
Social-Compliance in Trust Management within Virtual
Communities

Reda Yaich, Olivier Boissier, Gauthier Picard, and Philippe Jaillon

LSTI - Henri Fayol Institute
ENS Mines Saint-Étienne, France
{firstname.name}@emse.fr

Abstract. Virtual Communities are open socio-technical structures wherein au-
tonomous entities (i.e. agents) with common interests join together to mutually
satisfy their goals. The success of these communities relies on collaboration and
resource sharing principals, making trust a priority for each member. Such com-
munities need a more flexible trust model wherein both individual (i.e. user-
centred) and collective (i.e. community-centred) trust requirements are consid-
ered in the decision making-process.
This paper reports our on-going efforts in that perspective and presents a multi-
agent-based Adaptive and Socially-Compliant Trust Management System (ASC-
TMS). Policies are used, in the system, to specify individual and collective trust
requirements, while meta-policies enable agents to dynamically adapt their poli-
cies. The ASC-TMS allows agent to make socially-compliant trust decisions
through automatic combination of individual and collective policies.

Keywords: Multi-agent Systems, Trust, Policies, Virtual Communities

1 Introduction

Virtual communities (VCs) are known to be dynamic, uncertain and risky environments
wherein autonomous entities (i.e. agents) with common objectives join together to mu-
tually satisfy their goals. The success of these communities relies on collaboration and
resource sharing, making trust a critical issue for each member [11]. Policies are con-
sidered as a viable solution to capture and specify trust requirements [6,7,19,26]. They
constitute a flexible way to express both the conditions under which trust decisions have
to be made, and the factors on which these decisions rely.

One of the main issues when specifying and enforcing trust policies – within open,
dynamic and ever-evolving environments such as VC – is the ability of these policies
to handle unforeseen situations. Such adaptation capability is essential to overcome
unpredictable events, otherwise, running policies could become rapidly irrelevant or
inefficient [9, 14]. Another important issue, when deploying trust policies in virtual
communities, is the capability of trust management systems to combine individual and
collective policies during the trust assessment. Seamless integration of aggregated trust

2 Social-Compliance in Trust Management within Virtual Communities

requirements along with individual ones has been recognized as an important factor of
social integration in the social influence theory [4, 12, 21].

Both issues raised above make trust decisions within VCs complex and motivate the
need for more flexible and better adaptive trust models. To that aim, we focus in this
paper on endowing Trust Management Systems (TMSs) with such capabilities based
on a rich, adaptive and socially-enabled trust model. By rich we mean that trust is built
upon a wide – and unbound – range of trust factors. By adaptive we mean that policies
are constantly tailored and can evolve over time. By socially-enabled we mean that trust
decisions at the individual level are made by taking into account collective requirements
of the community to which the agent belongs.

We propose an agent-based Adaptive and Socially-Compliant Trust Management
System (ASC-TMS) wherein policies are considered as concrete implementations of
trust requirements, meta-policies are used to automatically adapt individual policies,
and where collective policies are combined with individual ones to help agents mak-
ing socially-compliant trust decisions (i.e. in accordance with the requirements of their
communities). To implement and illustrate desired aspects of the system, we used the
JaCaMo platform [15], a new multi-agent oriented programming framework, which al-
lowed us to address the issues discussed earlier while preserving the generality of the
approach.

The rest of the paper proceeds as follows. In the next section we motivate our ap-
proach using an Innovation Community (IC) scenario wherein requirements for trust
management has been identified. In Section 3, we formally introduce the system model,
basic foundations and concepts our proposal is built on. In Section, 4 we outline the pro-
posed trust model and its related concepts. In Section, 5 we illustrate how trust policies
are specified, adapted, combined and evaluated. Finally, we briefly survey related works
and conclude with discussion and some perspectives in Section 6.

2 Requirements for Trust Management in Virtual Communities

In this section, we first analyse trust issues in the case study motivating our work. We
then use it to derive and argue a set of important features that should be addressed by
the trust management system that we propose.

2.1 Motivating Example

Open Innovation [5] is currently recognized as a new model that companies and organi-
zations are adopting to enhance innovation in their departments by harnessing external
ideas and stimulating creativity. Based on this concept, a number of commercial (e.g.
Hypios.com1) and free (e.g. W3C Community Group2) platforms have been proposed to
facilitate the innovation process through the creation of Innovation Communities (IC).
These platforms constitute a showcase for problems to which the community members
try to find a solution. Members can try to solve individually proposed problems, but in
most of the cases they join together and create dynamic communities wherein problems

1 http://www.hypios.com/
2 http://www.w3.org/community/about/#cg

Social-Compliance in Trust Management within Virtual Communities 3

are solved collaboratively. The success of these communities relies on full collaboration
and massive resource sharing, making trust a critical issue for each member.

Alice Bob

Trusted Members

University
LDAP

ID? Credentials?
Recommendation?

Member?
Expertise?
Level?

Other Members

Expertise?
Level?

Expert Members

Reputation?

Open Innovation Community

Fig. 1. Trust factors and information sources diversity within Innovation Communities.

Members of these communities like Alice and Bob have a variety of information
sources they can use to estimate partners’ trustworthiness. Each source represents a
factor for trust establishment and can be used to specify a requirement within a policy.
For example, in Figure 1, Alice can use four types of trust factors to evaluate Bob’s
trustworthiness within the community: (i) she can use recommendations of members
she trusts, (ii) she can compute Bob’s reputation based on the other members’ past
experiences with Bob, (iii) she can also ask confirmed members whether Bob is skilful
in certain disciplines and what is his expertise level, and finally, (iv) she can ask Bob
for credentials – he owns – to testify his identity, his skills or other properties. Then she
can check the validity of these credentials from the certification authority that issued
the credential (e.g. University). This example will be used throughout this article to
motivate and illustrate different aspects of our approach.

2.2 Desiderata

The study of the above IC example has led us to identify important requirements for
trust management, which are as follow.

Semantics. One of the characteristics of ICs is the great heterogeneity among its mem-
bers. The problem lies in the fact that trust is built upon statements (e.g. credentials and
reputations) that are manipulated by multiple parties, making semantic heterogeneity
an important concern for trust management in virtual communities. The descriptions of
trust factors must have a well-defined semantics [26], so that the policies specified based
on this factors and the information used to satisfy this policies can be understood by all.
For instance, Bob must have confidence that when he considers that the credentials he
owns satisfy Alice’s policy, Alice should make the same conclusion.

4 Social-Compliance in Trust Management within Virtual Communities

Subjectivity. The heterogeneity among the community members raises also the prob-
lem of trust subjectivity. For instance, in Figure 1, Alice and Bob may rely on different
trust factors when specifying the policy they use to protect a common resource. His-
torically, the majority of trust management models are built upon a controlled – and
limited– set of trust factors. Such limitation represents a lock for subjectivity and con-
straints the expressiveness of trust requirements. Moreover, due to the dynamic charac-
ter of ICs, some trust criteria can unpredictably become irrelevant. For instance, repu-
tation pertinence is very sensitive to collusion or selfishness treats. So the requirement
that we highlight here is the necessity for users to build their trust based on a rich
and extensible set of trust information. Our TMS should allow community members to
specify policies using various trust factors, characterizing the subjective nature of trust.

Adaptivity. ICs are open environments that members can spontaneously join and leave
and where resources are unpredictably created, updated and destroyed. In such settings,
future interactions are impossible to predict, making the specification of trust policies
hazardous and risky [14]. The question one should ask, in this context, is not ”how
efficient the policy I specified is?” but ”how adaptive, in response to an ever-evolving
environment, it could be?”. For example, the policy that Alice is using relies on reputa-
tion (and other trust factors as well). The more Alice is aware of collusion risks, the less
she will give importance to reputation factor in her final decision. Thus, her policies
need to be automatically adapted; otherwise, she could make inappropriate decisions.
So policies within virtual communities should not be specified ad vitam æternam3. The
traditional dogmatic vision of trust policies is neither possible nor desirable and should
even be proscribed.

Social-Awareness. Trust is closely tied to values, traditions, and norms of the soci-
ety. Many sociologists [4, 12, 21] demonstrated the impact of social influence on our
practices and attitudes. Trust practices are not an exception but, to the best of our
knowledge, no research initiative was conducted in that direction in terms of trust man-
agement. ”Why should an individual integrate collective requirements when making
trust-decisions?”. Principally for two reasons: (i) social exclusion and (ii) competitive
exclusion. Both effects arise when the decision of a member is too far apart from the
decision of the other members of his community. For instance, members of the com-
munity in Figure 1 co-regulate the access to resources they produced collaboratively. If
Bob does not comply with the requirements of his community (i.e. collective policies),
his behaviour will be considered as an antisocial deviant behaviour, and can expose
Bob to social exclusion. Also, ICs represent competitive environments where different
communities are competing in solving the same problem. In such situation, using a too
restrictive or a too permissive policy exposes agents to competitive exclusion. So, trust
decision made by an agent in its community based on its individual requirements should
be tempered by the integration of collective requirements.

3 Specified once and executed for ever!

Social-Compliance in Trust Management within Virtual Communities 5

3 Multi-Agent System Model for Trust Management

The system (cf. Fig. 2) is represented by a multi-agent system S. S is defined by
〈C,A,R,O,I,F ,T〉 where C is a set of communities c, A is a set of agents a, R is
a set of resources r, O is a set of operations o, I is a set of interactions ı, F is a set of
feedbacks e, and T is an ontology of trust factors in S.

Communities are dynamic social structures that agents from S can join to solve
specific problems in collaboration with other members of the community. Each com-
munity c ∈ C is represented by 〈εCc , Πc〉 where εCc is its unique identifier in S and Πc

is a set of collective policies that each member receives when he joins the community
(defining how these policies are built is outside the scope of this paper. However, we
consider this issue as an interesting perspective for this work). This collective policies
are used to ensure minimal trust conditions community members should ensure during
the interactions undertaken within the community. The social compliance of an agent
depends on whether his trust decisions are made in accordance with this set of collective
policies or not.

Agents are autonomous entities, able to perform operations on resources on behalf
of the platform users. Autonomous means that no agent has direct control over oper-
ations performed by another agent. ∀a ∈ A, a = 〈εAa , αa, βa, κa, ωa, ψa,TPa〉, where,
εAa is the agent’s unique identifier in S, αa is a set of credentials attesting its various
properties, βa ∈ 2C is the set of communities that a belongs to, κa ∈ 2O is the set of
operations that a can perform (i.e. capabilities), ωa ∈ 2R is the set of resources that a
controls, ψa ∈ 2A×F is a set of feedback the agent a maintains about other’s behaviour
after each interaction, and TPa is a set of trust patterns (cf. Section 4 and 5 for more
details about trust patterns). ∀tp ∈ TPa, tp includes individual policies (pi

a/pi
a ∈ πa),

associated meta-policies (M(pi
a)) and collective policies (pi

c/pi
c ∈ Πc and c ∈ βa).

Agent Private Resource Individual Policies Interaction ASC-TMS

Community Public Resource Collective Policies Controlled By

Fig. 2. Multi-Agent System Model for Trust Management

6 Social-Compliance in Trust Management within Virtual Communities

Example 1. Eurêka is the IC platform to which Alice, Bob and Charlie participate.
They joined together and created an innovation community Com2 where they commit
to find a solution for a specific problem (e.g ”reducing energy consumption”). Every
member participating in Eurêka is provided with an agent that assists him in his activ-
ities. Each agent relies on a dedicated Trust Management System when making trust-
based decisions. In the following, capital letter names refer to members (e.g. Alice)
while their assistant-agents’ names are in lowercase (i.e. alice).

Resources are artifacts in S on which operations can be performed. ∀r ∈ R, r is
represented by 〈εRr , τr, ςr〉 where: εRr is its unique identifier, (ii) τr represents its type
(τr ∈ τR / τR = {service, data, credential, ob ject}) and ςr qualifies its sensitivity, ςr ∈

[0, 5]. Each resource is either private or public. Public resources are passive artifacts
that can be manipulated by any agent within the community, while private resources
represent active artifacts that require a permission to be manipulated.

Example 2. The agent alice controls a service through which Alice, as a mathematician,
provides mathematics skills to her community members. alice has also a pair of public-
private key and a set of certificates, binding her key with Alice’s testified properties and
attributes like her name, her address and her qualifications. These keys and certificates
constitute the credentials she can use to establish trust with other members. During the
innovation process, Alice can take some notes about ideas she had and she can send and
receive private messages from other members. These are considered as data and are
handled by alice like other resources. Finally, alice controls all objects Alice is using in
her innovation activities such as scientific articles or applications binaries.

Interactions are message exchange sequences. Each message m ∈ ı (ı ∈ I) is de-
fined by 〈as, ar, τm, θ〉, where as, ar are respectively the sender and the receiver of the
message, τm ∈ {request, in f orm, reply} is the message’s performative type and θ its
content. As trust decisions are made with respect to requests, our focus here is on such
messages where the content θ is a pair 〈o, r〉 stating that an agent ar (called the re-
quester) is asking another agent ac (called the controller) the permission to perform an
operation o ∈ O on a private resource r ∈ R that ac controls. Each request is associated
to a type based on the (o, τR) pair. These types are then used to build trust patterns.

Permissions are made through reply messages where the content θ is of the form
allow(ar, o, r) stating that the controller ac accepted ar’s request. When the reply content
is a deny(ar, o, r) that means that the request was refused. Each permission is signed by
its issuer and is later considered as a credential that testifies the agent’s rights with
respect to resources’ manipulation. This permission can be revoked or out-dated and
becomes invalid, but for simplicity reasons we will not address such issues in this paper.

Example 3. alice’s mathematic service is a sensitive resource. So when bob tried to
use it he was asked a credential for that. In order to get that permission, he sent the re-
quest 〈bob, alice, request, 〈access,mathAlice〉〉 to alice. If bob credentials satisfy alice’s
policy, alice will issue the permission allow(bob, access,mathAlice). Otherwise, bob′s
request will be refused.

Social-Compliance in Trust Management within Virtual Communities 7

Trust
Factor

IndicatorsProofs
disjoint

is-a

Identity Authorization

Properties Recommendation

ReputationExperience

Skills Attributes

Membership

is-a

is-a is-a

is-a

is-a

is-a

is-a

is-a

is-a
is-a

Age Sexe

is-ais-a

Fig. 3. Fragment of the Trust Factors Ontology: white concepts are context-independent while
grey ones are context-dependent

The Trust Ontology T represent a semantic description of trust factors available
in S. ∀ fi ∈ T , fi is a concept defined by (τ fi , ∆ fi) where τ fi is the type of fi and ∆ fi its
domain (i.e. the set of values fi can take). Each trust factor describes agent’s charac-
terizing traits (e.g. identity or reputation) on which restrictions can be specified using
policies.

The first level root concept represents a generic trust factor type, it is further divided
into two sub-types proofs and indicators: proofs represent agent’s traits and properties
that must be testified using credentials, while indicators include any fact of belief that
are based on personal and pairs feedbacks (for more details see [28] and [27]).

Example 4 (proofs and indicators). Both alice, bob and charlie can issue permissions
to use a common document they are working on in Com2. So when alice issues a per-
mission for the agent dave, this credential is considered as a proof of trust for bob and
charlie as they know that it means that alice trusts dave. But the fact that Carol is a good
member within the Eurêka platform (e.g. with high reputation) can not be considered
as an evidence. Yet, it can be considered as an indicator of trustworthiness.

4 An Adaptive and Socially-Compliant Trust Model

Based on concepts defined in the previous section and requirements formulated in Sec-
tion 2, we built an Adaptive and Socially Compliant Trust Model (cf. Fig. 4). The pro-
posed model is implemented in each agent as the Adaptive and Socially-Compliant
TMS (ASC-TMS). We first briefly describe how agents use this model to build and
manage trust, then we review each of the basic elements used in the model.

Each agent a is provided with a set of individual policies (πa) and associated meta-
policies (M(pa)). These policies and meta-policies are sorted and stored into trust pat-
terns (TPa). When the agent a joins a community c, he retrieves the set of collective
policies (Πc) that he dispatches into the appropriate trust patterns. Once the agent a

8 Social-Compliance in Trust Management within Virtual Communities

receives a request, he identifies its type t based on the operation to be performed and
the type of resource. Then he selects and activates the appropriate trust pattern that
contains the individual policy, the meta-policies and the collective policy dedicated to
that type of request. The individual policy is first adapted to the running context using
associated meta-policies, then it is combined with the collective one (cf. Section 5.3).
Finally the generated policy is evaluated with respect to trust information and a trust
level is computed.

Adaptation

Trust
Patterns

Combination

Evaluation

Selection

Personal Preferences

Business Context

Request

Trust Criteria

Credentials / Beliefs

Trust Evaluation

Business Layer Trust Management Layer

Trust
Factors

Ontology

Specification

Context

Fig. 4. The Adaptive and Socially-Compliant Trust Management System Model

Now we describe more in detail each of the elements used in the above descrip-
tion. Trust Patterns (TPa) are used to manipulate individual policies, meta-policies
and collective policies with respect to request types. Indeed, as presented in Section 4,
requests were classified into types based on the resource’s type and the operation to
be performed. Each type is associated to a trust pattern that integrates a generic pol-
icy, adaptation meta-policies used to adapt it and the collective policy used within the
community.

Trust patterns have been introduced in our model to overcome limitations we faced
when we tried to specify policies in ICs scenarios. The main challenge was that in tra-
ditional approaches, each resource is governed by a specific policy. But in virtual com-
munities as the one addressed in this paper, resources are dynamic and unpredictable
(e.g. spontaneously created and their sensitivity can change over time). This constraint
obliged us to consider a new model where policies are specified independently from
the resource they govern. So, the question was how to protect resources that have not

Social-Compliance in Trust Management within Virtual Communities 9

yet been created? and our solution was to focus on requests rather then the resources
themselves.

Policies are statements that specify, for each request pattern, the set of conditions
required for trust establishment. As described previously, each decision made by an
agent a ∈ A within a community c ∈ C to which it belongs considers two policies. An
individual policy (πt

a) that characterizes his personal trust requirements, and a collec-
tive policy (Π t

c) that represents trust requirements shared by the members of c. Both
individual and collective policies constitute a set {tc1, tc1, ..., tcn, } where every trust
criteria tci (i ∈ [1, n]) represents a condition stated by the policy. A trust criteria tci is a
triplet 〈τ fi ,ℵi,wi〉. Where τ fi , is its type and corresponds to a trust factor fi ∈ T within
the ontology, ℵi is a threshold value among possible values (ℵi ∈ ∆τ fi

) and wi ∈ N
∗

represents the importance (i.e. weight) of tci in the final trust level computed when
evaluating the policy.

Adaptation Meta-Policies (M(pt
a)) represent a sequence of domain-dependent event-

condition-action rules. Agents use this rules to automatically adapt running policies in
response to context events. Each rule is of the form:

U pon〈event〉 : I f 〈condition〉 ← Do〈action〉 (1)

The 〈event〉 is a generic triggering event, the 〈action〉 is one or more adaptation action
used while adapting policies, while the 〈condition〉 is a general expression, typically a
conjunction or a disjunction of literals, to be checked before the execution of the rule.
These conditions represent filters that are defined over the context.

Context information are domain-dependent beliefs agents rely on when adapting
their policies. In our approach we used, but are not limited to, personal preferences and
business contexts. Personal Preferences are personal input parameters an agent uses to
know whether he has to adapt a policy or not.

Example 5. alice is using resource sensitivity and the associated reward to tune her
policies. If the reward in granting access to her resources is higher than the potential
risk deduced from its sensitivity, then she will be more likely to adapt her policy.

The Business Context has also a great influence on trust decisions. Whether the
community is highly competitive or fairly cooperative, trust requirements can be for-
mulated in different ways affecting the final decisions. This model enables agents to
make context-aware trust decision based on such indicators. In this paper, for simplicity
reasons, only few business parameters are considered. They are domain-dependent but
most of them can be generalized to handle other VC scenarios. Our Business Context is
qualified by the number of agents requesting the resource, the number of agents provid-
ing it, the population of the community and the past experience with the other members
of the community4.

5 The ASC-TMS Implementation

In this section, we explain and illustrate how the concepts presented above are imple-
mented within each agent. Concretely, our focus will be on describing how policies are

4 This constitutes a good barometer of the relevance of indicators like reputation and recom-
mendation.

10 Social-Compliance in Trust Management within Virtual Communities

specified, adapted, combined and evaluated as they reflect the adaptive and socially-
compliant aspects of our model.

5.1 Policies specification

We adopted logic programming to represent policies within the agent’s knowledge base.
Prolog is especially interesting as it is declarative and flexible enough which allow
adaptation and combination of policies by adding, removing and updating trust criteria.
A policy {tc1, tc1, ..., tcn, } is represented by a predicate structure as follows:

pt
a([〈τ f1 ,ℵ1,w1〉, 〈τ f2 ,ℵ2,w2〉, ..., 〈 fm ,ℵm,wm〉]) (2)

Each triplet 〈τ fi ,ℵi,wi〉 constitute a trust criterion where, τ fi is its type and corre-
sponds to a trust factor fi within the ontology T , ℵi is a threshold value among possible
values (ℵi ∈ ∆τ fi

) and wi ∈ N
∗ represents the importance (i.e. weight) of tci in the final

trust level computed when evaluating the policy. a ∈ A is the agent issuing the policy
and t the handled request type t = (o, r) such as o ∈ O and r ∈ τR.

Example 6 (policies). Let t = (access, ob ject) be a request interaction pattern. The
individual policy the agent alice uses to issue permissions for requests of type t is
stated as follows: pt

alice([〈identity, complete, 1〉, 〈statistics, 0.5, 2〉 〈reputation, 0.6, 1〉,
〈recommendation, 0.2, 2〉]). While the community Com2 to which alice belongs re-
quires from its members to use the following policy: pt

Com2([〈identity, ultimate, 3〉,
〈reputation, 0.5, 1〉]

The examples presented above show how simply policies could be specified. But it
also allowed us to realize how our greedy definition of trust policies could be complex
when dealing with long policies. This makes writing a syntactically correct policy file
difficult and motivate the use of XML. Thus, each agent manipulates internally (at run-
time) the prolog-based policies while it maintains a cloned XML (cf. Fig 5) version for
communication, adaptation, combination and persistence issues.

<?xml version="1.0" encoding="UTF-8"?>
<policy resource ="Object" operation = "Access">
 <tc type="identity" value="complete" weight="1" source="individual" />
 <tc type="statistics" value="0.5" weight="2" source="individual" />
 <tc type="recommendation" value="0.2" weight="2" source="individual" />
 <tc type="reputation" value="0.6" weight="1" source="individual" />
</policy>

Fig. 5. XML-based version of an individual policy

Social-Compliance in Trust Management within Virtual Communities 11

5.2 Policies adaptation (Meta-policies)

The meta-policies presented in this paper are specified by means of Jason plans. Each
plan is represented as follows:

triggering event : context ← body (3)

The mapping between Jason plans and ECA meta-policies is relatively trivial. The trig-
gering event denote the purpose for that plan (e.g adapting a particular policy) and is
followed by a conjunction of belief literals qualifying a context (e.g. when the adapta-
tion should be launched). The body of a plan is a sequence of basic actions the agent has
to achieve when the plan is executed, if the context conditions hold. The key feature in
using Jason plans lies in the possibility to execute legacy code through internal actions.
In this work, we use this mechanism to perform adaptation operations presented in our
trust model5.

The result of the execution of each meta-policy affects the original policy by adding,
setting, removing, restricting or relaxing trust criteria as follows:

.add(〈τ fi ,ℵi,wi〉) : this action adds the criteria 〈τ fi , νi,w1tci〉 in the current policy.
If another trust criteria of the same type exists, the action .set(〈τ fi ,ℵi,wi〉) is triggered
otherwise.

.del(τ fi) : the actions removes all trust criteria of the type τi. τi is either a specific
type as the identity or a general one such as proofs or indicators.

.set(〈τ fi ,ℵi,wi〉) : this action affects ti and νi,w1, respectively, to the strength and
the weight of the trust criteria of type ti in the current policy. If such trust criteria does
not exists, an .add(〈τ fi ,ℵi,wi〉) is triggered.

.restrict(τ fi) and .relax(τ fi) : These two actions behave similarly. When no param-
eter is given, all trust criteria of the policy are affected by the action. Otherwise only
the specified trust criteria type is affected. This action checks the ontology for a lower
(resp. higher) value for the specified trust criteria. If such value exist, a set with the new
value is called otherwise the weight of the trust criteria is lowered (resp. increased). If
the weight becomes null, the trust criteria is removed from the policy.

Example 7 (Adaptation). The agent alice is particularly mindful about the number of
agents viewing the ideas she is proposing (i.e. notes) and the risk associated to such
access. Therefore, alice is automatically adapting her policy depending on such infor-
mation. Let x be an access request on the document maths containing ideas on new
mathematical model for incentives alice is developing, So τx = (access, ob ject) and
pt

alice be the policy alice uses to handle such request. Meta-policies she is using for that
purpose are as follow6:

+adapt(pt
alice, x,maths) : .count(member(,”Com2”), X)

∧hreshold(minUsers,Y) ∧ (X < Y)← .relax(reputation).

5 For more details on AgentSpeak plans and internal actions concepts see [8, 23].
6 .count is a standard internal action available in Jason that counts the number of beliefs that

unify with member(, ”Com2”) then X unifies with this quantity.

12 Social-Compliance in Trust Management within Virtual Communities

+adapt(pt
alice, x,maths) : sensitivity(maths, S)

∧threshold(sensitivity,T) ∧ (S > T)← .restrict(reputation),
.add(〈recommendation, 0.1, 2〉.)

The first meta-policy lowers the required reputation value depending on the users
number while the second increases it and adds a recommendation criterion when the
sensitivity of a resource is over a certain threshold. Both meta-policies are expressed
using Jason plans.

5.3 Policies combination

Combining individual and collective policies illustrates the socially-enabled aspect of
our trust model. The combination we opted for is relatively straightforward as the focus
in this paper was to present the abstract vision of our trust model. The heuristic im-
plemented in our proof-of-concept framework is an extension of the ”Deny Override”
combination algorithm used on XACML policy language [20]. The algorithm receives
as input two policies and outputs a combined policy that is as restrictive as the most
restrictive policy. In this paper we used this mechanism to guarantee that the resultant
policy will integrate both individual and collective trust criteria (cf. [28] for more details
on the used algorithm).

5.4 Policies evaluation

Let pt
a = {tc1, tc2, ..., tcm} be the policy used by the agent a ∈ A to handle requests of

type t. pt
a evaluation represent a function f (pt

a) that evaluates the trust level l relative to
an instance request r of type t. The trust level associated to the request r is computed
by:

f (pt
a) =

∑m
i=1 f (τi,ℵi,wi)∑m

i=1 wi
(4)

Where f (τi,ℵi,wi) ∈ [0,wi] is the weighted evaluation of the constraint ℵi satisfaction
on the criteria of type τi. Each evaluated criteria returns one (1) or zero (0), respectively,
whether the criteria is fulfilled or not. This result is then multiplied by the wi and divided
by the sum of all wi in pt

a.

Example 8. Let’s continue in example 6 where alice was using the policy
pt

alice([〈identity, complete, 1〉, 〈statistics, 0.5, 2〉, 〈reputation, 0.6, 1〉],
〈recommendation, 0.2, 2〉 when handling requests of the type t.
And let pt

Com2([〈identity, ultimate, 3〉, 〈reputation, 0.5, 1〉] be the collective policy she
is using from her community Com2 to handle the same request type t.
And p̂t

alice([〈identity, ultimate, 3〉, 〈statistics, 0.5, 2〉, 〈recommendation, 0.2, 2〉,
〈reputation, 0.6, 1〉] is the combined policy (cf. Section 5.3) that respects alice and her
community’s trust requirements.

If we consider the request from David who wants to get access to the document
specifying one of the ideas that alice is working on. And assuming that David owns
an identity credential that reveals to be complete, a statistics skills credentials with a

Social-Compliance in Trust Management within Virtual Communities 13

value of 0.5, his global reputation value is 0.5 and three other agents are willing to
recommend him. When evaluating each of the above policy, alice ASC-TMS outputs
the following results:

LocalStatisfaction(5, 6) (5)

CollectiveStatisfaction(1, 3) (6)

CombinedStatisfaction(4, 8) (7)

This represents to what extent the credentials provided by David and the informa-
tion collected from the community satisfied alice policy (5), her community’s policy
(6) and the combined one (7). If alice considers her individual policy or the combined
one she will accept the interaction otherwise she should refuse. In the first case she is
considered as a deviant member while in the second case she is a compliant one7.

6 Discussion and Concluding Remarks

We introduced in this paper the notion of social compliance for trust management within
virtual communities. To realize it, we developed a rich, dynamic and socially-enabled
trust model that mimics human trust. The proposed model preserves real world seman-
tics of trust as individual requirements are adapted and merged with collective ones. The
originality of this proposition lies in the joint use of flexible trust policies and adaptation
meta-policies to capture and adapt trust requirement. The concept of adaptive policies
has already been investigated by many scholars (e.g. [10]). However, in many cases, the
proposed solution is built upon a known and finite universe of resources and entities,
which is a hard constraint if we consider open environments like virtual communi-
ties. Further, the idea of combining different policies has also been studied (e.g. [20]
and [16]). However, the focus of existing approaches on policies integration was prin-
cipally on static security policies. The combination issues addressed in this paper could
not be managed by former approaches as the policies to be combined are specified,
adapted and managed on the fly.

The last decade has seen an increasing interest on trust that gave rise to numerous
researches and many definitions (cf. [3]). Existing trust models can be categorized into
two distinct families: Hard Trust Models where trust is established using credentials
and trust policies (e.g. [6] and [17]) and Soft Trust Models where trust is built upon
pairs experiences, recommendations and reputation (e.g. [11] [25] [14] and [18]. Full
integration of soft and hard trust models has not been done yet. However, [7] and [19]
paved the way recently for such perspective by developing new Hybrid Trust Models.
This work is an additional right step toward that direction as it proposes an ontology-
based hybrid trust model that enables agents to grasp the meaning of trust factors. We
used the ontology T in the model (cf. Fig. 4) at different levels, which makes it cen-
tral to our approach. (i) For policies specification where its concepts constitute trust

7 The concept of compliance was intentionally simplified here to focus on adaptation features.
However, in our simulation settings, different profiles has been defined and associated to each
agent in order to investigate all effects [4] of the social influence theory (cf. Section 6).

14 Social-Compliance in Trust Management within Virtual Communities

conditions’ types and their instances’ values are used as acceptance thresholds; (ii) for
policies adaptation where the ontology offers values ordering that agents can refer to
when strengthening or weakening their policies; (iii) while combining individual and
collective policies where it is used to align and merge trust criteria from both individual
and collective policies. And finally, (iv) when evaluating policies where credentials and
trust information are compared with respect required values.

The Adaptive and Socially-Compliant TMS is an on-going project that implements
the rich, adaptive and socially-enabled trust model presented in this paper (cf. Section
4). We used the JaCaMo platform [15] to leverage the requirements discussed earlier
while preserving the generality of the approach. JaCaMo is a newborn multi-agent ori-
ented programming framework allowing the development of MAS by taking into ac-
count three different programming dimensions, namely the agent, environment, and or-
ganisation levels. The use of JaCaMo was motivated by its integration of three existing
agent-based technologies (i) Jason [8], (ii) MOISE [13], and (iii) CArtAgO [24]. The
Jason language was used to programme the agents, MOISE was used to specify com-
munities as loosely structured flat organizations, and CArtAgO was used to programme
distributed artifact-based environments where artifacts represent resources.

The next steps in our work would be to improve the ”quite simplistic” heuristics
used for policies adaption and combination by drawing some mechanisms from the
prolific literature on trust and security policies (e.g. policies integration is a good track
to follow). We also would like to extend this model in order to integrate other effects of
the social influence theory [4]. Another interesting issue is to investigate how individual
trust requirements (policies) could be integrated into collective ones. The idea would be
to study how agents may influence / trigger adaptation or evolution of collective poli-
cies, and which mechanisms can they use to build collective policies from individual
ones. Such feature is particularly interesting for decentralized and self-organized com-
munities.

References

1. A. Abdul-rahman. The PGP Trust Model. Architecture, pages 1–6, 1997.
2. P. Anantharam, C.A. Henson, K. Thirunarayan, and A.P. Sheth. Trust Model for Semantic

Sensor and Social Networks : A Preliminary Report. Scenario.
3. D. Artz and Y. Gil. A survey of trust in computer science and the semantic web. Web Semant.,

5(2):58–71, 2007.
4. S. E. Asch Opinions and social pressure. in Scientific American, 193, 31-35., 1955
5. M. Antikainen and H. Väätäjä. Collaboration in Open Innovation Communities - Do Users

Want It?. In Proceedings of The XIX ISPIM Conference Open Innovation Creating Products
and Services through Collaboration, 2008.

6. M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. In Proceedings of
IEEE Symposium on Security and Privacy, 1996.

7. P. Bonatti, C. Duma, D. Olmedilla, and N. Shahmehri. An integration of reputation-based
and policy-based trust management. In In Proceedings of the Semantic Web Policy Workshop,
2005.

8. R.H. Bordini and J. Hübner. Semantics for the jason variant of agentspeak. In Proceeding
of the 2010 conference on ECAI 2010, pages 635–640, Amsterdam, The Netherlands, The
Netherlands, 2010. IOS Press.

Social-Compliance in Trust Management within Virtual Communities 15

9. T. Dimitrakos, B. Matthews, J. Bicarregui Towards security and trust management policies
on the Web CLRC Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK. , 2001.

10. Ryutov, T. and Zhou, Li and Neuman, C. and Foukia, N. and Leithead, T. and Seamons, K. E.
Adaptive Trust Negotiation and Access Control for Grids Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing , 2005.

11. R. Falcone and C. Castelfranchi. Social trust: a cognitive approach, pages 55–90. Kluwer
Academic Publishers, Norwell, MA, USA, 2001.

12. E. Gracia and J. Herrero Determinants of Social Integration in the Community: An Ex-
ploratory Analysis of Personal, Interpersonal and Situational Variables in Journal of Commu-
nity Applied Social Psychology, 14, no. 1: 1-15, 2004

13. J. F. Hubner, J. S. Sichman, and O. Boissier. Developing organised multiagent systems using
the moise+ model: programming issues at the system and agent levels. Int. J. Agent-Oriented
Softw. Eng., 1:370–395, 2007.

14. A. Jøsang. Foundations of security analysis and design iv. chapter Trust and reputation
systems, pages 209–245. Springer-Verlag, Berlin, Heidelberg, 2007.

15. A. Ricci, J.F. Hubner, R. H Bordini, and O. Boissier. JaCaMo Project
(http://http://jacamo.sourceforge.net/), 2010.

16. D.D. He and Y. Jian Security Policy Specification and Integration in Business Collaboration.
IEEE International Conference on Services Computing (SCC 2007), 2007.

17. A. Herzberg, Y. Mass, J. Michaeli, Y. Ravid, and D. Naor. Access control meets public key
infrastructure In Proceedings of the 2000 IEEE Symposium on Security and Privacy, 2000.

18. K. Krukow, N. Mogens and S. Vladimiro. A framework for concrete reputation-systems with
applications to history-based access control. In In Proc. of the 12th CCS, pages 7–11, 2005.

19. A. J. Lee, T. Yu, and Y. Le Gall. Effective trust management through a hybrid logical and
relational approach. pages 169–179, 2010

20. P. Mazzoleni, E. Bertino, B. Crispo and S. Sivasubramanian. XACML policy integration
algorithms: not to be confused with XACML policy combination algorithms!. Proceedings of
the eleventh ACM symposium on Access control models and technologies, 2006.

21. S. Milgram Obedience to Authority; An Experimental View. in Harpercollins. ISBN 0-06-
131983-X, 1971

22. S. Moscovici, A. Mucchi-Faina, and A. Maass Minority Influence. Nelson-Hall, Chicago.
C. Nemeth and J. Kwan, Dirigent Thinking and the Detection of Correct Solutions. in Jounal
of Appliaed Social Psychology 17 : 788-99.

23. A. Rao. AgentSpeak (L): BDI Agents speak out in a logical computable language. (L),
1996.

24. A. Ricci, M. Piunti, L. D. Acay, R. H. Bordini, J. F. Hübner, and M. Dastani. Integrating
heterogeneous agent programming platforms within artifact-based environments. In Proceed-
ings of the 7th international joint conference on Autonomous agents and multiagent systems -
Volume 1, AAMAS ’08, pages 225–232, Richland, SC, 2008.

25. J. Sabater and C. Sierra. Regret: reputation in gregarious societies. In Proceedings of the
fifth international conference on Autonomous agents, AGENTS ’01, 2001.

26. K. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills, and L. Yu. Re-
quirements for policy languages for trust negotiation. In Proceedings of POLICY ’02, USA,
2002.

27. R. Yaich, O. Boissier, P. Jaillon, and G. Picard. Social-Compliance in Trust Management
within Virtual Communities. In Proceedings of the IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent Technology (WI-IAT), 2011

28. R. Yaich, O. Boissier, P. Jaillon, and G. Picard. Trust Management within Virtual Commu-
nities: Adaptive and Socially-Compliant TMS. FAYOL-EMSE Technical Report N 2011-700
-005, 2011.

