Comparing different interpolation methods on two-dimensional test functions

Thomas Mühlenstädt, Sonja Kuhnt

TU Dortmund

ENBIS EMSE, St. Etienne

01.07.2009
Introduction

Interpolation methods
- Kriging
- Thin plate spline
- Natural neighbor interpolation
- Kernel interpolation

Comparison

Summary
Simulation model for real world phenomena

- Deterministic
- Computational expensive

Needed: Easy to calculate surrogate

Setting:

- Design $D = \{\vec{x}_1, \ldots, \vec{x}_n\}$, $\vec{x}_i = (x_{i,1}, x_{i,2})$
- One-dimensional output y_1, \ldots, y_n
- $y_i = f(\vec{x}_i)$, f unknown

Fang et al. (2006)
Multivariate interpolation

Treated approaches:

- Kriging (Gaussian Random Fields)
- Thin plate spline (TPS)
- Natural neighbor interpolation (NNI)
- Kernel interpolation (KI)
Kriging

\[Y(\vec{x}_i) = g_\beta(\vec{x}_i) + Z(\vec{x}_i), \quad 1 \leq i \leq n, \]

- \(g_\beta(\vec{x}_i) \) regression part (here: \(g_\beta = \beta \in \mathbb{R} \))
- \(Z(\vec{x}) \sim (0, \sigma^2) \) normally distributed
- \(Z(\vec{x}_1) \) and \(Z(\vec{x}_2) \), \(\vec{x}_1 \neq \vec{x}_2 \) explicitly dependent:
 \[\text{cor}_{\theta}(Z(\vec{x}_1), Z(\vec{x}_2)) \to 1 \quad \text{for} \quad \vec{x}_1 \to \vec{x}_2 \]

Santner et al. (2003)
Kriging

\[\text{cor}(Z(\vec{x}_i), Z(\vec{x}_{i'})) = \exp \left(- \sum_{d=1}^{2} \theta_i |x_{i,d} - x_{i',d}|^2 \right) \]

- Estimation of parameters \(\beta, \theta, \sigma^2 \): REML
- Optimization of Log-likelihood: by \(R \) command `optim` for 50 different initial values
Thin plate spline (TPS)

- Generalization of cubic splines
- Solves the following optimization problem:

 \[
 \text{Search } f^*, \text{ such that } I(f) \text{ is minimized in a suitable functional space under the constraint of interpolation}
 \]

 \[
 I(f) = \int_{\mathbb{R}^2} \left(\frac{\partial^2 f(\vec{x})}{\partial x_1^2} \right)^2 + 2 \left(\frac{\partial^2 f(\vec{x})}{\partial x_1 \partial x_2} \right)^2 + \left(\frac{\partial^2 f(\vec{x})}{\partial x_2^2} \right)^2 \, d\vec{x}
 \]

 \text{Micula (2002)}
Thin plate spline (TPS)

- Can be solved explicitly:

\[f^*(\vec{x}) = \sum_{i=1}^{n} \lambda_i \phi(\|\vec{x} - \vec{x}_i\|_2) + \lambda_{n+1} + \lambda_{n+2}x_1 + \lambda_{n+3}x_2 \]

- \[\phi(r) = r^2 \log(r) \]
- Computation \(\lambda_1, \ldots, \lambda_{n+3} \): system of linear equations
Natural neighbor interpolation (NNI)

- Weighted mean of the \(y \)-values
- Strictly local method
- Uses the Voronoi diagramm for weighting

Sibson (1980)
Natural neighbor interpolation (NNI)
Natural neighbor interpolation (NNI)
Kernel interpolation (KI)

- Weight locally fitted linear functions under the constraint of interpolation
- Split up the convex hull of the design into simplices S_j (Delaunay triangulation)
- Fit a linear function $\hat{y}_j(x)$ to each simplex S_j
- Weight the linear functions:

$$\frac{\sum_{j=1}^{N} g_j(\tilde{x})\hat{y}_j(\tilde{x})}{\sum_{j=1}^{N} g_j(\tilde{x})}, \quad g_j(\tilde{x}) = \frac{1}{\prod_{i=0}^{2} \| \tilde{x}_i^j - \tilde{x} \|_2^2}$$

Mühlstädt and Kuhnt (2009)
Kernel interpolation (KI)
Kernel interpolation (KI)
Kernel interpolation (KI)
Kernel interpolation (\(KI\))

- Interpolation
- \(KI\)
Kernel interpolation (KI)
Kernel interpolation (KI)

- **Introduction**
- **Interpolation**
 - Kriging
 - TPS
 - NNI
 - KI
- **Comparison**
- **Summary**
- **References**
Kernel interpolation (KI)
Kernel interpolation (KI)
Kernel interpolation (KI)
Kernel interpolation (KI)
Kernel interpolation (KI)
Kernel interpolation (KI)

Kernel interpolation (KI) is a method used for function approximation. It involves the use of a kernel function to approximate a given function. The diagram illustrates the process, with various weight functions and linear functions used in the approximation.
Kernel interpolation (KI)
Kernel interpolation (KI)

The diagram illustrates the concept of kernel interpolation (KI) in the context of four-dimensional space. The graph shows a function f(x) plotted against x, with a range from -1 to 1. The function is represented by a series of linear segments, each connected by points. The right side of the diagram displays a bar chart indicating the weight distribution for linear functions.
Kernel interpolation (KI)
Kernel interpolation (KI)

- **Kernel interpolation (KI)**
- Linear function
- Weight
- Comparison
- Summary
- References
Kernel interpolation (KI)
Kernel interpolation (KI)
Kernel interpolation (\(KI\))

Properties of the Kernel interpolation:

- Continuous
- Differentiable (also at observation points)
- Able to predict outside of observation range
- Exactly reproduces linear functions
Comparison of interpolation methods

Which interpolation method should be used?

- 5 analytical 2-dim. examples
- Aim: high prediction power
- Prediction power: root mean square error (RMSE)
- Different experimental designs
Designs for computer experiments

- Difference to 'standard' DoE: no random error
- Example for a 'good' space filling designs: maximin latin hypercube design
- Also often encountered: factorial designs
- For sequential procedures: designs with clusters

Fang et al. (2006)
Used Designs

Maximin

Full factorial

Cluster

n = 10

n = 20

n = 30

n = 9

n = 16

n = 25

n = 36

n = 14

n = 22

n = 34
Root Mean square error (RMSE)

- Criterium for comparing different predictions:

\[RMSE(y, \hat{y}, \vec{r}_1, \ldots, \vec{r}_m) := \sqrt{\frac{1}{m} \sum_{i=1}^{m} (y(\vec{r}_i) - \hat{y}(\vec{r}_i))^2} \]

- \(\vec{r}_1, \ldots, \vec{r}_m \) points in the design space
- \(\vec{r}_1, \ldots, \vec{r}_m \) 10000 points of a Sobol’ Uniform Sequence
Implementation aspects

- Easy: Thin plate spline
- Acceptable:
 - Kriging
 - Kernel interpolation (if Delaunay triangulation is available)
- Difficult: Natural neighbor interpolation (Calculation of the Voronoi diagram constrained to design space)
Computation times

<table>
<thead>
<tr>
<th>Design</th>
<th>TPS</th>
<th>KI</th>
<th>Kriging</th>
<th>NNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{10}^{Mm}</td>
<td>10</td>
<td>15</td>
<td>13 - 22</td>
<td>839</td>
</tr>
<tr>
<td>D_{20}^{Mm}</td>
<td>13</td>
<td>27</td>
<td>69 - 162</td>
<td>1536</td>
</tr>
<tr>
<td>D_{30}^{Mm}</td>
<td>15</td>
<td>39</td>
<td>178 - 448</td>
<td>2239</td>
</tr>
</tbody>
</table>

- Computation times in seconds
- For 10000 prediction points
- Based on the maximin latin hypercube designs
Die force

- Model for the effective die force in sheet metal forming processes depending on friction and blankholder force
- Nearly linear in one variable

\[f(\bar{x}) = 0.9996(1090.91 + 4x_1 x_2) \exp \left(x_1 \frac{\pi}{2} \right), \]

\[D = [0.05, 0.2] \times [5, 30] \]
Die force

Die force, RMSE, Maximin LHD

Die force, RMSE, grid

Die force, RMSE, random
Hump function

- Standard example from optimization literature
- Extreme values on boundary

\[f(x, y) = 1.0316 + 4x^2 - 2.1x^4 + \frac{1}{3}x^6 + xy - 4y^2 + 4y^4, \]
\[D = [-5, 5]^2 \]
Hump function
Matlabs peaks function

- Good example for a hilly contour

\[
f(\mathbf{x}) = 3(1 - x_1)^2 \exp\left(-x_1^2 - (x_2 + 1)^2\right) - \\
10 \left(\frac{x_1}{5} - x_1^3 - x_2^5\right) \exp\left(-x_1^2 - x_2^2\right) - \\
\frac{1}{3} \exp\left(-(x_1 + 1)^2 - x_2^2\right), \quad D = [-2, 2]^2
\]
Matlabs peaks function
Assumption of smoothness often unrealistic
Continuous but not differentiable

\[f(x, y) = |x^2 + \sin(0.5\pi y) - y|, \quad D = [0, 1]^2. \]
Not smooth, RMSE, Maximin LHD

Not smooth, RMSE, grid

Not smooth, RMSE, random
Sibson’s function

- Proposed by Sibson (1980) for illustrating NNI
- High complexity for size of sample

\[
f(\bar{x}) = \cos \left(4\pi \sqrt{(x_1 - 0.25)^2 + (x_2 - 0.25)^2} \right),
\]

\[D = [0, 1]^2\]
Sibson’s function
Summary

- No overall winner
- Decision depends on design
- Kriging often very efficient, especially for higher sample sizes, designs with clusters
- KI and TPS good for small sample sizes
- NNI not recommendable

