Distributed Constraint Optimization

Gauthier Picard

MINES Saint-Étienne LaHC UMR CNRS 5516 gauthier.picard@emse.fr

— Some contents taken from OPTMAS 2011 and OPTMAS-DCR 2014 Tutorials—

Contents

Introduction

Constraint Optimization Problems DCOP Framework Application Domains

Complete Algorithms for DCOP

Asynchronous Distributed Optimisation (ADOPT)
Dynamic Programming Optimization Protocol (DPOP)

Approximate Algorithms for DCOP

Distributed Stochastic Search Algorithm (DSA)
Maximum Gain Message (MGM-1)

Synthesis

Panorama

Constraint Optimization Problems

Sometimes satisfaction is not possible

- Overconstrained problem
- Solution is not binary

Switch from satisfaction to optimization

- Minimizing the number of violated constraints
- Minimizing the cost of violated constraints
- Maximizing the overall utility of the system
- **.** . . .

DCOP Framework

Motivations

- In dynamic and complex environments not all constraints can be satisfied completely
- Satisfaction → Optimisation (combinatorial)
 - ex: minimizing the number of unchecked constraints, minimizing the sum of the costs of violated constraints, etc.

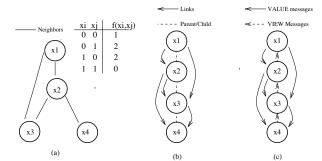
Definition (DCOP)

A *DCOP* is a DCSP $\langle A, X, D, C, \phi \rangle$ with

- \blacksquare a cost function $f_{ij}:D_i\times D_j\mapsto \mathbb{N}\cup\infty$ for each pair x_i,x_j
- an objective function $F: D \mapsto \mathbb{N} \cup \infty$ evaluating an assignment \mathcal{A} with $f_{ij}(d_i,d_j)$ for each pair x_i,x_j

DCOP Framework (cont.)

Introduction



Objective Function

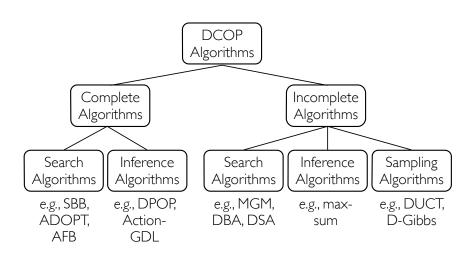
$$F(\mathcal{A}) = \sum_{x_i, x_j \in X} f_{ij}(d_i, d_j)$$
 where $x_i \leftarrow d_i$ and $x_i \leftarrow d_i$ in \mathcal{A}

In figure (a):

$$F(\{(x_1,0),(x_2,0),(x_3,0),(x_4,0)\})=4$$

$$F(\{(x_1,1),(x_2,1),(x_3,1),(x_4,1)\})=0$$

Introduction



Application Domains

Introduction

Contents

Introduction

Complete Algorithms for DCOP
Asynchronous Distributed Optimisation (ADOPT)
Dynamic Programming Optimization Protocol (DPOP)

Approximate Algorithms for DCOP

Synthesis

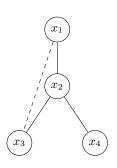
Asynchronous Distributed Optimisation (ADOPT) (Model et al., 2005)

ADOPT: DFS tree (pseudotree)

ADOPT assumes that agents are arranged in a DFS tree:

- constraint graph → rooted graph (select a node as root)
- some links form a tree / others are backedges
- two constrained nodes must be in the same path to the root by tree links (same branch)

Every graph admits a DFS tree: DFS graph traversal



ADOPT Features

- Asynchronous algorithm
- Each time an agent receives a message:
 - Processes it (the agent may take a new value)
 - Sends VALUE messages to its children and pseudochildren
 - Sends a COST message to its parent
- Context: set of (variable value) pairs (as ABT agent view) of ancestor agents (in the same branch)
- Current context:
 - ► Updated by each VALUE message
 - If current context is not compatible with some child context, the later is initialized (also the child bounds)

procedure backTrack

ADOPT Procedures

Initialize	(38)	if threshold == UB:		
 threshold ← 0; CurrentContext ← {}; 	(39)	$di \leftarrow d$ that minimizes $UB(d)$:		
(2) forall $d \in D_i$, $x_i \in Children do$	(40)	else if $LB(d_i) > threshold$:		
(3) lb(d, x _I) ← 0; t(d, x _I) ← 0;	(41)	$d_i \leftarrow d$ that minimizes $LB(d)$; endif;		
(4) ub(d, x _I) ← Inf; context(d, x _I) ← {}; enddo;	(42)	SEND (VALUE, (x_i, d_i))		
(5) d_i ← d that minimizes LB(d);	(43)	to each lower priority neighbor,		
(6) backTrack;	(44)	maintainAllocationInvariant;		
	(45)	if $threshold == UB$:		
when received (THRESHOLD, t, context)	(46)	if TERMINATE received from parent		
(7) if context compatible with CurrentContext:	(47)	or x _i is root:		
(8) threshold ← t;	(48)	SEND (TERMINATE,		
(9) maintainThresholdInvariant;	(49)	$CurrentContext \cup \{(x_i, d_i)\})$		
(10) backTrack; endif;	(50)	to each child;		
	(51)	Terminate execution; endif;endif;		
when received (TERMINATE, context)	(52)	SEND (COST, xi, CurrentContext, LB, UB)		
(11) record TERMINATE received from parent;		to parent;		
(12) CurrentContext ← context;				
(13) backTrack;				
when received (VALUE, (x_j, d_j))				
(14) if TERMINATE not received from parent:				
(15) add (x _j ,d _j) to CurrentContext;				
) forall $d \in D_i$, $x_i \in Children$ do			
(17) if context(d, x _I) incompatible with CurrentC	if context(d, x _I) incompatible with CurrentContext:			
(18) $lb(d, x_l) \leftarrow 0; t(d, x_l) \leftarrow 0;$				
(19) $ub(d, x_l) \leftarrow Inf; context(d, x_l) \leftarrow \{\}; end$	lif; endd	D;		
(20) maintainThresholdInvariant;				
(21) backTrack; endif;				
when received (COST, xk, context, lb, ub)				
(22) d ← value of x _i in context; (23) arrange (a, d) from context;				
(24) if TERMINATE not received from parent:	23) remove (x _i , d) from context;			
for all $(x_j, d_j) \in context$ and x_j is not my neighbor do				
26) add (x_j, d_j) to CurrentContext; enddo; 27) forall $d' \in D_i$, $x_l \in Children do$				
(30) ub(d', x _I) ← Inf; context(d', x _I) ← {};endif;enddo;endif; (31) if context compatible with CurrentContext:				
31) if context compatible with CurrentContext: 32) $lb(d, x_b) \leftarrow lb$;				
(33) $ub(d, x_k) \leftarrow ub;$ (34) $context(d, x_k) \leftarrow context;$				
(35) maintainChildThresholdInvariant:				
(36) maintainchildrnresholdinvariant;				

Algorithm 1: ADOPT Procedures

(37) backTrack:

- $Value(parent \rightarrow children \cup pseudochildren, a)$: parent informs descendants that it has taken value a
- cost(child → parent, lowerbound, upperbound, context): child informs parent of the best cost of its assignement; attached context to detect obsolescence
- \blacksquare threshold($parent \rightarrow child, t)$: minimum cost of solution in child is at least t
- \blacksquare termination($parent \rightarrow children$): sent when LB = UB

ADOPT Data Structures

 Current context (agent view): values of higher priority constrained agents

x_i	x_j	
a	c	

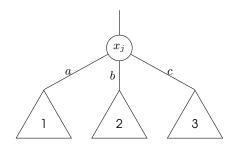
- 2. Bounds (for each value, child)
 - ▶ lower bounds
 - upper bounds
 - ▶ thresholds
 - contexts

x_j
$lb(x_k)$
$ub(x_k)$
- /

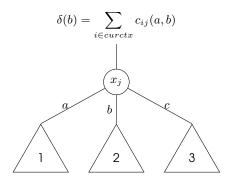
 $th(x_k)$ $context(x_k)$

a	b	c	d
3	0	0	0
∞	∞	∞	∞
1	0	0	0

- \blacksquare Stored contextes must be active: $context \in current context$
- If a context becomes no active, it is removed ($lb \leftarrow 0, th \leftarrow 0, ub \leftarrow \infty$)



$\delta(value) = \text{cost}$ with higher agents



$\delta(value) = {\sf cost}$ with higher agents

$$\delta(b) = \sum_{i \in curctx} c_{ij}(a, b)$$

$$OPT(x_j, ctx) = \min_{d \in d_j} \delta(d) + \sum_{\substack{x_k \in children \\ (x_j, d)}} OPT(x_k, ctx \cup x_k)$$

$\delta(value) = \text{cost}$ with higher agents

$$\delta(b) = \sum_{i \in curctx} c_{ij}(a, b)$$

$$a \qquad b$$

$$b \qquad c$$

$$b \qquad b$$

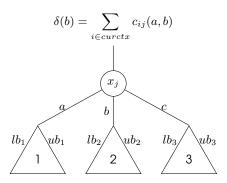
$$b \qquad b$$

$$1 \qquad b \qquad b$$

$$2 \qquad b \qquad b$$

$$OPT(x_j, ctx) = \min_{d \in d_j} \delta(d) + \sum_{\substack{x_k \in children \\ (x_j, d)}} OPT(x_k, ctx \cup x_k)$$

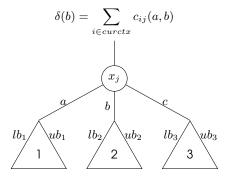
$\delta(value) = \text{cost}$ with higher agents



 $[lb_k, ub_k] =$ cost of lower agents

$$OPT(x_j, ctx) = \min_{d \in d_j} \delta(d) + \sum_{\substack{x_k \in children \\ (x_j, d)}} OPT(x_k, ctx \cup x_k)$$

$\delta(value) = \text{cost}$ with higher agents



 $[lb_k, ub_k] = cost$ of lower agents

$$OPT(x_j, ctx) = \min_{d \in d_j} \delta(d) + \sum_{\substack{x_k \in children \\ (x_j, d)}} OPT(x_k, ctx \cup dt)$$

$$LB(b) = \delta(b) + \sum_{x_k \in children} lb(b, x_k)$$
$$LB = \min_{b \in d_i} LB(b)$$

$$UB(b) = \delta(b) + \sum_{x_k \in children} ub(b, x_k)$$

$$UB = \min_{b \in d_i} UB(b)$$

■ An ADOPT agent takes the value with minimum LB

- Eager behavior:
 - Agents may constantly change value
 - Generates many context changes
- Threshold:
 - lower bound of the cost that children have from previous search
 - parent distributes threshold among children
 - incorrect distribution does not cause problems: the child with minor allocation would send a COST to the parent later, and the parent will rebalance the threshold distribution

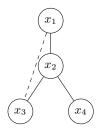
- For any x_i , $LB \leq OPT(x_l, ctx) \leq UB$
- \blacksquare For any x_i , its threshold reaches UB
- \blacksquare For any x_i , its final threshold is equal to $OPT(x_l,ctx)$
- → ADOPT terminates with the optimal solution

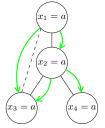
ADOPT Example

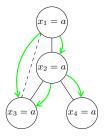
- lacksquare 4 variables (4 agents) x_1 , x_2 , x_3 and x_4 with $D=\{a,b\}$
- 4 binary identical cost functions

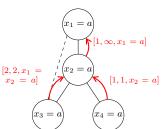
x_j	cost
а	1
b	2
а	2
b	0
	a b a

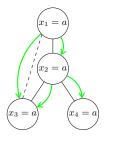
Constraint graph

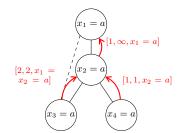


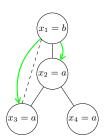


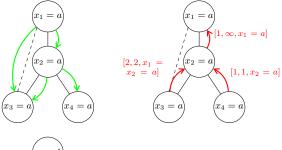


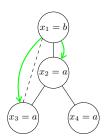


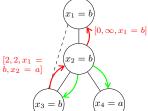


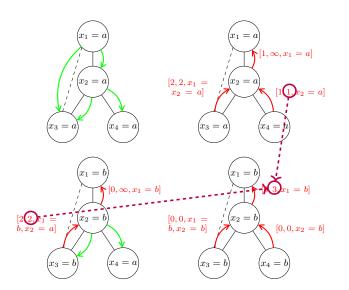


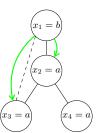


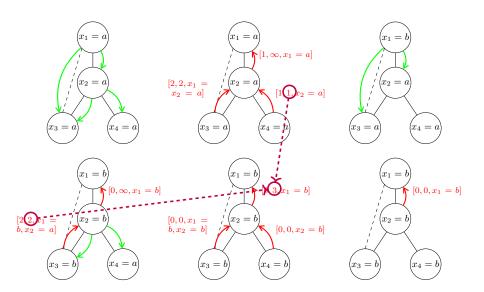












Dynamic Programming Optimization Protocol (DPOP) (PETCU and

FALTINGS, 2005)

3-phase distributed algorithm

	PHASES	MESSAGES
1.	DFS Tree construction	token passing
2.	Utility phase: from leaves to root	util (child \rightarrow parent, constraint table (-child))
3.	Value phase: from root to leaves	value (parent → children ∪ pseudochildren, parent value)

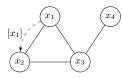
DFS Tree Phase

■ Distributed DFS graph traversal: token, ID, neighbors(X)

- 1. X owns the token: adds its own ID and sends it in turn to each of its neighbors, which become children
- 2. Y receives the token from X: it marks X as visited. First time Y receives the token then parent(Y) = X. Other IDs in token which are also neighbors(Y) are **pseudoparent**. If Y receives token from neighbor W to which it was never sent, W is pseudochild.
- When all neighbors(X) visited, X removes its ID from token and sends it to parent(X).
- A node is selected as root, which starts
- When all neighbors of root are visited, the DFS traversal ends

DFS Tree Phase: Example

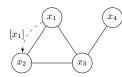
root



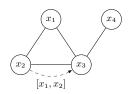
 \emph{x}_1 parent of \emph{x}_2

DFS Tree Phase: Example

root

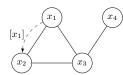


 x_1 parent of x_2

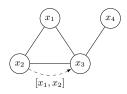


 $egin{array}{ll} x_2 & \mbox{parent of } x_3 \\ x_1 & \mbox{pseudoparent of } x_3 \end{array}$

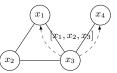
root



 x_1 parent of x_2



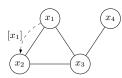
 $egin{array}{ll} x_2 & \mbox{parent of } x_3 \\ x_1 & \mbox{pseudoparent of } x_3 \end{array}$



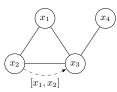
 x_3 parent of x_4 x_3 pseudoparent of x_1

DFS Tree Phase: Example

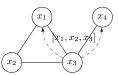
root



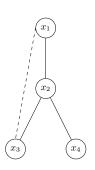
 x_1 parent of x_2



 x_2 parent of x_3 x_1 pseudoparent of x_3



 $egin{array}{ll} x_3 & {
m parent of } x_4 \\ x_3 & {
m pseudoparent of } x_1 \end{array}$



Util Phase

Agent X:

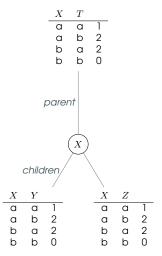
- \blacksquare receives from each child Y_i a cost function: $C(Y_i)$
- combines (adds, joins) all these cost functions with the cost functions with parent(X) and pseudoparents(X)
- \blacksquare projects X out of the resulting cost function, and sends it to parent(X)

From the leaves to the root

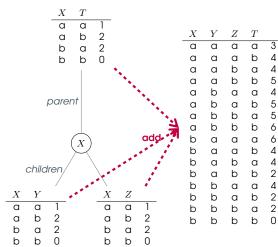
Complete DCOP

Util Phase: Example

Util Phase: Example

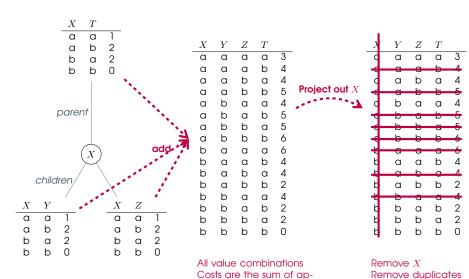


Util Phase: Example



All value combinations Costs are the sum of applicable costs

Util Phase: Example



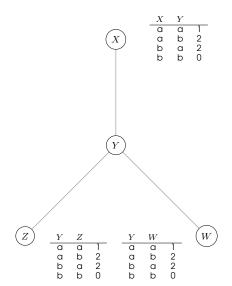
plicable costs

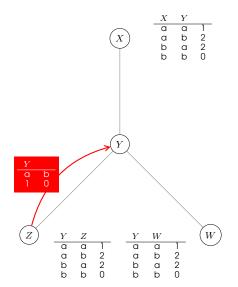
Keep the min cost

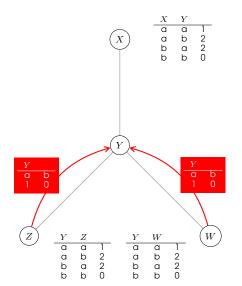
- 1. The root finds the **value that minimizes the received cost function** in the util phase, and informs its descendants (children U pseudochildren)
- 2. Each agent waits to receive the value of its parent / pseudoparents
- Keeping fixed the value of parent/pseudoparents, finds the value that minimizes the received cost function in the Util phase
- 4. Informs of this value to its children/pseudochildren

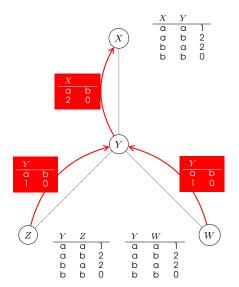
This process starts at the root and ends at the leaves

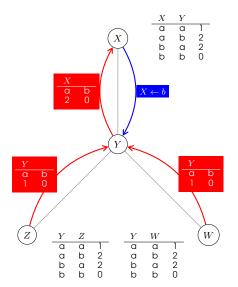


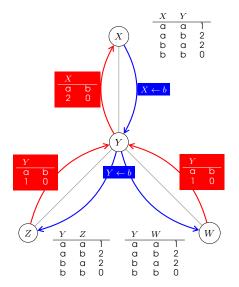


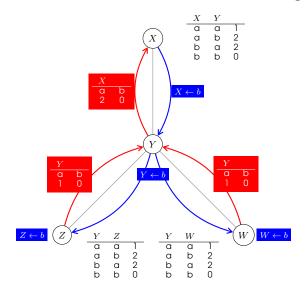


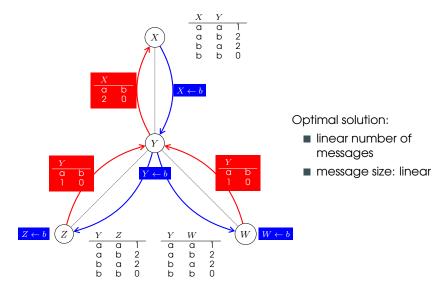


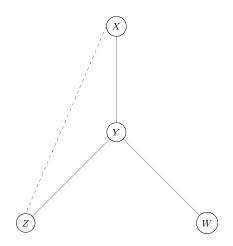


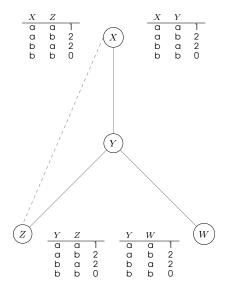


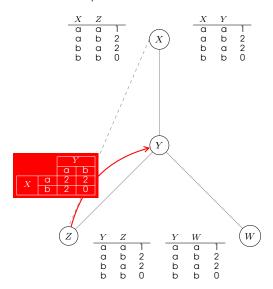


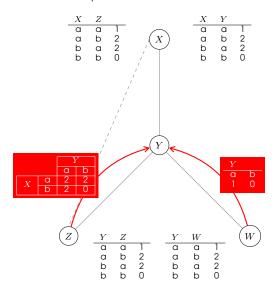


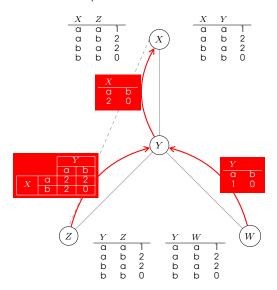


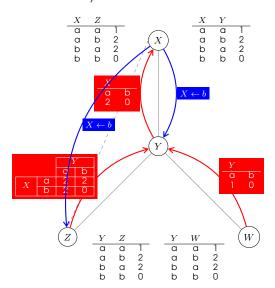


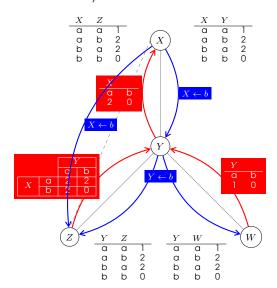


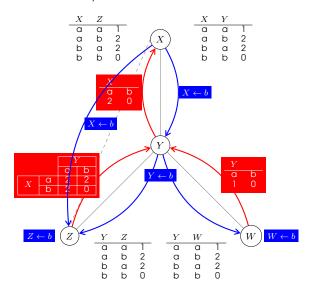


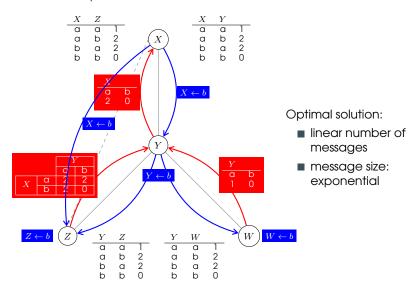












Contents

Introduction

Complete Algorithms for DCOP

Approximate Algorithms for DCOP
Distributed Stochastic Search Algorithm (DSA)
Maximum Gain Message (MGM-1)

Synthesis

Approximate Algorithms for DCOPs

Complete algorithms

- e.g. ADOPT (Modi et al., 2005) and DPOP (PETCU and FALTINGS, 2005)
 - ✓ complete
 - X slow

Aproximate algorithms exist (fast, but sub-optimal in many case)

- Search algorithms
 - ► DBA (YOKOO, 2001), DSA (ZHANG et al., 2005), MGM (MAHESWARAN et al., 2004)
- Inference algorithms
 - ► Max-sum (FARINELLI et al., 2008)

Motivations

- Often optimality in practical applications is not achievable
- ► Fast good enough solutions are all we can have

■ Example – Graph coloring

- ► Medium size problem (about 20 nodes, three colors per node)
- Number of states to visit for optimal solution in the worst case $3^{20}=3M$ states

■ Key problem

Provides guarantees on solution quality

Exemplar Application: Surveillance

■ Event Detection

Vehicles passing on a road

■ Energy Constraints

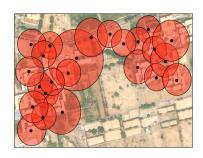
- ► Sense/Sleep modes
- ► Recharge when sleeping

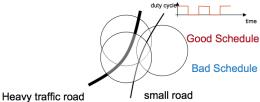
Coordination

- Activity can be detected by single sensor
- ► Roads have different traffic loads

Aim

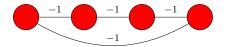
Focus on road with more traffic load





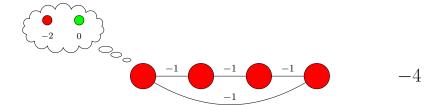
■ Greedy local search

- Start from random solution
- ► Do local changes if global solution improves
- ► Local: change the value of a subset of variables, usually one



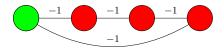
■ Greedy local search

- Start from random solution
- ► Do local changes if global solution improves
- ► Local: change the value of a subset of variables, usually one



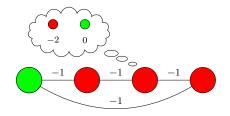
Greedy local search

- Start from random solution
- ► Do local changes if global solution improves
- ► Local: change the value of a subset of variables, usually one



■ Greedy local search

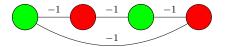
- Start from random solution
- ► Do local changes if global solution improves
- ▶ Local: change the value of a subset of variables, usually one



-2

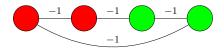
■ Greedy local search

- Start from random solution
- ► Do local changes if global solution improves
- ► Local: change the value of a subset of variables, usually one



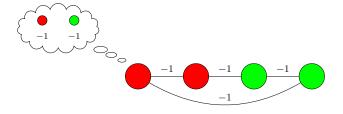
■ Problems

- ► Local minima
- ► Standard solutions: Random Walk, Simulated Annealing



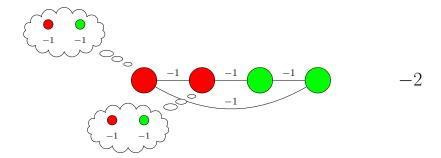
■ Problems

- ► Local minima
- ► Standard solutions: Random Walk, Simulated Annealing



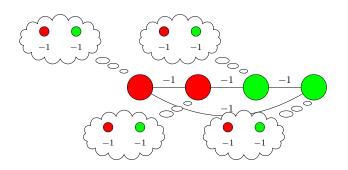
■ Problems

- ► Local minima
- ► Standard solutions: Random Walk, Simulated Annealing



■ Problems

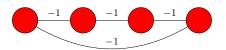
- ► Local minima
- ► Standard solutions: Random Walk, Simulated Annealing



-2

Distributed Local Greedy approaches

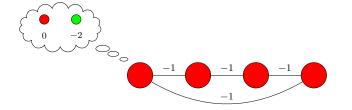
- Local knowledge
- Parallel execution
 - ► A greedy local move might be harmful/useless
 - ▶ Need coordination



-4

Distributed Local Greedy approaches

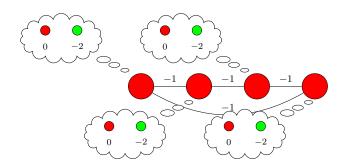
- Local knowledge
- Parallel execution
 - ► A greedy local move might be harmful/useless
 - ▶ Need coordination



-4

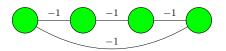
Distributed Local Greedy approaches

- Local knowledge
- Parallel execution
 - ► A greedy local move might be harmful/useless
 - ▶ Need coordination



Distributed Local Greedy approaches

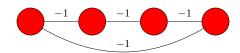
- Local knowledge
- Parallel execution
 - ► A greedy local move might be harmful/useless
 - Need coordination

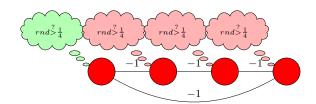


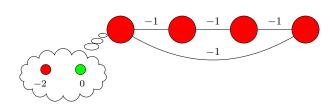
-4

Distributed Stochastic Search Algorithm (DSA) (ZHANG et al., 2005)

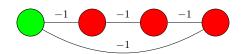
- Greedy local search with activation probability to mitigate issues with parallel executions
- DSA-1: change value of one variable at time
- Initialize agents with a random assignment and communicate values to neighbors
- Each agent:
 - Generates a random number and execute only if rnd less than activation probability
 - ► When executing changes value maximizing local gain
 - Communicate possible variable change to neighbors

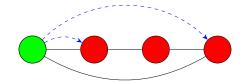






DSA-1: Execution Example





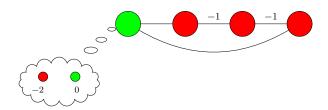
- Extremely "cheap" (computation/communication)
- Good performance in various domains
 - ► e.g. target tracking (Fitzpatrick and Meertens, 2003; Zhang et al., 2003)
 - Shows an anytime property (not guaranteed)
 - ► Benchmarking technique for coordination
- Problems
 - ► Activation probablity must be tuned (ZHANG et al., 2003)
 - ▶ No general rule, hard to characterise results across domains

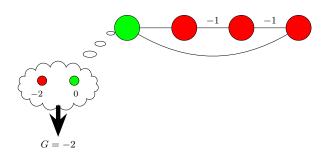
Coordinate to decide who is going to move

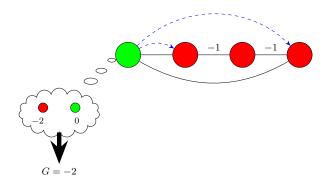
- ► Compute and exchange possible gains
- ► Agent with maximum (positive) gain executes

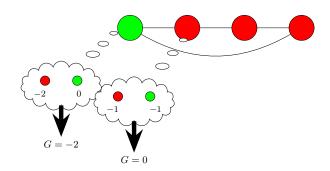
Analysis

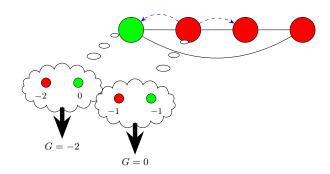
- Empirically, similar to DSA
- ► More communication (but still linear)
- ► No Threshold to set
- Guaranteed to be monotonic (Anytime behavior)

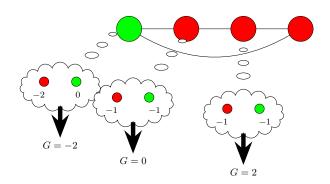


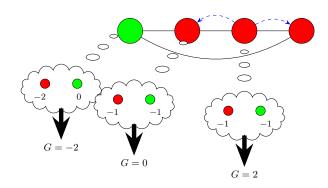


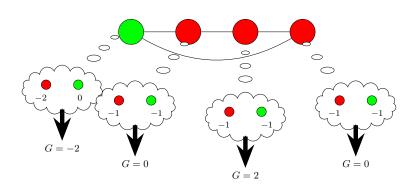


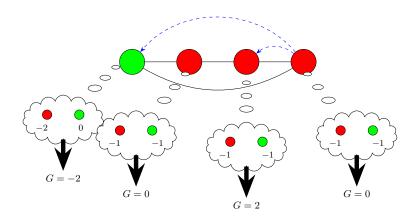


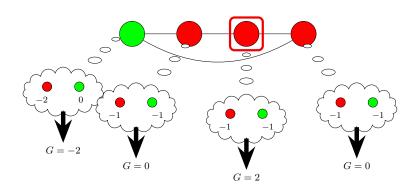












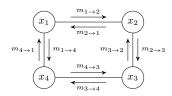
- Exchange local values for variables
 - ► Similar to search based methods (e.g. ADOPT)
- Consider only local information when maximizing
 - Values of neighbors
- Anytime behaviors
- Could result in very bad solutions

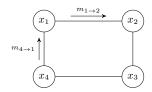
- Generalized Distributive Law (AJI and McELIECE, 2000)
 - Unifying framework for inference in Graphical models
 - ► Builds on basic mathematical properties of semi-rings
 - ▶ Widely used in Info theory, Statistical physics, Probabilistic models

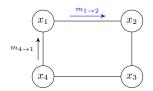
Max-sum

► DCOP settings: maximise social welfare

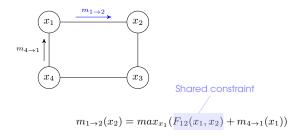
	K	" $(+,0)$ "	" $(\cdot,1)$ "	short name
1.	A	(+,0)	$(\cdot, 1)$	
2.	A[x]	(+, 0)	$(\cdot,1)$	
3.	$A[x,y,\ldots]$	(+,0)	$(\cdot,1)$	
4.	$[0,\infty)$	(+, 0)	$(\cdot,1)$	$\operatorname{sum-product}$
5.	$(0,\infty]$	(\min,∞)	$(\cdot,1)$	min-product
6.	$[0,\infty)$	$(\max, 0)$	$(\cdot,1)$	max-product
7	$(-\infty,\infty]$	(\min,∞)	(+, 0)	\min -sum
8.	$[-\infty,\infty)$	$(\max, -\infty)$	(+,0)	max-sum
9.	$\{0, 1\}$	$(\mathtt{OR},0)$	$(\mathtt{AND},1)$	Boolean
10.	2^S	(\cup,\emptyset)	(\cap, S)	
11.	Λ	$(\vee,0)$	$(\wedge, 1)$	
12.	Λ	$(\wedge, 1)$	$(\vee,0).$	

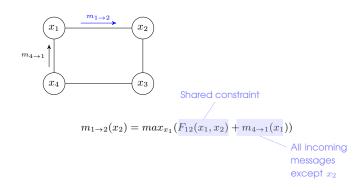


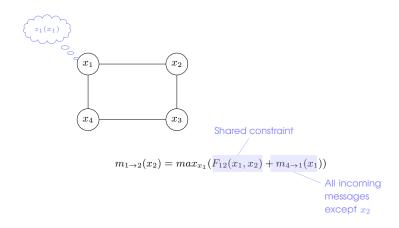


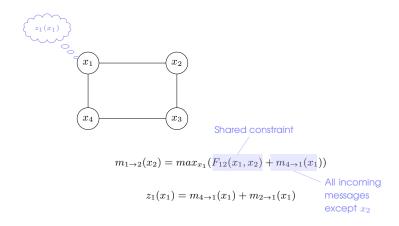


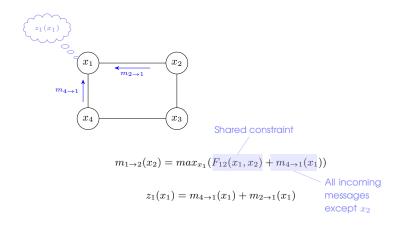
$$m_{1\to 2}(x_2) = max_{x_1}(F_{12}(x_1, x_2) + m_{4\to 1}(x_1))$$

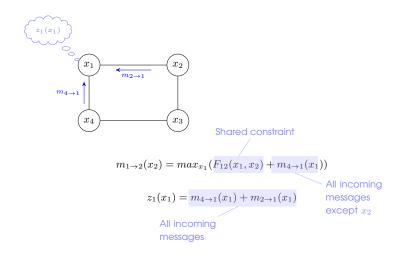


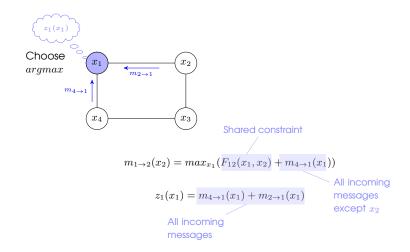








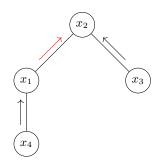




Max-Sum on acyclic graphs

Max-sum Optimal on acyclic graphs

- Different branches are independent
- Each agent can build a correct estimation of its contribution to the global problem (z functions)
- Message equations very similar to Util messages in DPOP
 - Sum messages from children and shared constraint
 - Maximize out agent variable
 - ► GDL generalizes DPOP (VINYALS et al., 2011)

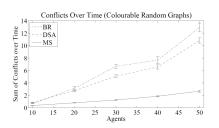


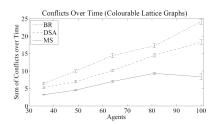
$$m_{1\to 2}(x_2) = \max_{x_1} (F_{12}(x_1, x_2) + m_{4\to 1}(x_1))$$

Max-sum Performance

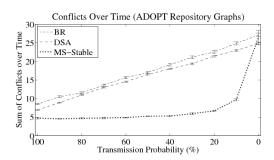
■ Good performance on loopy networks (Farinelli et al., 2008)

- ▶ When it converges very good results
 - ► Interesting results when only one cycle (WEISS, 2000)
- ▶ We could remove cycle but pay an exponential price (see DPOP)





- Low overhead
 - Msgs number/size
- Asynchronous computation
 - ► Agents take decisions whenever new messages arrive
- Robust to message loss



Contents

Synthesis Panorama

Panorama

Algorithm	Туре	Memory	Messages	Remarks
ADOPT	COP	Polynomial	Exponential	Complete
DPOP	COP	Exponential	Linear	Complete
DSA	COP	Linear	?	Not complete
MGM	COP	Linear	?	Not complete
Max-Sum	COP	Exponential	Linear on acyclic	Complete on trees

Table: DCOP algorithms

AJI, S.M. and R.J. McELIECE (2000). "The generalized distributive law". In: Information Theory, IEEE Transactions on 46.2, pp. 325–343, ISSN: 0018-9448, DOI: 10.1109/18.825794.

FARINELLI, A., A. ROGERS, A. PETCU, and N. R. JENNINGS (2008). "Decentralised Coordination of Low-power Embedded Devices Using the Max-sum Algorithm". In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems - Volume 2. AAMAS '08. International Foundation for Autonomous Agents and Multiagent Systems, pp. 639-646. ISBN: 978-0-9817381-1-6.

FITZPATRICK, Stephen and Lambert MEERTENS (2003). "Distributed Coordination through Anarchic Optimization". In: Distributed Sensor Networks: A Multiagent Perspective. Ed. by Victor LESSER, Charles L. ORTIZ, and Millind TAMBE. Boston, MA: Springer US, pp. 257–295. ISBN: 978-1-4615-0363-7.

MAHESWARAN, R.T., J.P. PEARCE, and M. TAMBE (2004). "Distributed Algorithms for DCOP: A Graphical-Game-Based Approach". In: Proceedings of the 17th International Conference on Parallel and Distributed Computing Systems (PDCS), San Francisco, CA, pp. 432–439.

MODI, P. J., W. SHEN, M. TAMBE, and M. YOKOO (2005). "ADOPT: Asynchronous Distributed Constraint Optimization with Quality Guarantees". In: *Artificial Intelligence* 161.2, pp. 149–180.

PETCU, Adrian and Boi FALTINGS (2005). "A scalable method for multiagent constraint optimization". In: *IJCAI International Joint Conference on Artificial Intelligence*, pp. 266–271. ISBN: 1045-0823.

VINYALS, Meritxell, Juan A. Rodríguez-Aguilar, and Jesus Cerquides (2011). "Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law". In: Autonomous Agents and Multi-Agent Systems 3.22, pp. 439–464. ISSN: 1387-2532. DOI: 10.1007/s10458-010-9132-7.

References (cont.)

WEISS, Yair (2000). "Correctness of Local Probability Propagation in Graphical Models with Loops". In: Neural Comput. 12.1, pp. 1–41. ISSN: 0899-7667. DOI: 10.1162/089976600300015880. URL: http://dx.doi.org/10.1162/089976600300015880.

YOKOO, M. (2001). Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-Agent Systems. Springer.

ZHANG, W., G. WANG, Z. XING, and L. WITTENBURG (2005). "Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks.". In: Journal of Artificial Intelligence Research (JAIR) 161.1-2, pp. 55–87.

ZHANG, Weixiong, Guandong WANG, Zhao XING, and Lars WITTENBURG (2003). "A Comparative Study of Distributed Constraint Algorithms". In: Distributed Sensor Networks: A Multiagent Perspective. Ed. by Victor Lesser, Charles L. Ortiz, and Millind TAMBE. Boston, MA: Springer US, pp. 319–338.