing (a2) allows it
to explore more about the provider population although it may risk losing utility if it
encounters a bad provider. In contrast, choosing (a1) is likely to give a more predictable
value for the expected UG. However, it may not be the optimal performance the agent
can get because it has not learnt enough about the provider population. This exploit-vs-
explore dilemma is addressed in this work by using the Boltzmann exploration strategy
[18]. Using this strategy, an agent tends to explore its environment first and then grad-
ually move its stance towards exploitation when it learns more about the environment.
Thus, the agent chooses an action ak with the probability of

P(ak) = e
ER(ak)

T

∑
ai

e
ER(ai)

T

(8)

where ER(ai) is the expected return from choosing action ai , T is the temperature param-
eter which is set to decrease over time to decrease exploration. In brief, the probability
that an action ak is selected is biased by the expected return of that action. Moreover,
when an agent’s level of exploration is decreased (by decreasing T over time) the action
with the highest expected return will be more likely to be selected (i.e. the agent is more
likely to exploit the knowledge it has learnt about the performance of provider agents).
Here, the expected return for (a1) is the expected UG of the highest trusted provider
as calculated from its trust value, and that for (a2) is the average UG of the provider
population that has been observed by the consumer agent.

Having selected a provider, the consumer agent then uses the service of the selected pro-
vider and gains some utility from the interaction (UG). The value of UG is in [−10, 10] and
depends on the level of performance of the provider in that interaction. A provider agent
can serve many users at a time. As in realistic situations, a consumer agent, however, does
not always use the service in every round. The probability it needs and requests the service,
called its activity level and denoted by α, is selected randomly when the consumer is created.
In other words, the activity level of a consumer determines how frequently it uses the service.

After an interaction, the consumer agent rates the service of the provider based on the
level of performance, or the quality of the service, it received. It records the rating for future
trust evaluations and also informs the provider about the rating it made. The provider may
record the rating as evidence about its performance to be presented to potential consumers.
As we have previously discussed, it is assumed that all agents exchange their information
honestly in this testbed. This means an agent (as a witness or as a referee) provides its true
ratings as they are without any modification.

In our testbed the only difference in each situation is the performance of the provider
agents. We consider four types of provider agents: good, ordinary, bad, and intermittent.

Auton Agent Multi-Agent Sys (2006) 13: 119–154 139

Each of them, except the last, has a mean level of performance, denoted by µP. Its actual
performance follows a normal distribution around this mean. The values of µP and the asso-
ciated standard deviation of these types of providers, denoted by σP, are given in Table 2.
Intermittent providers, on the other hand, yield unpredictable (random) performance levels
in the range [PL_BAD, PL_GOOD]. In addition, if a consumer agent is situated outside of
the provider’s normal operational range (i.e. ro) the service quality of that provider is also
degraded linearly in proportion to the distance between the provider and the consumer.

Since agents can freely join and leave an open MAS, the agent population can be very
dynamic. Moreover, since agents are owned and controlled by various stakeholders, the per-
formance of an agent may not be consistent over time (i.e. its performance may change
according to its own situation). Therefore, in order to simulate such dynamism, we introduce
the following factors in our testbed:

– The population of agents: In an open MAS, agents can come and leave the system at
anytime. This is simulated by removing a number of randomly selected agents from the
testbed and adding new ones into it. The numbers of agents added and removed after each
round vary, but have an upper limit of some predefined percentage of the whole popu-
lation. The population change limits for the consumer and the provider populations are
denoted, respectively, by pCPC and pPPC. Since providers are usually more established
than consumers, pPPC is set to be lower than pCPC in our simulations. The characteristics
of the newly added agents are set randomly but they are uniformly distributed over the
initial agent populations (i.e. the proportions of providers of different profiles and that of
consumers in different groups are maintained).

– The locations of agents: During their life cycle, agents break old relationships and make
new ones (reflecting the notion of continual change that is inherent in open MAS). In
our testbed, this type of change is reflected by the change in an agent’s location on the
spherical world. When a consumer changes its location, it will have a new set of acquain-
tances according to its ro. In addition, the location of an agent in the testbed also reflects
its individual situation covering things such as its knowledge about other local agents
(see Section 3.5) and the service delivery between providers and consumers (see above).
Therefore, changing an agent’s location changes its relationships with others, as well
as its individual situation. Specifically, we use polar coordinations (r, ϕ, θ) for agent
locations on the spherical world. Then in order to change an agent’s location, amounts
of angular changes �ϕ and �θ are added to ϕ and θ , respectively. In this case, �ϕ and

Table 1 Performance level
constants

Performance level Utility gained

PL_PERFECT 10
PL_GOOD 5
PL_OK 0
PL_BAD −5
PL_WORST −10

Table 2 Profiles of provider
agents (performance constants
defined in Table 1)

Profile Range of µP σP

Good [PL_GOOD, PL_PERFECT] 1.0
Ordinary [PL_OK, PL_GOOD] 2.0
Bad [PL_WORST, PL_OK] 2.0

140 Auton Agent Multi-Agent Sys (2006) 13: 119–154

�θ are selected randomly in [−�φ,+�φ]. Thus, �φ limits the variability of agents’
locations. Not every agent changes its locations every round and, in particular, pCLC and
pPLC are used to denote the probabilities that a given consumer or provider, respectively,
changes its location in a round.

– The behaviour of the providers: In many environments, provider performance may alter
(for better or worse) over time. A provider may even change its behaviour completely
(e.g. a provider may take advantage of its good reputation and decide to perform selfishly
to obtain better utility). In our testbed, the average performance of a provider (µ) can be
changed by an amount of �µ randomly selected in [−M,+M], and this happens in each
round with the probability of pµC. Moreover, after each round, a provider can switch to
a completely new provider profile with a probability of pProfileSwitch.

The changes above to the testbed’s environment (if in effect) are applied only after each round
of interactions finishes. The nature and degree of dynamism are specified in each experiment.

4.2. Experimental methodology

In each experiment, the testbed is populated with provider and consumer agents. Each con-
sumer agent is equipped with a particular trust model, which helps it select a provider when
it needs to use a service. Since the only difference among consumer agents is the trust
models that they use, the utility gained by each agent through simulations will reflect the
performance of its trust model in selecting reliable providers for interactions. Therefore, the
testbed records the UG (Section 4.1) of each interaction along with the trust model used. In
order to obtain an accurate result for performance comparisons between trust models, each
one will be employed by a large number of consumer agents (NC). In addition, the average
UG of agents employing the same trust models (called consumer groups) are compared with
each other’s using the two-sample t-test (for means comparison) [6] with the confidence
level of 95%12. The result of an experiment is then presented in a graph with two y-axes;
the first plots the UG means of consumer groups in each interaction and the second plots the
corresponding performance rankings obtained from the UG means comparisons using the
t-test. The plot for the performance ranking of a group is also denoted by the group’s name
but prefixed by ‘R.’ Here, we specify that the group of a higher rank outperforms the one of a
lower rank and groups of equal rank have insignificantly different performance. For example,
in Fig. 5, at the 5th interaction (on the x-axis), agents in group FIRE obtain an average UG
of 5.06 (reading on the left y-axis) and, according to the t-test ranking, the rank of FIRE (as
shown by the plot R.FIRE) is 3 (reading on the right y-axis).

The experimental variables are presented in Table 3 and their values will be used in all
cases unless otherwise specified. Although a “typical” provider population may differ in
various applications, the space of possibilities is vast and exploring it completely would be
impossible. Therefore, we choose provider populations which we believe are more common
than others for our experiments. Here, we consider a typical provider population to consist
of about half profitable providers (i.e. yielding positive UG) and half exploiting providers
(i.e. yielding negative UG, including intermittent providers). However, good and intermittent

12 In analysing (experimental) data about two populations, say their income levels, the fact that the means
of the two sample groups’ incomes is different does not always mean that the two populations have different
levels of income if randomness can affect sample selection. It is possible that the means of these two particular
samples are different, but the means of the two populations’ incomes are not. Thus the t-test is a statistical
method that allows us to confirm within a predefined confidence level whether the difference of the two means
actually means one group has higher income than the other, eliminating the random factor in selecting the
samples (see [6] for more detail).

Auton Agent Multi-Agent Sys (2006) 13: 119–154 141

-2
-1
0
1
2
3
4
5
6
7

1 21 41 61 81 101 121 141 161 181

Interaction

U
G

0

1

2

3

4

5

6

R
an

k

NoTrust SPORAS FIRE R.NoTrust R.SPORAS R.FIRE

Fig. 5 Overall performance of FIRE in the typical provider population

Table 3 Experimental variables Simulation variable Symbol Value

Number of simulation rounds N 500
Total number of provider agents: NP 100

+ Good providers NPG 10
+ Ordinary providers NPO 40
+ Intermittent providers NPI 5
+ Bad providers NPB 45

Number of consumer agents in each group NC 500
Range of consumer activity level α [0.25, 1.00]

providers are usually exceptional cases and, thus, they take only a small portion of each half.
Except in the experiments where we evaluate FIRE with different provider populations, this
typical provider population is used throughout.

Here, we also show the default parameters of FIRE for the experiments in Table 4. The
component coefficients are set to reflect our view on the reliability of the information source
used by each component. The IT component deduces trust from ratings in which the agent
does the rating itself and, thus, is more reliable than the WR and CR components, which
use information from third-parties.13 We expect the CR information to exaggerate an agent’s
true performance, hence, the CR component has the lowest reliability. The RT component
provides rules encoding knowledge and beliefs about the agent’s environment to customise
the trust model, so it should also have a high reliability. Given the time unit used in the test
bed (round of interactions), we set the IT recency scaling factor such that a 5-round old rating
has half (0.5) the effect of a new rating (1.0).

5. Empirical evaluation

Having presented the testbed and the methodology for FIRE’s evaluation, we now turn to
the experiments themselves. In particular, we concentrate on the benefit of using FIRE for

13 Because the situation of each agent can differ from that of another, different agents can have different obser-
vations about the performance of a particular provider. For example, in our testbed, from the same provider,
the quality of the service a consumer receives depends on the distance between it and the provider. Therefore,
because of such differences, even when witnesses are honest (as is assumed in this paper), their reports are
not always as useful as an agent’s own observations.

142 Auton Agent Multi-Agent Sys (2006) 13: 119–154

Table 4 FIRE’s default
parameters

Parameters Symbol Value

Local rating history size H 10
IT recency scaling factor λ −(5/ ln(0.5))
Branching factor nBF 2
Referral length threshold nRL 5
Component coefficients
+ Interaction trust WI 2.0
+ Role-base trust WR 2.0
+ Witness reputation WW 1.0
+ Certified reputation WC 0.5
Reliability function parameters
+ Interaction trust γI − ln(0.5)

+ Role-base trust γR − ln(0.5)

+ Witness reputation γW − ln(0.5)

+ Certified reputation γC − ln(0.5)

selecting interaction partners with different provider populations (Section 5.1) and the con-
tributing values of its individual components (Section 5.2). We also explore the impact of
various dynamic factors on the performance of FIRE (Section 5.3).

5.1. Overall performance of FIRE

In order to evaluate the overall performance of FIRE, we compare it with the SPORAS
model14 (whose operation is described in Section 2.2) and a group of agents with no trust
model. Hence, there are three groups of consumer agents: FIRE, SPORAS, and NoTrust.
The first thing to test is whether FIRE helps consumer agents select profitable providers (i.e.
those yielding positive UG) from the population and, by so doing, helps them gain better
utility than without FIRE (i.e. the NoTrust group). In this section, the testbed’s environment
is static, which means that no dynamic factors are in effect.

Here, Fig. 5 shows that the NoTrust group, selecting providers randomly without any
trust evaluation, performs consistently the lowest (as we would expect). On the other hand,
both SPORAS and FIRE prove to be beneficial to consumer agents, helping them to obtain
significantly higher UG. This shows that the tested trust models can learn about the provider
population, and allow their agents to select profitable providers for interactions. However,
the chart, as well as the t-test ranking, also shows that FIRE outperforms SPORAS, the
second rank, throughout the interactions by about 2 UG units. This is despite the fact that
SPORAS, being a centralised model, gathers much more information than FIRE (a decen-
tralised model).15 The performance difference of FIRE and SPORAS is accounted for by
the fact that FIRE separates direct experiences from others’ experiences (i.e. ratings) in trust

14 SPORAS is chosen as the control benchmark for two reasons. First, it is a successful independently devel-
oped trust model that several other researchers have used for benchmarking (e.g. [4], [27]). Second, other
than SPORAS, most other notable trust models make assumptions that are incompatible with open MAS, or
require additional knowledge, and, thus, they will not operate as intended in our testbed.
15 After every interaction, the consumer reports its rating about the provider’s service in that interaction to
SPORAS. Therefore, as a centralised service, SPORAS collects all the available ratings from its users. In
contrast, consumers employing FIRE have only ratings from a limited set of witnesses (from the WR compo-
nent) and those presented by providers (from the CR component) in addition to their own ratings. Typically
in our experiments, after the first 10 rounds the average number of ratings taken into account in each trust
evaluation request to FIRE is 3.28, and that to SPORAS is 15.55. After 20 rounds the corresponding numbers

Auton Agent Multi-Agent Sys (2006) 13: 119–154 143

Table 5 The performance of SPORAS and FIRE in the first 10 interactions

Interaction: 1 2 3 4 5 6 7 8 9 10

SPORAS 0.20 0.85 1.80 2.96 3.53 3.42 3.42 3.52 3.58 3.62
FIRE −0.16 1.20 2.30 4.00 5.06 5.44 5.66 5.52 5.47 5.53

3

4

5

6

7

8

9

10

1 21 41 61 81 101 121 141 161 181

Interaction

U
G

0

1

2

3

4

5

6

R
an

k

NoTrust SPORAS FIRE R.NoTrust R.SPORAS R.FIRE

Fig. 6 Overall performance of FIRE—100% good providers

evaluation, while SPORAS treats all types of ratings equally. Therefore, SPORAS suffers
from noise in ratings (resulting from different degrees of degradation of service quality due
to different provider-consumer distances). In contrast, FIRE reduces rating noise by giving
more weight to direct experiences (see Table 4), which are more relevant to an individual
agent’s situation. Another noticeable point is that in the first few interactions, FIRE can learn
about the providers quicker than SPORAS as the FIRE group achieves its superiority from
the first interaction (see Table 5) despite much less information being available to it. As we
show in Section 5.2, this is achieved thanks to the WR and, in particular, the CR components.

We reran the same experiment but with provider populations consisting of providers
of only one profile (e.g. good, ordinary, bad, and intermittent) to see how different types
of providers may affect FIRE’s performance. Specifically, the experiment is run with 100
good providers, then with 100 ordinary providers, 100 bad providers, and 100 intermittent
providers. The result in the case of intermittent providers is not shown here because the
performance of all three groups is indistinguishable; fluctuating randomly in [−1, 0] (this
is expected because of the random behaviour of intermittent providers). In the rest of the
experiments, we observe similar results (see Figs. 6–8) to that in our first experiment with
the typical provider population. FIRE maintains its superiority in all the three types of pro-
vider population (good, ordinary, and bad). This suggests that FIRE can work well in a wide
range of provider population.

In sum, through the experiments on FIRE’s overall performance, we confirm that FIRE
is beneficial to agents in selecting interaction partners in the various provider populations.
In addition, despite being decentralised and having less information than SPORAS, FIRE
outperforms the model in all the cases thanks to its differential treatment of each source of
trust information.

are 4.05 and 28.47, respectively. This suggests that FIRE may be advantageous in environments in which
rating information costs some premium.

144 Auton Agent Multi-Agent Sys (2006) 13: 119–154

0

1

2

3

4

5

1 21 41 61 81 101 121 141 161 181

Interaction

U
G

0

1

2

3

4

5

6

7

8

R
an

k

NoTrust SPORAS FIRE R.NoTrust R.SPORAS R.FIRE

Fig. 7 Overall performance of FIRE—100% ordinary providers

-6

-5

-4

-3

-2

-1

0

1 21 41 61 81 101 121 141 161 181

Interaction

U
G

0

1

2

3

4

5

6

R
an

k
NoTrust SPORAS FIRE R.NoTrust R.SPORAS R.FIRE

Fig. 8 Overall performance of FIRE—100% bad providers

5.2. Performance of FIRE’s components

We argued that each component of FIRE plays an important role in exploiting trust informa-
tion from a particular source and this, in turn, contributes to the effectiveness of the overall
model. In order to confirm this, we benchmark FIRE with and without various components
to evaluate the contribution of that component to the whole model. However, since the IT
component is mostly reused from Regret, we will only focus on evaluating the novel compo-
nents (i.e. WR and CR). Role-based trust is not considered here because it is typically highly
domain specific. Experiments in this section evaluate the WR and CR components with the
typical provider population in a static environment.

First, we benchmark the WR component. In this experiment, there are two groups of con-
sumer agents. The first one uses only the IT component16 (called the Control group). The

16 It should be noted that if Regret is employed in our testbed, its performance will be similar to that of FIRE’s
IT component only. This is due to the fact that there is no information about a social network of the agents
in the testbed available for Regret. Therefore, other than the direct trust component, the other components of
Regret will not be able to work due to a lack of supporting information (e.g. its witness reputation component
cannot locate witnesses, and the neighbourhood reputation component cannot locate neighbouring agents of
the target agent).

Auton Agent Multi-Agent Sys (2006) 13: 119–154 145

-2
-1
0
1
2
3
4
5
6
7

1 21 41 61 81 101 121 141 161 181

Interaction

U
G

0

1

2

3

4

R
an

k

Control WR R.Control R.WR

Fig. 9 Performance of the WR component

second makes use of the WR component in addition to the IT component (called the WR
group). This experiment’s hypothesis is that the performance of the WR should be higher
than that of the Control group.

The result of the experiment, presented in Fig. 9, shows that the WR component substan-
tially improves the performance of agents in the WR group compared to that of those in the
Control group. The t-test ranking confirms this by showing that agents using the WR compo-
nent outperform agents using only the IT component in all interactions, and, effectively, also
verifies our hypothesis. More importantly, the WR group achieves its higher performance
quicker than the Control group. This means that WR speeds up an agent’s learning about its
environment by propagating trust in the agent’s community (here the community of consumer
agents is connected to one another via acquaintances).

In the next experiment we evaluate the CR component (using a similar setting). Here,
there are two groups of consumer agents. The Control group employs the IT component,
and the other employs the CR component in addition (called the CR group). The hypothesis
in this experiment is that the CR group should outperform the Control group. The result
presented in Fig. 10 shows a similar result to that of the previous experiment. Hence, all of
the claims made above for the WR component are still valid for the CR component. How-
ever, the most noticeable thing about this experiment is its execution time. Without having
to look for witnesses as in the process of WR, the process of CR is more direct, resulting in
an execution time for this experiment being about 15 times faster than that of the previous
one. This confirms our intuition about the high serviceability of the CR component. A subtler
point shown in this experiment is the quick learning time of the CR group. Comparing the
first interactions of the WR group in Fig. 9 with those of the CR group, Fig. 10 shows that the
CR group starts off better than the WR group right from the first few interactions. In order to
verify this observation, eliminating the random factor that may affect the results of the two
independent experiments above, we ran another experiment to compare the performance of
FIRE with and without the CR component. In this experiment, there are also two groups of
consumer agents: the WR group employing the IT and WR components and the FIRE group
employing the IT, WR, and CR component. Our hypothesis is that the addition of the CR
component to FIRE is beneficial, or, equivalently, the FIRE group should outperform the WR
group. The result in Fig. 11 shows that the performance of FIRE is indeed always higher than
that of the WR group. In more detail, presented in Table 6, the FIRE group’s performance

146 Auton Agent Multi-Agent Sys (2006) 13: 119–154

-2
-1
0
1
2
3
4
5
6
7

1 21 41 61 81 101 121 141 161 181

Interaction

U
G

0

1

2

3

4

R
an

k

Control CR R.Control R.CR

Fig. 10 Performance of the CR component

-2
-1
0
1
2
3
4
5
6
7

1 21 41 61 81 101 121 141 161 181

Interaction

U
G

0

1

2

3

4

R
an

k

WR FIRE R.WR R.FIRE

Fig. 11 Performance of FIRE with and without the CR component

Table 6 The performance of WR and FIRE in the first 10 interactions

Interaction: 1 2 3 4 5 6 7 8 9 10

WR −0.50 −0.39 −0.35 0.01 0.40 0.99 1.36 1.80 2.10 2.57
CR 0.71 2.08 2.94 4.38 5.02 5.34 5.67 5.92 5.99 5.89

reaches its stable level of around 6.0 in only eight interactions, while that of the WR group
only reaches 2.57 after 10 interactions. This shows that the CR process propagates trust in
an agent community more quickly than the WR process. Taking into consideration its very
quick execution time, compared to that of the WR component in the previous experiments,
the CR component is clearly useful in situations where an agent needs to have a quick trust
evaluation in order to expedite decisions, or when WR information is scarce and difficult
to locate. We conclude that the addition of the CR component to FIRE is beneficial both in
terms of its robustness (reflected by its higher level of performance) and its serviceability.

Auton Agent Multi-Agent Sys (2006) 13: 119–154 147

In summary, it has been shown that taking various sources of trust information into account
not only helps FIRE be able to make trust evaluations in a wide variety of situations, but also
increases its precision; and that all the components contribute a significant amount to its
overall performance.

5.3. The effects of dynamism

The environment of a realistic open MAS is always changing because of its openness. Hence,
a trust model designed for open MAS should be able to function properly in such a dynamic
environment. This section concentrates on testing the hypothesis that FIRE still maintains
its properties (i.e. being beneficial to agents in selecting interaction partners) in a changing
environment. Similarly to the experiments in Section 5.1, there are three groups of consumer
agents in the experiments: NoTrust, SPORAS, and FIRE. The provider population is the
typical one. Each experiment will test the hypothesis with only one dynamic factor in effect
(see Section 4.1). Specifically, the same experiments will be run but with each of the following
conditions:17

1. The provider population changes at maximum 2% every round (pPPC = 2%).
2. The consumer population changes at maximum 5% every round (pCPC = 5%).
3. A provider may alter its average level of performance at maximum 1.0 UG unit with a

probability of 0.10 each round (pµC = 0.10, M = 1.0).
4. A provider may switch into a different (performance) profile with a probability of 2 each

round (pProfileSwitch = 0.02).
5. A provider may move to a new location on the spherical world at a maximum angular

distance of π
20 with a probability of 0.10 each round (pPLC = 0.10, �φ = π

20).
6. A consumer may move to a new location on the spherical world at a maximum angular

distance of π
20 with a probability of 0.10 each round (pCLC = 0.10, �φ = π

20).

These experiments are named Experiment 1–6, respectively and their results are shown in
Figs. 12–17. Since the NoTrust group still has the lowest performance, we omit its results
from the charts for the sake of simplicity. A general observation from all the results is that
both FIRE and SPORAS still maintain positive UG from about 3.0–6.0 (except SPORAS
in Experiment 4, Fig. 15). However, dynamism, as it introduces noise to the environments,
adversely affects the performance of both of them in all the experiments reported here. Specifi-
cally, and as we would expect, their performance is lower than that in the static environment
(Fig. 5) and the performance plots also evolve differently over time. Nevertheless, although
having lower levels of performance than in a static environment, the shape of FIRE’s per-
formance plots are generally maintained after they reach their stable level in the first few
interactions in all the experiments. This shows that FIRE is able to maintain a stable perfor-
mance regardless of the various types of changes in the environment. In other words, FIRE
can learn about the changes and adapt quickly to them.

In more detail, the experiments here can be put into two categories: dynamism on the
consumer side (Experiments 2 and 6), and dynamism on the provider side (Experiments 1,
3–5). In the first group, the results (Figs. 13 and 17) show that SPORAS can cope well with
these types of changes. This is because SPORAS collects ratings centrally from all consumers
and, thus, small changes on the consumer side do not have a significant impact on its per-
formance as its learned knowledge about the provider population is still useful. Particularly
in Experiment 2, where new consumers are added to the testbed, newly joined agents using

17 These are what we consider to be reasonable values of variation. We have conducted similar experiments
with both greater and lesser degrees of dynamism and we see the same broad trends as we report here.

148 Auton Agent Multi-Agent Sys (2006) 13: 119–154

-2
-1
0
1
2
3
4
5
6
7

1 21 41 61 81 101 121 141 161 181

Interaction

U
G

0

1

2

3

4

R
an

k

NoTrust FIRE R.NoTrust R.FIRE

Fig. 12 Experiment 1: Provider population change: pPPC = 2%

-2
-1
0
1
2
3
4
5
6
7

1 21 41 61 81 101 121 141 161 181

Interaction

U
G

0

1

2

3

4

R
an

k

NoTrust FIRE R.NoTrust R.FIRE

Fig. 13 Experiment 2: Consumer population change: pCPC = 5%

-2
-1
0
1
2
3
4
5
6
7

1 21 41 61 81 101 121 141 161 181

Interaction

U
G

0

1

2

3

4

R
an

k

NoTrust FIRE R.NoTrust R.FIRE

Fig. 14 Experiment 3: Providers change their performance: pµC = 10%, M = 1.0

Auton Agent Multi-Agent Sys (2006) 13: 119–154 149

-2
-1
0
1
2
3
4
5
6
7

1 21 41 61 81 101 121 141 161 181

Interaction

U
G

0

1

2

3

4

R
an

k

NoTrust FIRE R.NoTrust R.FIRE

Fig. 15 Experiment 4: Providers switch their profiles: pProfileSwitch = 2%

-2
-1
0
1
2
3
4
5
6
7

1 21 41 61 81 101 121 141 161 181

Interaction

U
G

0

1

2

3

4

R
an

k

NoTrust FIRE R.NoTrust R.FIRE

Fig. 16 Experiment 5: Providers change their locations: pPLC = 10%, �φ = π/20

-2
-1
0
1
2
3
4
5
6
7

1 21 41 61 81 101 121 141 161 181

Interaction

U
G

0

1

2

3

4

R
an

k

NoTrust FIRE R.NoTrust R.FIRE

Fig. 17 Experiment 6: Consumers change their locations: pCLC = 10%, �φ = π/20

150 Auton Agent Multi-Agent Sys (2006) 13: 119–154

SPORAS take advantage of the existing knowledge of the centralised model and perform
highly right from the start. In contrast, FIRE relies on the consumer community for witness
reputation and, thus, has a slightly lower performance than that in the static environment.
Nevertheless, it still outperforms SPORAS in Experiments 2 and 6.

The situation is different in the experiments of the second category. SPORAS’s perfor-
mance is significantly affected when providers change their performance levels (Experiments
3 and 4, whose results are shown in Figs. 14 and 15), most noticeably in Experiment 4, where
providers switch their performance profiles completely. In this experiment, although FIRE
is also affected greatly by the steep changes in the provider population, it still maintains a
generally high and stable performance, while SPORAS’s performance degrades dispropor-
tionately to that of the NoTrust group. It should be noted that the trust models’ duty here is to
learn and predict the behaviour (i.e. the performance) of providers and, therefore, their per-
formance in an environment where there are changes on the provider side reflects their ability
to adapt to such changes. Hence, the results suggest that SPORAS can quickly learn about
the environment (because of its centralised nature) but has difficulty adapting to the contin-
ual changes of the providers. In Experiments 1 and 5 (Figs. 12 and 16), where the provider
population changes and where the providers move around, respectively, the performance of
FIRE and SPORAS seem to be only slightly affected. In general, FIRE performs consistently
in all these experiments. Its average UG is stable around 6.0 in Experiments 1, 3, and 5; and
around 4.0 in Experiment 4 (which has most abrupt changes). This confirms our intuition
that the recency function of FIRE helps it adapt quickly to changes in the environment.

Since a realistic open MAS usually has a combination of all the dynamic factors consid-
ered here, we also want to test how FIRE performs in such situations. Therefore, we ran an
additional experiment with all the dynamic factors active at the same time. The result, in
Fig. 18, shows that although both FIRE and SPORAS suffer from the continual changes
of various types in the testbed’s environment, FIRE manages to maintain a rather stable
performance in the range [4.0, 5.0]. SPORAS, however, cannot cope with all the types of
changes at the same time and its performance degrades dramatically and is at the same level
as that of the NoTrust group through all interactions. This again confirms the adaptability of
FIRE in a complex dynamic environment.

In summary, the experiments in this section show that FIRE is able to perform consistently
in various dynamic environments, maintaining a high level of utility gain for its agents (in
all the experiments).

-2
-1
0
1
2
3
4
5
6
7

1 21 41 61 81 101 121 141 161 181

Interaction

U
G

0

1

2

3

4

R
an

k

SPORAS FIRE R.SPORAS R.FIRE

Fig. 18 Experiment 7: Performance of FIRE in an environment where all dynamic factors are in effect

Auton Agent Multi-Agent Sys (2006) 13: 119–154 151

6. Conclusions and future work

This paper has presented FIRE, a novel decentralised model for trust evaluation that is spe-
cifically designed for general applications in open MAS. By so doing, we also introduce a
generic framework which allows a variety of sources of trust information to be integrated to
provide a collective and precise trust measure (i.e. able to predict closely the behaviour of an
agent). These sources include: direct experiences of an agent from its interactions, witness
reports, third-party references, and rules provided by end users encoding beliefs or knowl-
edge about the environment. In particular, we introduce a novel type of reputation based on
third-party references called Certified Reputation. The addition of this new type of reputation
greatly enhances the serviceability of our trust model, allowing a trust measure to be available
in most circumstances. Moreover, our proposed framework can easily be customised via its
various parameters to suit a particular application domain. In short, we believe FIRE can
provide a trust measure that is sufficiently precise to be used in a wide range of situations
and applications in open MAS.18

In more detail, through empirical evaluation, we have shown that:

– Agents using the trust measure provided by FIRE are able to select reliable partners for
interactions and, thus, obtain better utility gain compared to those using no trust measure.
This result was reconfirmed with various types of provider population.

– Each component of FIRE plays an important role in its operation and significantly con-
tributes to its overall performance.

– FIRE is able to cope well with the various types of changes in an open MAS and can
maintain its properties despite the dynamism possible in an environment.

– Although decentralised, to suit the requirements of a trust model in open MAS, FIRE still
outperforms or maintains a comparable performance level with SPORAS, a centralised
trust model.

In sum, FIRE satisfies the first two requirements for a trust model in open MAS as specified
in Section 1. However, at present, FIRE assumes the agents report their trust information
truthfully. As noted in the requirements, this is not suitable for our target domain. As the
WR and CR components are based on third-party reports, they are susceptible to false or
inaccurate information, whose existence is unavoidable in open MAS. For this reason, we
plan to devise reliability measures for witness ratings and certified ratings (i.e. ωW(ri) and
ωC(ri)) that determine and take into account the credibility of third-party information. These
will allow the general trust formula in (1) to weight ratings by their credibility and to filter
out those that deem to be completely inaccurate. This will make FIRE robust against strategic
disinformation behaviours in reporting trust information as well as inherent inaccuracy. In
addition, as noted in Section 3.6, giving references in our CR component also means giving
up an agent’s privacy of how it values others’ services and the effects of this can be very
complex. Therefore, we plan to investigate this problem thoroughly in order to avoid unde-
sirable effects on the performance of CR. After having been able to deal with such obstacles,
FIRE will be ready to be used in real open MAS applications.

18 Obviously, there are still cases when FIRE cannot produce a trust value. Specifically, those are when a
service provider newly joins the system. Hence, it does not have references about its performance and other
agents do not have past experience with it. However, in a realistic scenario, in order to promote its service, that
provider can join a (popular) scheme/organisation that provides quality assurance about its members’ service.
For example, a car dealer can obtain the title “authorised dealer” from a car manufacturer. Such (popular)
membership (and inherently its quality assurance) can be recognised by other agents (via rules in FIRE’s RT
component) and thus helps the provider to sell its service.

152 Auton Agent Multi-Agent Sys (2006) 13: 119–154

In terms of improving FIRE’s overall performance, we also plan to incorporate learning
abilities. At present, FIRE is a static parametric model (i.e. all of its parameters need to be
set by users in order to suit a particular application domain). This is clearly limiting and
so we aim to study which of FIRE’s parameters can be adjusted dynamically to adapt it to
changes in an agent environment. For instance, if the number of lying agents in its envi-
ronment increases, an agent may reduce the component coefficient of witness and certified
reputation (WW and WC, see Section 3.7); or if its environment changes too quickly (e.g.
the agents alter their behaviours frequently), it can reduce the local rating history size H to
discard older (and likely out-of-date) ratings.

Appendix A

A Regret’s direct trust

In Regret’s direct trust component, each agent rates its partner’s performance after every
interaction and records its ratings in a local database. The relevant ratings will be queried
from this database when trust evaluation is needed. In order to calculate the direct trust of
agent b, agent a retrieves its past ratings about b’s performance. The set of ratings is called
R19. Then the direct trust of a to b, denoted by DTa→b, is calculated as follows:

DTa→b =
∑

ri ∈R

ρ(t, ti) · ri (A.1)

where ri is a rating value in the set R, and ρ(t, ti) is a normalised weight value that gives
higher values to ratings of more recent interactions:

ρ(t, ti) = f (ti , t)
∑

ri ∈R f (ti , t)
(A.2)

f (ti , t) = ti
t

(A.3)

where t is the current time and ti is the time the rating ri is recorded. However, this weight
function has some shortcomings on time granularity control. Actually, after being factored,
(A.2) is equivalent to:

ρ(t, ti) = ti
∑

ri ∈R ti
(A.4)

Therefore, the weight function depends only on the time values of a particular set of ratings,
rather than the recency of those ratings in comparison with the current time t . For exam-
ple, assume that r1 and r2 are ratings about the interactions that took place at time t1 = 1
and t2 = 2, respectively, and that R = {r1, r2}. Equation A.4 will give ρ(t, t1) = 1/3 and
ρ(t, t2) = 2/3. Hence the difference of the weights for r1 and r2 is 1/3 in the interaction
trust calculation. Suppose that r ′

1 and r ′
2 are completely the same ratings to r1 and r2 except

that t ′1 = 100 and t ′2 = 101. The same calculations will give a weight difference that is now
1/10100. This vast change in weight differences is not desirable given that the rating time
difference in both cases is the same (1 time unit, e.g. a second). Moreover, given the same

19 Due to the limited scope of this paper, Regret and its notation are simplified here. However, the main ideas
of the model are still retained.

Auton Agent Multi-Agent Sys (2006) 13: 119–154 153

set of ratings, the weight function produces the same value regardless of the current time t20

(i.e. the time of calculating the interaction trust).
Every trust value in Regret comes with a reliability value that reflects the confidence of

Regret in that trust value. This reliability value is calculated from a combination of two mea-
sures that are based on the number of ratings in the set R and the deviation of those ratings.
Regret defines an intimate level of interactions, denoted by i tm, that represents the minimum
number of ratings needed for a close relationship. The reliability degree increases until |R|
reaches this number. After that, more interactions will not increase reliability. The measures
(No for number of ratings and Dv for deviation of ratings) and the reliability for direct trust,
denoted by DT RLa→b are specified in the following formula:

No(R) =
{

sin
(|R| · π

2 · i tm

)
|R| ≤ i tm

1 |R| > i tm
(A.5)

Dv(R) =
∑

ri ∈R

ρ(t, ti) · |ri − DTa→b| (A.6)

DT RLa→b = No(R) · (1 − Dv(R)) (A.7)

Acknowledgements We would like to acknowledge all three reviewers of this article for their excellent
comments that enabled us to significantly improve this paper. This paper is a significantly extended version
of [14] and [15]. This work is partly supported under the Advanced Knowledge Technologies (AKT) Inter-
disciplinary Research Collaboration (IRC), which is sponsored by the UK Engineering and Physical Sciences
Research Council under grant number GR/N15764/01.

References

1. Abdul-Rahman, A., & Hailes, S. (2000). Supporting trust in virtual communities. In Proceedings of the
33rd Hawaii international conference on system sciences. Vol. 6., IEEE Computer Society Press.

2. Amazon Site. (http://www.amazon.com) World Wide Web.
3. Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific American.
4. Carbo, J., Molina, J.M., & Davila, J. (2003). Trust management through fuzzy reputation. International

Journal of Cooperative Information Systems, 12(1), 135–155.
5. Castelfranchi, C., & Falcone, R. (2001). Social trust: A cognitive approach. In C. Castelfranchi, & Y. Tan,

(Eds.), Trust and deception in virtual societies. (pp. 55–90). Kluwer Academic Publishers.
6. Cohen, P. R. (1995). Empirical methods for artificial intelligence. The MIT Press.
7. Conte, R., & Paolucci, M. (2002). Reputation in artificial societies. Kluwer Academic Publishers.
8. Dasgupta, P. (2000). Trust as a Commodity. In D. Gambetta (Ed.), Trust: Making and breaking cooperative

relations. Electronic edn. Department of Sociology, University of Oxford 49–72.
9. DeGroot, M. H., & Schervish, M. J. (2002). Probability and statistics. Addison-Wesley.

10. eBay Site. (http://www.ebay.com) World Wide Web.
11. Foster, I., Kesselman, C., & Tuecke, S. (2001). The anatomy of the grid: enabling scalable virtual organi-

zations. The International Journal of High Performance Computing Applications, 15(3), 200–222.
12. Gambetta, D. (2000). Trust: Making and breaking cooperative relations. Electronic edn. Department of

Sociology, University of Oxford.
13. Grandison, T., & Sloman, M. (2000). A survey of trust in internet applications. IEEE Communications

Surveys & Tutorials, 3(4).
14. Huynh, T. D., Jennings, N. R., & Shadbolt, N. R. (2004a). Developing an integrated trust and reputation

model for open multi-agent systems. In R. Falcone, S. Barber, J. Sabater, & M. Singh, (Eds.), Proceedings
of the 7th international workshop on trust in agent societies (pp. 65–74).

20 Suppose that r1 and r2 are experiences of some person and the time unit used is a year. If the current time
is year 2, r2 should have much more influence on the trust decision of that person than r1 since it is much more
recent. If the current time is year 20, both r1 and r2 are too old, and they should have similarly low levels of
influence on his current trust decision.

154 Auton Agent Multi-Agent Sys (2006) 13: 119–154

15. Huynh, T. D., Jennings, N. R., & Shadbolt, N. R. (2004b). FIRE: An integrated trust and reputation model
for open multi-agent systems. In Proceedings of the 16th European conference on artificial intelligence
(ECAI) (pp. 18–22).

16. Jennings, N. R. (2001). An agent-based approach for building complex software systems. Communications
of the ACM, 44(4), 35–41.

17. Jurca, R., & Faltings, B. (2003). Towards incentive-compatible reputation management. In R. Falcone,
S. Barber, L. Korba, & M. Singh, (Eds.), Trust, reputation and security: theories and practice. Vol. 2631
of Lecture Notes in AI (pp. 138–147). Springer-Verlag, Berlin, Heidelberg.

18. Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4, 237–285.

19. Marsh, S. P. (1994). Formalising trust as a computational concept, PhD thesis, University of Stirling.
20. Mass, Y., & Shehory, O. (2001). Distributed trust in open multi-agent systems. In R. Falcone, M. Singh,

& Y. Tan, (Eds.), Trust in cyber-societies (pp. 159–173). Springer-Verlag, Berlin, Heidelberg.
21. Maximilien, E. M., & Singh, M. P. (2002). Reputation and endorsement for web services. ACM SIGEcom

Exchanges, 3(1), 24–31.
22. Mui, L., Mohtashemi, M., & Halberstadt, A. (2002). A computational model of trust and reputation. In

Proceedings of the 35th Hawaii international conference on system science. (pp. 280–287).
23. Ooi, B. C., Liau, C. Y., & Tan, K. L. (2003). Managing trust in peer-to-peer systems using reputation-based

techniques. In Proceedings of the 4th international conference in advances in web-age information man-
agement (WAIM 2003). Vol. 2762 of Lecture Notes in Computer Science. 2–12 Chengdu, China, August
17–19.

24. Ramchurn, S. D., Huynh, T. D., & Jennings, N. R. (2004). Trust in multi-agent systems. The Knowledge
Engineering Review, 19(1), 1–25.

25. Resnick, P., & Zeckhauser, R. (2002). Trust among strangers in internet transactions: Empirical analysis
of eBay’s reputation system. In M. R. Baye, (Ed.), The economics of the internet and e-commerce. Vol. 11
of Advances in Applied Microeconomics. Elsevier Science.

26. Sabater, J. (2003). Trust and Reputation for Agent Societies. PhD thesis, Universitat Autònoma de Barce-
lona.

27. Sabater, J., & Sierra, C. (2001). REGRET: A reputation model for gregarious societies. In Fourth workshop
on deception fraud and trust in agent societies (pp. 61–70). Montreal, Canada.

28. Saha, D., & Mukherjee, A. (2003). Pervasive computing: A paradigm for the 21st century. IEEE Computer,
36(3), 25–31.

29. Salton, G., & McGill, M. (1983). An introduction to modern information retrieval. McGraw-Hill, New
York.

30. Schillo, M., Rovatsos, M., & Funk, P. (2000). Using trust for detecting deceitful agents in artificial socie-
ties. Special Issue of the Applied Artificial Intelligence Journal on “Deception, Fraud and Trust in Agent
Societies”, 14(8), 825–848.

31. Sen, S., & Sajja, N. (2002). Robustness of reputation-based trust: Boolean case. In Proceedings of the first
intenational joint conference on autonomous agents and multiagent systems. Vol. 1. (pp. 288–293).

32. Skogsrud, H., Benatallah, B., & Casati, F. (2003). Model-driven trust negotiation for web services. IEEE
Internet Computing, 7(6), 45–52.

33. Steinmetz, R., & Wehrle, K., (Eds.) (2005). Peer-to-peer systems and applications. Vol. 3485 of Lecture
Notes on Computer Science, Springer Publishing.

34. Teacy, W. T. L., Patel, J., Jennings, N. R., & Luck, M. (2005). Coping with inaccurate reputation sources:
Experimental analysis of a probabilistic trust model. In proceedings of fourth international joint conference
on autonomous agents and multiagent systems (pp. 997–1004).

35. Uszok, A., Bradshaw, J. M., & Jeffers, R. (2004). KAoS: A policy and domain services framework for grid
computing and semantic web services. In C. Jensen, S. Poslad, & T. Dimitrakos, (Eds.), Trust manage-
ment: Second international conference, iTrust 2004, Oxford, UK, March 29–April 1, 2004. Proceedings.
Vol. 2995 of Lecture Notes in Computer Science., (pp. 16–26). Springer-Verlag, Berlin, Heidelberg.

36. Wasserman, S., & Faust, K. (1994). Social network analysis : Methods and applications. Volume 8 of
Structural Analysis in the Social Sciences. Cambridge University Press.

37. Yolum, P., & Singh, M. P. (2004). Service graphs for building trust. In International conference on coop-
erative information systems (CoopIS). Vol. 3290 of Lecture Notes in Computer Science (pp. 509–525).

38. Yu, B., & Singh, M. P. (2002). An evidential model of distributed reputation management. In Proceedings of
first international joint conference on autonomous agents and multi-agent systems. Vol. 1. (pp. 294–301).
ACM Press.

39. Yu, B., & Singh, M. P. (2003). Searching social networks. In Proceedings of the second international joint
conference on autonomous agents and multiAgent systems (AAMAS) (pp. 65–72). ACM Press.

40. Zacharia, G., & Maes, P. (2000). Trust management through reputation mechanisms. Applied Artificial
Intelligence, 14(9), 881–908.

41. Zimmermann, P. R. (1995). The official PGP user’s guide. Cambridge, MA: MIT Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

