Methane hydrate crystallisation in pure water and influence of PVP additive
How we can extrapolate results from laboratory experiments to pilot scale experiments

i.e.

How geometry affects the crystallisation processes

SYSTEM

- water + methane
- Oil in water emulsion + methane
- Water in oil emulsion + methane

GEOMETRY

- Batch reactor
- Batch reactor
- « pilot » flow loop

Scaling up
EXPERIMENTAL SET-UP:

Semi-batch pressurized and stirred reactor

- Isothermal (1°C)
- Isobaric [30-100 bars] → gas consumption
- Liquid injection (inhibitor)
- Turbidity sensor
Turbidity sensor

Parallel light beam

Scattering events
Particle size determinations
Particle sizing using in situ spectral turbidimetry

EXPERIMENTALS

\[
\tau_{\lambda} = \frac{1}{L} \ln \frac{I_0}{I_L}
\]

THEORY

\[
\tau_{\lambda} = \frac{\pi}{4} \int_0^\infty Q_{\text{sca}}(\lambda, D, m) D^2 f(D) dD
\]

Crystal population density function \(f(D) \)
Batch tank
Pure water and methane
Pressure of 3 MPa
Temperature of 1°C

Stirring rate
- 250 rpm
- 300 rpm
- 350 rpm
- 400 rpm
- 450 rpm
- 500 rpm
- 600 rpm

![Graph a](image)

![Graph b](image)
THEORY
Processes considered

Two-layer model

Methane dissolution

\[\frac{r}{V} = k_L a (C_{ext} - C) \]

\[\delta = \frac{D}{k_L} \]

Surface layer

Bulk

\[C_{ext} \]

\[C \]

\[H \]
EXPERIMENTAL RESULTS
Initially dissolved inhibitor

Influence on gas consumption rate

Long time experiments at 45 bar

Influence on gas consumption rate
3 steps

0% PVP K30
400 tr / min

1% PVP K30
400 tr / min

Gas consumption [mol]

Cbulk

nucleation

Cext

Ceq or C*

time

t-tL [s]
THEORY

Processes considered

\[
\frac{dC}{dt} = k_L a (C_{ext} - C) - \frac{4\pi}{\delta_m} GM^2
\]

Two-layer model

Surface layer

Bulk

\[\delta = \frac{D}{k_L} \]

Methane dissolution

Primary nucleation

Primary nucleation

Secondary nucleation

Fragmentation

Growth

Agglomeration
THEROY
Fundamentals equations & solution method

1- Methane mass balance equation

\[
\frac{dC}{dt} = k_L a (C_{ext} - C) - \frac{4\pi}{\vartheta_m} GM_2
\]

2-population balance equation

\[
\frac{\partial f}{\partial t} + G \frac{\partial f}{\partial R} = (B_I + B_{II} + B_{III}) \delta(R) + A_g
\]

Moment method

\[
M_j = \int_0^\infty R^j f(R) dR
\]

\[
\frac{dM_0}{dt} = B_I + B_{II} + B_{III} + A_0
\]

\[
\frac{dM_j}{dt} = jGM_{j-1} + A_j \quad 1 \leq j \leq 5
\]
THEORY
Primary nucleation

Integration on interfacial layer

Local rate:

\[B_I = k_1 \exp \left(-\frac{B}{\ln^2 \frac{C}{C_{eq}}} \right) \]

\[B_{I,1} = \sum \frac{k_1}{V_L} \int_0^\delta \exp \left(-\frac{B}{\ln^2 S(z)} \right) \, dz \]

Bulk zone

\[B_{I,2} = k_1 \exp \left(-\frac{B}{\ln^2 S_b} \right) \]

\[S = \frac{C}{C_{eq}} \]

Surpersaturation
THEORY
Growth: introduction of a dead zone

- rate-determining step: diffusion
 \[G_{\text{diff}} = k'_g (C_b - C^*) \]

- rate-determining step: growth
 \[G_{\text{réac}} = k''_g (C_b - C^*)^p \quad p = 1 \text{ ou } 2 \]

\[G = \min \left(G_{\text{diff}}, G_{\text{réac}} \right) \]
NUMERICAL SOLUTION
Parametric analysis

\[P = 30 \text{ bar} \]

Primary nucleation + growth

- Linear increase of \(Np \)
- Average diameter = Constant
- Supersaturation near 1
Batch tank
Pure water and methane
Pressure of 3 MPa
Temperature of 1°C

Stirring rate
- 250 rpm
- 300 rpm
- 350 rpm
- 400 rpm
- 450 rpm
- 500 rpm
- 600 rpm

(a) mean diameter [µm]
(b) Particles density [#/cm³]

Elapsed time [min]
THEORY
Processes considered

Two-layer model

Surface layer

Bulk

\(\delta = \frac{D}{k_L} \)

\(C_{\text{ext}} \)

\(C \)

\(H \)

\(\frac{r}{V} = k_L a(C_{\text{ext}} - C) \)

Methane dissolution
« Experimental study and interpretation of the action of a kinetic inhibitor on methane hydrate crystallization »

• INVESTIGATED SYSTEM : PVP

Poly-N-Vinyl-2-Pyrrolidone

Tools :
Gas consumption recording + Particle sizing
EXPERIMENTAL RESULTS
Initially dissolved inhibitor

Different concentrations in PVP K30 (0 to 1% weight)

\(P = 45 \text{ bar} \)

Turbidity variation with time

Induction time \(t_L \)

\(\% \text{ PVP K30} \)

Formation : 45 bar ; 400 tr / min

Formation : 45 bar ; 550 cm\(^{-1}\)
EXPERIMENTAL RESULTS
Initially dissolved inhibitor

Influence of PVP on the steady consumption rate

\[r_c \text{[mol / min]} \]

\[P = 45 \text{ bar} \]

\[\frac{r}{V} = k_L a (C_{ext} - C) \]

Stirring rate [rpm]

\%
PVP K30
ANALYTICAL MODEL
Phase 1: dead zone determination

Stationary consumption rate

\[
\frac{r_c}{V_L} = k_L a (C_{ext} - C^*)
\]

\[
C^* = C_{ext} - \frac{1}{k_L a V_L} \frac{r_c}{V_L}
\]

<table>
<thead>
<tr>
<th>Stationary consumption rate</th>
<th>Stationary consumption rate</th>
<th>Stationary consumption rate</th>
<th>Stationary consumption rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0E-05</td>
<td>5.5E-05</td>
<td>6.0E-05</td>
<td>6.5E-05</td>
</tr>
<tr>
<td>7.0E-05</td>
<td>7.5E-05</td>
<td>8.0E-05</td>
<td>8.5E-05</td>
</tr>
<tr>
<td>9.0E-05</td>
<td>9.5E-05</td>
<td>1.0E-04</td>
<td>1.0E-04</td>
</tr>
</tbody>
</table>

\(C^* \text{ [mol/mL]} \quad \omega = 300 \text{ tr/min} \)

\(C_{ext} \text{ (45 bar)} \)

\(C_{ext} \text{ (55 bar)} \)

\(C_{eq} \text{ (1°C; 29 bar)} \)

% PVP
EXPERIMENTAL RESULTS
Inhibitor injected during crystallization

$P = 45 \text{ bar} - \omega = 300 \text{ and } 400 \text{ rpm}$
EXPERIMENTAL RESULTS
Initially dissolved inhibitor

Influence on PSD

Increase in Np slower and slower

Lower decrease in D_{mean}
SIMPLIFIED ANALYTICAL MODEL

Main assumptions

• Rate-determining absorption: Concentration constant in bulk

• Crystal growth: existence of a dead zone for $C < C^*$

• Primary nucleation

\[
B_l = k_l G^n
\]

local

\[
C_{\text{bulk}} = C^*
\]

\[
B_l = b_0 + k_l (C_b - C^*)^q
\]

integrated

\[
b_0 = \frac{k_l k_g^n a\delta (C_{\text{ext}} - C^*)^{np}}{1 + np}
\]
Experimental results ➔ Two sources of crystals
ANALYTICAL MODEL

Phase 1: primary nucleation characterization

\[
b_0 = \frac{k_1 k_n^a \delta (C_{ext} - C^*)^{np}}{1 + np}
\]

Without additive

With PVP

\[\ln b_0 = \text{linear dependence against } \ln(\Delta C_M)\]

the same intercept

\[k_1 \text{ and } k_n \text{ are not affected by PVP, only } C^* \text{ varies}\]
Primary nucleation always active in the interfacial layer in presence of inhibitor (analytical model)

- Introduction of a wide dead zone $C^* > C_{eq}$
- Action on primary nucleation and growth rate
- Second source of crystals in later stages
- Long-range decrease of the inhibitor effect
Perspectives: extrapolate the model to real flow, that means:

1) To define what is a real flow

- gas
- oil
- Water

or

- gas
- Water in oil emulsion

2) To propose a crystallisation model

3) To couple with the rheology
3) To couple with the rheology

15.8% eau
0.08% IPE