KRR: Propositional logic and First Order Logic

Artificial Intelligence Challenge / Introduction to Artificial Intelligence

ICM 2A + M1 CPS²

8th March 2023

antoine.zimmermann@emse.fr

What is *logic*?

Logic...

- ... is the study of the principles of correct reasoning
- ...does not study truth *per se*
- ...but may formalises the rules of valid inferences
- ...may define what statements can *possibly* mean, independently of what they are *intended* to mean

What is *a logic*?

A logic...

• ... is a **formal language**:

- It has symbols ("words", "glyphs") and rules (a "grammar") to assemble them into well-formed utterances ("formulas" or "statements")
- ...defines one of 2 things:

Either:

 a system that explains how to arrange the symbols of formulas to derive other formulas that are assumed to "logically follow" from the initial formulas (a proof theory)

Or:

2. formal structures that model what symbols can mean, and the conditions when the structure representing the meaning makes a formula "true" (a **model theory**)

A logic in my course

- In my course, I will define a logic with two components:
- 1. The syntax, having:
 - i. Symbols, grouped in different categories
 - ii. Formulas, defined by a formal grammar
- 2. The semantics, having:
 - i. A notion of interpretation (mathematical structure that maps symbols of some categories into some sets)
 - ii. A relation of satisfaction that relates interpretations to formulas

Example of a simple logic: propositional logic (1)

1. Syntax:

- i. Symbols:
 - a) Logical operators: $\{(,), \land, \lor, \rightarrow, \leftrightarrow, \neg\}$
 - b) An infinite set ${\cal P}$ (the *propositions*), written with letters or between quotes "like this"
- ii. Formulas are sequences of symbols such that:
 - a) every propositions are formulas
 - b) given a formula f, $\neg f$ and (f) are formulas
 - c) given formulas f_1 and f_2 , $f_1 \wedge f_2$, $f_1 \vee f_2$, $f_1 \rightarrow f_2$, and $f_1 \leftrightarrow f_2$ are formulas

Examples:

("It rains" \land "I have my coat") \rightarrow "I am rich" ($\neg A \lor B$) \land ($A \lor C$) $\rightarrow \neg \neg D$

Example of a simple logic: propositional logic (2)

2. Semantics:

i. Interpretation:

An interpretation in propositional logic is a mapping $\mathfrak{I}: \mathcal{P} \to \{\perp, \top\}$

For a proposition $A \in \mathcal{P}$, $\mathfrak{I}(A) = \bot$ means that the proposition is interpreted as **false**, and $\mathfrak{I}(A)$

- = \top means that the proposition is interpreted as **true**
- ii. Satisfaction relation:

We define the satisfaction relation \vDash (read "satisfies") between interpretations and formulas as follows:

If A is a proposition, $\mathfrak{I} \models A$ if and only if $\mathfrak{I}(A) = \top$ If f is a formula: a) $\mathfrak{I} \models (f)$ if and only if $\mathfrak{I} \models f$ b) $\mathfrak{I} \models \neg f$ if and only if $\mathfrak{I} \not\models f$ If f_1 and f_2 are formulas:

a) $\mathfrak{I} \models f_1 \land f_2$ if and only if $\mathfrak{I} \models f_1$ and $\mathfrak{I} \models f_2$ b) $\mathfrak{I} \models f_1 \lor f_2$ if and only if $\mathfrak{I} \models f_1$ or $\mathfrak{I} \models f_2$ or both c) $\mathfrak{I} \models f_1 \rightarrow f_2$ if and only if $\mathfrak{I} \models \neg f_1$ or $\mathfrak{I} \models f_2$ or both d) $\mathfrak{I} \models f_1 \leftrightarrow f_2$ if and only if $\mathfrak{I} \models f_1 \rightarrow f_2$ and $\mathfrak{I} \models f_2 \rightarrow f_1$

Formalising all logics

A logic *L* is a 4-tuple (Sign_{*L*}, Form_{*L*}, Int_{*L*}, \models_L) where:

- Sign_L is a set of *signatures* (the symbols of the language)
- Form_L is a set of *formulas* (that can be written from symbols)
- Int_L is a set of *interpretations* (that interpret the signatures)
- \vDash_{L} is the *satisfaction relation*, such that $\vDash_{L} \subseteq Int_{L} \times Form_{L}$

Entailment

• In any logic *L* defined as before, we say that:

a set of formula *K* entails a formula *f* (in L) if and only if

all interpretations *I* in Int_L that satisfy all formulas in *K* also satisfy *f* i.e.:

K L-entails *f* iff $\forall \mathfrak{I} \in Int_L$, $(\forall \alpha \in K, \mathfrak{I} \models_L \alpha) \Rightarrow \mathfrak{I} \models_L f$ • In this case, we write $K \models_L f$

Exercise in propositional logic

- Define the rules of sudoku in propositional logic:
 - A sudoku is a 9x9 grid of numbers
 - Each row must contain all the numbers from 1 to 9
 - Each column must contain all the numbers from 1 to 9
 - Each of the nine 3x3 blocks that together makes the whole sudoku must contain all the numbers from 1 to 9

First order logic syntax (1)

- 1. Syntax:
 - i. Symbols:
 - a) Logical operators: {(,), \land , \lor , \rightarrow , \leftrightarrow , \neg } plus the comma character ","
 - b) Quantifiers: $\{\exists, \forall\}$
 - c) An infinite \mathcal{V} (the *variables*)
 - d) An infinite *C* (the *constants*)
 - e) An infinite set ${\cal P}$ (the *propositions*)
 - f) For each natural number n > 0, an infinite set \mathcal{F}_n (the *n*-ary functions)
 - g) For each natural number n > 0, an infinite set \mathcal{P}_n (the *n*-ary predicates)
 - ii. Terms:

To simplify the definition of formulas, we define the notion of *terms*

- a) A variable or a constant is a term
- b) For any n > 0, if f is an n-ary function and $t_1, ..., t_n$ are terms, then $f(t_1, ..., t_n)$ is a term

First order logic syntax (2)

- i. Formulas are sequences of symbols such that:
 - a) every propositions are formulas
 - b) given a formula f, $\neg f$ and (f) are formulas
 - c) given formulas f_1 and f_2 , $f_1 \wedge f_2$, $f_1 \vee f_2$, $f_1 \rightarrow f_2$, and $f_1 \leftrightarrow f_2$ are formulas
 - d) For any n > 0, if P is an n-ary predicate and $t_1, ..., t_n$ are terms, then $P(t_1, ..., t_n)$ is a formula
 - e) given a formula f and a variable x, $\exists x f$ and $\forall x f$ are formulas [*in this case, f is said to be the* scope of x for the quantifier]

If a variable in a formula appears outside its scope for a quantifier, it is a *free* variable for the formula. A formula without free variables is a *closed* formula.

Examples:

$$\forall x \exists y P(f(x)) \to R(x, y) \\ \exists z \forall x \exists x \neg (A \to R(t, y))$$

First order logic semantics (1)

i. Interpretation:

An interpretation \mathfrak{I} in FOL is defined over a non empty set U (the *universe* or *domain* of interpretation or of discourse) such that:

- a) For all constant $c \in C$, $\mathfrak{I}(c) \in U$
- b) For all *n*-ary function $f, \mathfrak{I}(f) : U^n \to U^*$
- c) For all proposition $A \in \mathcal{P}$, $\mathfrak{I}(A) \in \{\bot, \top\}$
- d) For all *n*-ary function $f, \mathfrak{I}(f) : U^n \to \{\bot, \top\}^*$
- NB: constants could be considered as 0-ary functions and propositions as 0-ary predicates
- ii. Variable assignment:

An interpretation does not interpret variables, but we need something to take them into account for the satisfaction relation.

A variable assignment for an interpretation \mathfrak{I} is a function $\mathfrak{a}: \mathcal{V} \to U$

First order logic semantics (2)

iii. Interpretation modulo a variable assignment:

If a formula is not closed, satisfaction must be defined according to a variable assignment aWe then extend \mathfrak{I} to \mathfrak{I}_a in order to interpret variables and terms:

For a variable x, $\mathfrak{I}_a(x) = a(x)$

For an *n*-ary function *f* and terms $t_1, ..., t_n, \mathfrak{I}_a(f(t_1, ..., t_n)) = \mathfrak{I}(f)(\mathfrak{I}_a(t_1), ..., \mathfrak{I}_a(t_n))$

First order logic semantics (3)

iv. Satisfaction modulo an assignment: The satisfaction relation \vDash between interpretations \mathfrak{I} modulo assignment *a* is as follows: If *P* is an *n*-ary predicate and $t_1, ..., t_n$, are terms: $\mathfrak{I}_{a} \models P(t_{1}, ..., t_{n})$ iff $\mathfrak{I}(P)(\mathfrak{I}_{a}(t_{1}), ..., \mathfrak{I}_{n}(t_{n})) = \top$ If f is a formula: a) $\mathfrak{I}_a \models (f)$ if and only if $\mathfrak{I}_a \models f$ b) $\mathfrak{I}_a \models \neg f$ if and only if $\mathfrak{I}_a \not\models f$ c) $\mathfrak{I}_a \models \exists x f$ if and only if there exists e in U such that, if we change a into a' by simply having a'(x) = e and a' identical to a otherwise, then $\mathfrak{I}_{a'} \models f$ d) $\mathfrak{I}_a \models \forall x f$ if and only if for all e in U, if we change a into a' by simply having a'(x) = e and a' identical to a otherwise, then $\mathfrak{I}_{a'} \models f$ If f_1 and f_2 are formulas: a) $\mathfrak{I}_a \models f_1 \land f_2$ if and only if $\mathfrak{I}_a \models f_1$ and $\mathfrak{I}_a \models f_2$ b) $\mathfrak{I}_a \models f_1 \lor f_2$ if and only if $\mathfrak{I}_a \models f_1$ or $\mathfrak{I}_a \models f_2$ or both c) $\mathfrak{I}_a \models f_1 \rightarrow f_2$ if and only if $\mathfrak{I}_a \models \neg f_1$ or $\mathfrak{I}_a \models f_2$ or both d) $\mathfrak{I}_a \models f_1 \leftrightarrow f_2$ if and only if $\mathfrak{I}_a \models f_1 \rightarrow f_2$ and $\mathfrak{I}_a \models f_2 \rightarrow f_1$ v. Satisfaction: $\mathfrak{I} \models f$ if and only if for all assignment $a \mathfrak{I}_a \models f$

Modelling in FOL

- Gustav buys a second hand Tesla Model S from Roberto in July 6th, 2012 for \$35,000
- Gustav sells the Tesla Model S to someone in October 10th, 2020 for an undisclosed price
- The same Tesla Model S is bought by Gustav for \$12,000 at a forgotten date
- What are the predicates that we need?
- What are the constants?
- Is there general knowledge about transactions that we can assert independently of Gustav, the Tesla car owned by him, Roberto, and any date?