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Abstract
This paper presents an approach based on coopera-
tive self-organization for artificial systems, in order to
tackle openness and dynamics. In this work, coop-
eration is used as a local criterion enabling parts of
the system –the cooperative agents– to reorganize as
to autonomously modify their interactions and then the
global function. The difficulty in defining cooperation
and the means to reestablish a cooperative state within
a non cooperative system are underlined and analyzed.
Two cooperative agents’ behaviors are expounded, at
the boundary between altruism and selfishness. This
approach is also illustrated by modeling, from a lo-
cal viewpoint, a classical constraint satisfaction or op-
timization problems.

Keywords: Multi-Agent Systems, Self-organization,
Cooperation, Emergence, Local Decision.

1 Introduction
Defining automatic decision systems may become more
difficult since stakeholders are distributed –logically,
geographically or temporally– like in flood forecast,
timetable generation or molecule conformation [7].
Distributed and dynamic Constraint Satisfaction Prob-
lems (CSP) are classical formalisms to tackle such de-
cisional problems. But these classical approaches of-
ten lack efficiency and adaptivity when the environment
(the constraints modifier) is open and dynamic. In this
paper, MAS are used to model and solve CSP by using
cooperative self-organization notion which is inspired
from social and biological phenomena.
This work aims at providing local decision criteria to

distributely –in the sense that knowledge is distributed
among agents– solve or optimize constraint-based prob-
lems. These criteria are twofolds. Firstly, a criterion
must be defined to locally decide which agent must act
to solve local problems. Secondly, another local crite-

rion must be defined for an agent to decide which action
to perform to reach the global optimum. In the approach
presented in this paper, these criteria are influenced and
led by the cooperation notion. The first criterion will
consider the agents which is in the less cooperative sit-
uation. The second one will consider the action which
is the most cooperative one by measuring the impact of
actions on the neighbors.
This approach is firstly introduced by reformulating

the distributed decisional problems into CSP and then
into an organization oriented multi-agent paradigm in
section 2. To illustrate this approach the N queens prob-
lem is modeled in section 4 and results are shown in
section 5. Later, in section 6, the potential of this model
is discussed by generalizing it to other problems, and in
section 7, it is compared to existing approaches, before
concluding in section 8.

2 Constraints and Multi-Agent
Systems

Classical constraint-based decisional problems can be
expressed by using the CSP formalism. A CSP is a
triplet 〈X,D,C〉 such as X = {x1, . . . , xn} is the set of
variables to instantiate. D = {D1, . . . ,Dm} is the set
of domains. Each variable xi is related to a domain of
value. C = {c1, . . . , ck} is the set of constraints, which
are relations between some variables from X that con-
strain the values the variables can be simultaneously
instantiated to. Therefore, making a decision consists
in finding a solution, i.e. a complete and consistent
affectation of X. In distributed constraint-based deci-
sional problems (DCSP), distribution can affect either
variables or constraints. Most approaches consider the
first kind of distribution by defining a function φ (also
defined by a predicate belongs) that bounds variables
to stakeholders (agents for example): φ(ci) = j (or
belongs(ci, j)) means that the constraint ci belongs to
stakeholder j [21].
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As in a dynamic and complex environment every con-
straint cannot be completely satisfied, distributed CSP
are often tackled as an optimization problem. This
formulation is called a distributed constraint optimiza-
tion problem (DCOP). Finding an optimized solution is
equivalent to finding a solution in which the sum of all
the non satisfied weighted constraints is minimal. The
two major and complete algorithms to solve such opti-
mization problems are Adopt and OptAPO [16, 13]. But
all problems cannot be viewed as in an utilitary point of
view, and optimization functions can be more complex
than a sum. For example, in frequency assignment prob-
lems, cost function is a weighted sum considering, hard
constraints and multiple levels of soft constraints, which
can be viewed as a leximin criterion [6]. Other compo-
sitions, for multi-criterion optimization can also be de-
fined. Moreover, complete algorithms often remains not
efficient to solve large problems. Thus, local research
based and/or uncomplete algorithms can be considered
as in ERA [11].

2.1 Multi-Agent-Based Viewpoint
Agentifying CSP implies that constraints are owned by
agents and the environment is the variable possibility
space, i.e. a n-dimension grid –the cartesian product of
all domains ofD– composed of cells at the intersections
of all the domains. Agents, as constraints owners, have
to explore this grid to find a location, i.e. an affectation
of variables verifying every agents’ constraints. There-
fore, the main goal of an agent is to book some cells of
the grid by moving from cell to cell. The limited per-
ceptions (some cells, and not all the grid) of an agent
means its satisfaction is only locally determined. More-
over, the situatedness of an agent implies it can occupy
only one cell at a given time; but a cell can contain sev-
eral agents. We distinguish a cell that is occupied, from
the cells that are reserved. Finally, the solution is ob-
tained by running the multi-agent system, i.e. running
concurrently the agents in the grid in order to find a cor-
rect location. These characteristics allow changing the
agents (updating, removing, adding) or the constraints.
The environment can also change by adding dimensions
or cells at runtime.

2.2 Organizational Viewpoint
Now, after the agentification of CSP, the distributed de-
cision making problem can be reformulated by using
an important agent-based notion: the organization. An
organization is a description of all the inter-agent rela-
tions. In the presented approach, these relations are not
the relations defined by the constraints that are shared
between several agents, but the spatial environmental

relations. In fact, since agents only perceive a limited
number of cells, their interactions are only defined by
its position at a given time.
Then, the distributed decision problem becomes find-

ing an adequate organization, i.e. a positioning of all
agents that satisfies every agent’s constraints. The main
problem of the distributed approach of MAS is that
since agents only have limited perceptions and knowl-
edge, and there is no global controller, agents cannot
locally detect the minimum level of constraint cost (the
sum of all non satisfied constraints, for example) and
cannot use it during their search process, contrary to
local search methods like simulated annealing [9] or
tabu search [8], which consider the global cost level to
choose the next state to explore.
Since a MAS is here considered as a dynamic system,

it can investigate several organizations before reaching
a solution. Considering the autonomy of agents, there
is no controller to force the reorganization. Agents
move in the grid as a consequence of internal and lo-
cal decisions. Therefore, designers must provide micro-
level capabilities to change local interactions and then
to change the global organization of the whole system.
The main problem of self-organization is to define the
trigger of reorganization. In Kohonen’s maps, the orga-
nization is represented by weights affected to each neu-
ron and its neighbors. Neurons change their weights
in terms of a given DOG function (Difference of Gaus-
sians) [10]. In artificial ant nests, ants stochastically
react to attraction of pheromonæ, ressources and their
nest position [5]. Similarly, self-organization can be de-
fined by only providing local capabilities, as the DOG
function or the stochastic rules of ant algorithms. This
criterion must be as generic as possible.

3 Cooperative Self-organization
In order to provide similar behaviors to agents having
to solve a CSP, this paper proposes to use the social
cooperation notion, as in [2]. Here, cooperation is not
only the tasks or resources sharing but is mainly a be-
havioral guideline to design agents. Cooperation can
also becomes a local criterion to self-organize once it is
viewed in a proscriptive manner: agents have to reorga-
nize when they are no more cooperative.

3.1 Cooperation
From social definitions, cooperation is the happy
medium (or the equilibrium) between altruism and self-
ishness (see figure 1). Altruism characterizes enti-
ties that prefer helping others to reach their goals than
achieving their own goals, contrary to selfish ones that
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Figure 1: Cooperation: the happy medium between al-
truism and selfishness.

prefer reaching their own goals. Therefore, cooperative
agents must try to satisfy their goals and the other ones’
goals as equally as possible. As it may become difficult
to precisely define cooperation, it is also possible to find
the limit of cooperative behaviors, less altruistic as pos-
sible and less selfish as possible. Another definition of
cooperation is found in natural systems, in which it is
often synonymous of symbiotic relations between two
or more entities [15].
Considering agents, cooperation is defined by three

metarules –which must be instantiated to particular
problems– in terms of each phase of a "perceive-decide-
act" lifecycle:

Definition 1 An agent is cooperative if it verifies the
following conditions:

• cper: perceived signals are understood without am-
biguity;

• cdec: received information is useful for the agent’s
reasoning;

• cact: reasoning leads to useful actions toward other
agents and the environment.

The first metarule (cper) concerns agents able to in-
terpret the richness of signals coming from the envi-
ronment and requiring shape recognition, for example.
To be as cooperative as possible, an agent must know
and learn interaction languages, if necessary. The sec-
ond metarule (cdec) concerns all the kinds of agents, as
soon as they have decisional capabilities. This implies
that cooperative agents must be able to produce rea-
sonings from their skills (knowledge about their tasks),
their representations (knowledge about their environ-
ment) and their aptitudes (rules from which an agent de-
duce new facts) [1]. The last metarule (cact) is the most
known and used in MAS. It requires measuring the im-
pact of an action on the social or physical environment,
by defining a cooperation measure, for example, as in
section 4.
Non cooperation is simply the exact opposite:

(¬cper ∨ ¬cdec ∨ ¬cact). Such situations are called non
cooperative situations (or NCS) and are the trigger to
reorganize. To sum up, cooperation is a local criterion
that enables agents to reorganize when the system is

not adequate –i.e. is not in cooperative interaction with
the environment. From a global point of view, cooper-
ation can be considered as a meta-heuristic to explore
the possibility space by cutting branches leading to non
cooperative situations. But the main problem lies in the
high level definition of cooperation. Even if Camps et al
identify several kinds of NCS, they do not propose a low
level generic model [2]. Therefore, that way to instanti-
ate these metarules is illustrated with classical problems
in the next section.

3.2 Implementing Cooperation
Cooperative behavior can be specified as exceptions to
repair NCS. Such an idea has been more developed
by Bernon et al [1]. The main purpose of cooperative
agent design is to equip agents with a nominal behavior
and goals, and then to add non cooperative situations
processing capabilities as exceptions in object-oriented
programming –but at a higher level. Another algorithm
has also been specified by Capera et al to express the
different kinds of NCS an agent may detect [3]. In this
paper –since examples are quite simple– the main idea
is to consider an agent as an autonomous object follow-
ing a classical "perceive-decide-act" cycle. This cycle
can be interrupted when non cooperative situations are
locally detected by the agent. Therefore, defining the
agents’ behavior is equivalent to:

1. specifying a nominal behavior by attributing goals,
skills, capabilities, as said in the ADELFEmethod-
ology which is devoted to AMAS design [18].

2. specifying condition-action pairs describing coop-
eration exceptions. Actions must be as cooperative
as possible –at the happy medium between altru-
ism and selfishness (see section 4.2).

4 Case Study: the N Queens Prob-
lem

This paper aims at showing an multi-agent modeling of
CSP by using a cooperative self-organization approach.
Therefore, to illustrate the model, a classical example is
developed: the N queens problem, presented in section
1. Here, the problem is a satisfaction problem with no
soft constraints.

4.1 Queen Nominal Behavior
As said in section 3.2, the nominal behavior derives
from local goals, skills and capabilities. A queen-agent
(qi ∈ A) can perceive all attackable cells (pCells(qi))
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and the cell it occupies (cell(qi)). Concerning actions,
a queen can move on a perceived cell1 (moveTo(c j)),
reserve (or mark) the cells to inform other queens and
identify conflicts (reserve(c j) or reserve({c j, . . . , ck})),
and simply rest on the current cell (rest). The mark-
ers affect the common environment –the grid– and not
the MAS which is composed of distributed autonomous
queens. These marks are deleted once the agent moves.
To decide which next cell to occupy, queens must be
able to perceive other queens (pAgents(qi)2). Moreover,
when reserving a cell, a queen puts extra-data about the
less conflictual cell it perceives (see section 4.3), and
therefore a queen can know the number of queens which
perceive a given cell (cost(c j) or cost(qi)3) and their
constrainedness degree.
During its lifetime, a nominal queen follows the be-

havior presented in the algorithm 1. This algorithm rep-
resents a nominal behavior which only leads the queen
to a local minimum without taking care of other queens.
In order to avoid local minimum resting, this behavior
must be enriched by cooperation rules.

4.2 Cooperative Behavior

As previously said, cooperative self-organization rules
to avoid NCS are specified as exceptions. The condi-
tion guards are instantiations of the metarules presented
in section 3.1. The actions to repair NCS must be cho-
sen within the actions agents can perform as coopera-
tively as possible. This may imply defining a coopera-
tion measure to sort multiple actions. In the N queens
problem, considering the given perceptions and actions,
two NCS can be identified:

• concurrency (¬cact): two queens are located on the
same cell;

• conflict (¬cact): two queens can respectively attack
themselves.

Since queens cannot directly communicate by using
complex semantics in the present case, there is no cper
case. In the same manner, queens can always find at
least one action to perform, since they can rest4; there-
fore there is no cdec case. The two identified NCS are
different instantiations of the cact rule. Actions to solve
these NCS are the following:

1Even if another queen occupies the cell.
2q j ∈ pAgents(qi) ≡ (∃k((ck ∈ pCells(qi)) ∧ (ck = cell(q j))))
3cost(qi) ≡ (cost(c j)|(c j = cell(qi)))
4which is, finally, their absolute goal

Name: Concurrency (for queen qi)

Condition:
∃ j(( j ! i) ∧ (cell(qi) = cell(qj)))

Actions: moveTo(mostCooperativeCell(qi))

This previous NCS specification is quite simple: if
two queens are located on the same cell, the first to de-
tect this situation moves to the less conflictual (see sec-
tion 4.3), i.e. mostCooperativeCell, cell it perceives.

Name: Conflict (for queen qi)

Condition: ∃ j(( j ! i)∧ (qj ∈ pAgents(qi)))

Actions:

//less-altruistic-as-possible
let q j = lessConstrainedAgent(pAgents(qi));
if ((qi = q j) ∨ (cost(ci) > cost(q j))
then rest
else moveTo(mostCooperativeCell(qi))

//less-selfish-as-possible
let q j = lessConstrainedAgent(pAgents(qi));
if ((qi = q j) ∨ (cost(ci) < cost(q j))
then rest
else moveTo(mostCooperativeCell(qi))

To solve this NCS, two different actions can be iden-
tified. The first one is called less-altruistic-as-possible
behavior and depends on the other agents. Here, agents
only act if they are less constrained than their neighbors
(current perceived agents). In other words, if an agent
is more constrained than another one, it will wait until
the other moves. As the other agent respects the same
rules, it will detect this situation and then will move.
The second possible action is performed if an agent

detects is more constrained than its neighborhood.
Here, agents are cooperative because they are less-
selfish-as-possible.
In the two cases, agents must all respect the same co-

operation rules, and if moving is necessary, they will
move to the less conflictual cell (mostCooperativeCell).

4.3 Cooperation Measure
In order to evaluate the most cooperative cell to ex-
plore, agents must be able to locally measure the coop-
erativeness degree of move actions. This measure must
take into account the constrainedness degree of the other
agents. The idea is to limit the impact of a movement by
analyzing the worst constrained agents that see a given
cell, so as to choose the cell that does not increase the
cost for a queen.
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Algorithm 1 – Nominal behavior for a nominal agent (qi)
while alive do
updatePerceptions(); //removing previous marks and adding new ones
if (cost(qi) == 0) then //not occupying a conflictual cell
rest()
else
moveTo(minConflictCell(qi));
reserve(pCells(qi))
endif

done

Definition 2 Let Pqi the set of cells perceived by agent
qi:

Pqi ≡ pCells(qi) ∪ {cell(qi)}
Definition 3 Let the cooperation measure coop :
{c1, . . . , cn}→ N:

coop(ci) ≡ max
q∈{q′ |ci∈Pq′ }

cost(q)

Definition 4 Let Cqimin the set of cells with a minimum
cost from the point of view of an agent qi:

Cqimin ≡ {c ∈ Pqi |!c′ ! c, cost(c′) < cost(c)}
Definition 5 Let Cqicoop the set of most cooperative cells
from the point of view of an agent qi:

Cqicoop ≡ {c ∈ Cqimin|!c′ ∈ C
qi
min, c

′ ! c, coop(c′) ≤ coop(c)}
Therefore, the set of the most cooperative cells to

choose is the set of cells with a minimum cost and a
minimum impact for the other agents. A first remark
concerns the contents of Cqicoop, which cannot be empty:
it contains at least the current cell (see definition 2). A
second remark can be done on the data an agent needs
for evaluating a cell: the number of markers on the cell,
and the cost of each agent having marked the cell (see
definitions 3 and 4). Therefore, a marker for a cell only
contains the current cost of its owner.
Cooperative agents are then able to determine the set

of cooperative cells to move to. But, how can the next
cell be chosen without leading to a local minimum?
Here is the main decisional challenge for a cooperative
agent. By now, Capera et al do not give any guidance
[3]. Therefore, any kind of method can be considered:
random, tabu, etc. In the next experimentations, good
results are obtained with a very simple selection crite-
rion (see section 5.1).

5 Experimentations
In this section, several results are obtained by sim-
ulating two different cooperative agents’ behaviors:
less-altruistic-as-possible behavior and less-selfish-as-
possible behavior, which have been defined in section
4.2

Figure 2: Solving trace for 4 queens, with a less-
altruistic-as-possible cooperative behavior, in 4 steps
and 6 moves.

5.1 Experimental Setup
The two main choices before encoding agents’ behav-
iors and launching the solving process are:

• the initial positioning: all the agents are initially
positioned at the left border of the grid (see fig.2);

• the selection function (mostCooperativeCell(qi))
for choosing the most cooperative cell: since im-
plementation implies to choose an order in per-
ceived cells (from closest to farest, from east to
north east, clockwise), this order is used to choose
the next cell. Moreover, a limited memory of one
cell is added to avoid the previous visited cell (very
simple tabu implementation).

5.2 Simple Trace with 4 Queens
At the beginning of the solving process, all the agents
are positioned on the left side and the environment is
not marked. A number in a cell represents the number
of markers, i.e. the number of agents seeing the cell.

5.2.1 Less-altruistic-as-possible behavior.

The figure 2 shows a trace for the 4-queens problem
solving. The system finds a collective solution in 4 steps
(during which every agent acts), which are delimited
by dotted rectangles. Only 6 moves are performed to
reach a solution. Some agents do not act during some
steps, since they are in cooperative situations, and are
not situated on non conflictual cells. Contrary to clas-
sical CSP solving methods with global knowledge, the
agents move to different lines, as shown in the figure
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Figure 3: Solving trace for 4 queens, with a less-
selfish-as-possible cooperative behavior, in 8 steps and
19 moves.

Figure 4: Solving results for different sizes (from
50 to 1500) with less-altruistic-as-possible cooperative
agents.

when q3 moves to the position (1, 3). Even if it is not
a solution, it represents an intermediary stage to a more
adequate state.

5.2.2 Less-selfish-as-possible behavior.

Figure 3 shows the solving trace for a less-selfish-as-
possible cooperative behavior. The system reach a col-
lective solution in 8 steps (twice than less-selfish-as-
possible cooperative agents) and 19 moves. This is due
to the fact that agents prefer moving when they detect
NCS rather than resting until another one moves.

5.3 Results for Different Problem Sizes
5.3.1 Less-altruistic-as-possible behavior.

Figure 4 shows solving results for different sizes N
(from 50 to 1500) with less-altruistic-as-possible coop-
erative agents:

Figure 5: Image capture at step 1 of the solving process
for the 64 queens problem. Circles represent queens
(black for agents in cooperative state, grey for agent in
non cooperative state).

• the total number of moves (for all the agents) dur-
ing the solving linearly increases in terms of the
number of agents (O(4n/3)),

• the total solving process execution time (in sec-
onds) significantly increases in terms of the num-
ber of agents. This result shows the complexity of
the global algorithm, O(n2s): n agents perceiving
and analyzing at worst 4n cells during s steps,

• the number of steps (s), during which every agent
acts, seems not to depend on the size of the prob-
lem. Informally, it might depend on the coopera-
tion definition. Since this value is the link between
micro-level (the agents) and macro-level (the sys-
tem), it cannot be, by now, formally defined. But
experimentally, it is overestimated at O(n).

Therefore, the global complexity of the solving pro-
cess can be experimentally overestimated at O(n3),
which is a common complexity to solve this prob-
lem with classical informed heuristics like hill-climbing
[20], whereas the proposed algorithm is not informed.
Moreover, at the beginning of the solving process,
agents react as in a classical forward checking method.
This is shown by the positioning of the agents in figure 5
with the two diagonal lines which are obtained by using
classical forward checking.
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Figure 6: Solving results for different sizes (from 50 to
1500) with less-selfish-as-possible cooperative agents.

5.3.2 Less-selfish-as-possible behavior.

Figure 6 shows results for different sizes n of problems,
with less-selfish-as-possible cooperative agents. These
results are equivalent –steps, solving time and moves–
to those previously expounded, for less-altruistic-as-
possible cooperative agents –contrary to the results ob-
tained for a 4 queens problem, for which moves and
steps were higher.
It is then interesting to remark that those two pro-

posed behaviors tend to a similar cooperative behavior,
when the size increases, at the boundary of altruism and
selfishness.

5.4 Adaptation and Robustness
Section 1 mainly focuses on the need to provide so-
lutions to dynamic problems which require adaptivity
and robustness. To show how relevant the presented
approach is concerning dynamics, a set of experiments
has been performed with the same experimental setup
than before, but with 512 agents and random distur-
bances: each 10 steps, 10% of randomly chosen agents
are moved to random positions in the grid.
The figure 7 shows the global cost (

∑
q∈A cost(q)) in

terms of steps. The collective, after every disturbance,
quickly repairs the organization and find a solution: the
system is adaptive and robust to environmental distur-
bances. Moreover, these results show that a solution is
found with a random initial agent positioning. Finally,
the first steps of the solving process (see fig.2) are also
a particular case of perturbation since the constraint de-
grees, associated to cells, are erroneous. Experimen-
tations, with less-selfish-as-possible cooperative agents
and the same setup, shows similar results.

Figure 7: Global cost in terms of solving steps for 512
less-altruistic-as-possible cooperative agents with ran-
dom disturbances.

By using AMAS terminology, the result of the solv-
ing process is a spatial organization of the system. Since
this organization is found without any global knowledge
(positions, constrainedness degrees, etc.), it is a self-
organizing process, within which cooperation guaran-
tees the evolution toward a collective solution.

6 Generalizing to Other CSP
Previous sections presented the cooperative self-
organization based approach for a precise example, the
N queens problem. This section discusses about gen-
eralizing this approach to other CSP. As the presented
algorithm are quite simple, and do not provide any guid-
ance on selection criteria, it remains generic. Neverthe-
less, the cooperation criterion, and the perceived cells it
requires, may become more difficult to define and/or to
implement to tackle more complex problems, with more
than 2 domains, for example.

6.1 The N2/2 Knights Problem
In a first stage, it is possible to solve problems very simi-
lar to the N queens problem; the N2/2 knights problem,
for example. This toy-problem consists in positioning
knights rather than queens. Contrary to the N queens
problem, a solution is known for all size of problem:
positioning all the knights on all the white cells (or all
the black ones). Nevertheless, interesting results are ob-
tained, with only minimum changes in algorithms. The
only modification concerns the perceived and attackable
cells.
Table 1 shows results for different size of N2/2

knights problems with less-altruistic-as-possible coop-
erative agents. The system reaches a collective so-
lution, whereas the algorithm has not been modified.
Moreover, the complexity increases since the number
of agents is proportional to N2. These results are posi-
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Figure 8: Image capture at step 4 of a solving process
for the 322/2 knights problem.

Size Knights Steps Moves Total time (ms)
4 8 1 6 32
8 32 7 74 62
16 128 11 451 235
32 512 129 16535 9483
64 2048 402 101168 172901
128 8192 277 124341 772483

Table 1: Solving results for different size of N2/2
knights problems (N from 4 to 128) with a less-
altruistic-as-possible cooperative behavior.

tive in the sense that generalizing to other CSP with two
domains is quite immediate. Figure 8 shows the state
of the system at step 4 of the solving process for the 32
knights problem. It underlines the range of local inter-
actions between agents that forms three kinds of areas:

• areas with all knights on black cells with no con-
flicts,

• areas with all knights on white cells with no con-
flicts,

• and areas with conflicts to solve.

6.2 University Timetabling Problem
We also have been interested in a problem with more
than two domains: university timetabling. Here, agents

Agents Steps Time (s)
2 54.25 82.36
4 58.8 88.9
8 80.2 123.38
16 69.65 113.1
32 71.25 124.15
64 74.65 145.02
128 48.95 159.75

Table 2: Solving results for different size of time tabling
problems.

(teachers and student groups) must cooperate to find
partners, rooms, timeslots and days. For this problem, a
prototype has been developed to illustrate the ADELFE
methodology [18]. This application requires to equip
agents with limited memory of the other agents and
the previous occupied cells [17]. Here agents repre-
sent courses of teachers or student groups for specific
teachings. Agents must find partners and reservation
(timeslot and room) that fit personal constraints. Table 2
shows results for different size of problems. The bench-
mark5 it is based on has been proposed by the group
ASA (Approach by Societies of Agents) of the AFIA
(French Association for Artificial Intelligence). Since
the choice of the next cell to explore is here partially
random, the results are averaged for 10 solvings.
Table 2 shows the evolution of solving time as a con-

sequence of the growing number of BAs in the system.
For these experiments, the same exploration space size
is kept by increasing the number of cells in the grid pro-
portionally to the number of agents. Only availability
constraints are owned by teachers: one time slot per
day is forbidden. Once the maximum reached (aver-
age 8 BAs), the number of cycles (during which every
agent acts one time) decreases as the number of BAs in-
creases. The time that varies the less is the real time.
Therefore, it is the most relevant indicator of the solv-
ing time evolution. Beyond 32 BAs, it has a logarithmic
evolution. More BAs the system has more efficient the
solving is – if a solution exists.
We also shown positive results on adaptation and

robustness to environmental disturbance such as con-
straint modifications or agent removals as for the N
queens problem with random disturbances. The sys-
tem is able to quickly repair non satisfying states and
to reach by local decision global optimum when no so-
lution exists [17].

5http://www-poleia.lip6.fr/˜guessoum/asa/BenchEmploi.pdf
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7 Discussion
7.1 Distribution
A first discussion point concerns the physical distribu-
tion. The presented application does not really show the
potential of the approach. In fact, for all the presented
solvings for N queens problem, the agents always act in
the same order. But, as previously shown, the solving
process also works with random disturbances. Some
other solving –time tabling problems– have been exe-
cuted with a random scheduler and showed similar re-
sults. This is the first step to real distribution, even if the
cell reservation remains in a critical section.

7.2 Other Approaches
Concerning distributed CSP/COP solvers, ABT and
AWCS where the first relevant algorithms [21]. They
are complete and a total order on the set of agents is
an important element that avoid loops, but it adds some
disequilibrium within the agents’ roles and the capa-
bility for the system to be openned. For an optimiza-
tion problem, the nogoods –which consist in memoriz-
ing bad past solutions– must be kept in memory, which
can be costly. Another algorithm is APO, which lies on
mediation to solve local constraint problems, but it re-
quires more messages during the solving process [14].
Finally, the algorithm Adopt, for DCOP solvings, uses
on thresholds to reduce the number of memorized ex-
plored partial solutions, but still requires an order within
agents.
Concerning dynamic distributed CSP/COP solvers,

DynDBA is one of the more relevant and efficient [12].
This algorithm is not complete and functions in a syn-
chronous way. But, here, the approach is more local
in the sense that agents only reason on neighbors-by-
constraints. Moreover, the interesting notion of quasi-
minimum allows reorganization by using weighted con-
straints.
The other family of CSP solving methods, which are

influenced by optimization and metaheuristics, consid-
ers the problem in a local6 viewpoint. For example, the
tabu search considers states (a given affectation of val-
ues to variables) and their neighborhood, i.e. the states
that are directly accessible by applying an action (a vari-
able affectation). The idea is to explore the state which
optimizes the system function. But this search is re-
stricted by avoiding past states (the tabus) [8]. Another
example concerns the simulated annealing which con-
sists in favoring decreasing, in a random exploration of
the space, but without completely avoiding increasing

6But this local notion is related to the search space and not to the
parts composing the system.

by using stochastic structures [9]. Another interesting
multi-agent oriented approach has been used in ERA,
which assign stochastic behavior to agents to avoid local
minima [11]. But agent are still led by conflict evalua-
tion to solve CSPs. Nevertheless, these methods remain
global, in the sense that they consider the system as a
whole and calculate the global system energy (or func-
tion) to explore the neighborhood.
Finally, one promising method to tackle the CSP in

a really local viewpoint is the ant approach which con-
sider the solving process only by providing behaviors to
the parts of the system –the ants [5]. By using mecha-
nisms such as stigmergy and by simulating the collec-
tive, the global system is able to reach an optimized
state. Our approach is quite close to ant algorithms or
to the approach of Rogers et al [19], but does not need
stochastic behaviors: the reaction to markers is deter-
ministic. As for Rogers et al, using only agents’ local
properties (like power level for physical sensors), the
behaviors provided enable adding or removing agents
with minimal global disturbances.

7.3 Evaluation Criteria of an Agent Diffi-
culty

The cooperative solving process needs the knowledge
of constrainedness degree of an agent and its neigh-
bors. This knowledge is easy to obtain for the queens
or knights problems, because it depends directly on
the number of neighbors able to attack a given agent.
Unfortunately, this is not so easy to know for the
timetabling because it is related with the number of con-
straints an agent must satisfy (size of a room, times-
lot, type of course, etc.). Thus, there is no mean to
evaluate with a simple formula this difficulty which de-
pends greatly on environmental characteristics not a pri-
ori knowledgeable. The only way to evaluate the con-
strainedness degree in that cases is to learn in real time
(during the process solving itself) how many time an
agent spent to satisfy its own set of constraints. This is
the way used by the timetabling agents. Consequently
the priority between agents could be dynamically modi-
fied during time and some values previously assigned to
variables could be further reconsidered.

7.4 Local optima
The cooperative process solving seems sometimes sim-
ilar to a gradient descent approach. In this case the gra-
dient descent is the measure of the non cooperative sit-
uations an agent encounter. Then it must act in order
to reduce this number. For example, in the N queens
problems, the global sum of non cooperative situations
generally decreases regularly during time. Nevertheless
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it is not sufficient to obtain a global solution, because
some agents remains in a local optimum. But coopera-
tive approach allows to increase locally the number of
non cooperative situations for two reasons:

• firstly an agent cannot be inactive when there exist
non cooperative situations in its neighborhood: a
queen must move even it was in a local minima,

• secondly an agent cannot act to obtain a local simi-
lar situation from a cooperative analysis viewpoint.
A queen is in a similar situation when it replaces a
local minima with a queen by the same local min-
ima with another queen.

Thus the local minima must increase allowing to
search a collective solution in another problem subspace
without any local knowledge on this. This is similar to
a random behavior in other algorithms, with the differ-
ence that the perturbation obtained in the cooperative
process solving is guided by the cooperative algorithm
itself.

7.5 Emergence
Queens and knights problems are satisfaction ones, be-
cause the global goal is to find a collective solution sat-
isfying all the constraints of each variables. We can
easily understand that when all agents have their own
constraints satisfied the global goal is achieved. Never-
theless, there is no way to assert that a local action re-
duces the distance between the current global state and
the global goal. This is the main reason to search the-
ories allowing this converging process where the local
behavior is not directly dependent of the global state.
Theories of emergence do not need objective function
(like in evolutionnary algorithm) which are dependent
on the global problem. According to the computational
definition of emergence, cooperative self-organization
can be considered as a good candidate for an emergence
theory [4].
Timetabling is an optimization problem where a so-

lution can be found only if some constaints are relaxed
for an overconstrained problem. As underlined in this
article, cooperative self-organization allows also to find
good solution where agents relax locally some of their
constraints in order to obtain satisfiable solution to their
neighbors. Taking into account its local evaluation cri-
teria a cooperative agent gives an evaluation of its cur-
rent solution quality, which could be compared to the
quality measure of its neighbors. Thus, without global
evaluation function, the system find solutions which are
an equilibrium between the constraints of each agents.
This is also an emergent result of the cooperative self-
organization.

8 Conclusion
This paper has presented a cooperative self-organization
based approach to tackle distributed and dynamic deci-
sion problems, and more precisely, CSP. These prob-
lems have been reformulated by using adaptive multi-
agent terminology. Here cooperation is viewed as the
boundary between altruism and selfishness. When co-
operation is too difficult to be precisely defined, the
presented approach proposes to analyze the behaviors
which tends to cooperation; from the altruist and the
selfish viewpoints.
To illustrate this work, different example of CSP have

been implemented and commented. These implementa-
tions show promising results on adaptivity and robust-
ness when the system is subject to environmental dis-
turbances. They also raise some discussion points, such
as the generalization of the proposed algorithm or the
need of memory, when the agents require more com-
plex decision criteria to find an adequate organization.
These problematics cross the domains of local search
and metaheuristics to implement optimized search pro-
cesses. Cooperation seems a relevant meta-level crite-
rion, but requires more studies about memory charge,
complexity and halting. This last point –even if experi-
mentally obtained– may become a good panel to coop-
erative self-organizing systems and represents the main
perspective.
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