A stochastic programming approach for planning remanufacturing activities under uncertain returns and demand forecasts

Manel MOURALI¹, Céline GICQUEL¹, Safia KEDAD-SIDHOUM²

¹Laboratoire de Recherche en Informatique Université Paris Sud ²Laboratoire d'Informatique de Paris 6 Université Pierre et Marie Curie

Journée du groupe GDR-RO P2LS 26 juin 2015

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Plan

- 2 State of the art
- Oeterministic optimization problem
- 4 Stochastic optimization problem
- 5 Preliminary computational results
- 6 Conclusion and perspectives

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Plan

Introduction

- 2 State of the art
- 3 Deterministic optimization problem
- 4 Stochastic optimization problem
- 5 Preliminary computational results
- 6 Conclusion and perspectives

Context

Circular economy

"In a world with growing pressures on resources and the environment, the EU has no choice but to go for the transition to a resource-efficient and ultimately regenerative circular economy."

Manifesto for a Resource Efficient Europe, European Commission, 2012

< ロ > < 同 > < 三 > < 三

Context

Circular economy

"In a world with growing pressures on resources and the environment, the EU has no choice but to go for the transition to a resource-efficient and ultimately regenerative circular economy."

Manifesto for a Resource Efficient Europe, European Commission, 2012

(日) (同) (三) (三)

Reverse supply chains

- One possible way towards developing a circular economy
- Set of logistics and rehabilitation activities to transform end-of-life products returned by customers into once again usable products
- Main advantages:
 - Reduction in waste generation and environmental pollution
 - Decrease of natural resource consumption

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

Reverse supply chain

Remanufacturing planning

Remanufacturing system

Remanufacturing planning

Remanufacturing system

Aggregate production planning

Decide how many:

- used products to disassemble
- remanufactured products to assemble

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Remanufacturing planning

Remanufacturing system

Aggregate production planning

Decide how many:

- used products to disassemble
- remanufactured products to assemble

so as to:

- satisfy customer demand
- respect technical constraints: capacity, bill of materials, inventory balance
- minimize total production costs.

Uncertain returns/demand

A specific feature in reverse logistics

No binding agreement with the end users to manage product returns Lack of control on the product returns quantity and quality \rightarrow High level of uncertainty in the input data of the optimization problem

[Fleischmann et al., 1997]

Uncertain returns/demand

A specific feature in reverse logistics

No binding agreement with the end users to manage product returns Lack of control on the product returns quantity and quality \rightarrow High level of uncertainty in the input data of the optimization problem

[Fleischmann et al., 1997]

Our proposal

A two-stage stochastic programming approach to take into account the uncertainty on:

- returns quantity / quality
- customer demand

◆□▶ ◆圖▶ ◆厘▶ ◆厘♪

Plan

Introduction

2 State of the art

3 Deterministic optimization problem

- 4 Stochastic optimization problem
- 5 Preliminary computational results
- 6 Conclusion and perspectives

Overview of the literature

Aggregate production planning for remanufacturing

- General literature reviews [Aksali and Cetinkaya, 2011], [Lage and Godinho, 2012]
- Deterministic optimization problems [Jayaraman, 2006], [Qu and Williams, 2008] [Corominas et al., 2012], [Fall et al., 2013], [Han et al., 2013]
- Stochastic optimization problems [Li et al., 2009], [Shi et al., 2010] [Denizel et al., 2010], [Rouf and Zhang, 2011] [Mahapathra et al., 2012]

Overview of the literature

Aggregate production planning for remanufacturing

- General literature reviews [Aksali and Cetinkaya, 2011], [Lage and Godinho, 2012]
- Deterministic optimization problems [Jayaraman, 2006], [Qu and Williams, 2008] [Corominas et al., 2012], [Fall et al., 2013], [Han et al., 2013]
- Stochastic optimization problems [Li et al., 2009], [Shi et al., 2010] [Denizel et al., 2010], [Rouf and Zhang, 2011] [Mahapathra et al., 2012]

Classification based on

- the production planning problem
- the uncertainty modeling
- the solution approach

イロト イ団ト イヨト イヨ

Classification (1)

Production planning problem

	Products	Periods	Prod. stages	Activities
Li <i>et al.</i> , 2009	1	Т	1	Remanuf.
Shi <i>et al.</i> , 2010	N	1	1	Manuf./Remanuf.
Denizel <i>et al.</i> , 2010	1	Т	2	Remanuf.
Rouf and Zhang, 2011	N	1	2	Remanuf.
Mahapathra <i>et al.</i> , 2012	N	Т	1	Manuf./Remanuf.
Our work	Ν	Т	2	Remanuf.

- + A realistic production planning problem
- Focus only on the remanufacturing activities

・ロト ・日下・ ・日下・

Classification (2)

Uncertainty modeling

		Returns	Returns	Uncertainty
	Demand	quantity	quality	representation
Li <i>et al.</i> , 2009	х	х		Discrete random variables
Shi <i>et al.</i> , 2010	x	х		Continuous random variables
Denizel <i>et al.</i> , 2010			х	Scenario tree
Rouf and Zhang, 2011	х	х		Continuous random variables
Mahapathra <i>et al.</i> , 2012			х	Deterministic
Our work	×	×	x	Scenarios

- + Uncertainty on demand / returns quantity / returns quality
- Simple representation via a set of discrete scenarios

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Classification (3)

Solution approach

	Backlog	Probabilistic	Recourse	Solution
	Lost sales	constraints	actions	approach
Li <i>et al.</i> , 2009	х			Stochastic dynamic prog.
Shi <i>et al.</i> , 2010	х	х		Single-stage stoch. prog.
Denizel <i>et al.</i> , 2010			х	Multi-stage stoch. prog.
Rouf and Zhang, 2011	х	х		Single-stage stoch. prog.
Mahapathra <i>et al.</i> , 2012			х	Recourse problem only
Our work	x		×	Two-stage stoch.prog.

- + Definition of recourse actions applicable in practice
- Consideration of only 2 stages in the decision process

Plan

Introduction

- 2 State of the art
- 3 Deterministic optimization problem
 - 4 Stochastic optimization problem
 - 5 Preliminary computational results
 - 6 Conclusion and perspectives

・ロト ・回ト ・ヨト

Product flows

Image: A math a math

Deterministic optimization problem

Problem description (3)

Main decisions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Main decisions

・ロト ・日下・ ・ ヨト・

Deterministic optimization problem

Problem description (3)

Constraints

Constraints

Constraints

<ロト <回ト < 回ト

Deterministic optimization problem

Problem description (4)

Costs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Costs

Costs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Costs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Costs

<ロト <回ト < 回ト

Quality of the returned products

Use of a finite set of discrete quality levels For each returned product type and each quality level:

- A disassembly bill-of-material
- A per unit disassembly capacity consumption
- A per unit disassembly cost

[Jayaraman, 2006]

Assumption

The returned products have already been sorted and assigned to a quality level.
Linear programming formulation

Minimize total production costs

- = disassembly/assembly costs
- + inventory holding costs
- $+ \,$ new parts acquisition costs
- + used products disposal costs

subject to :

- capacity constraints
 - disassembly
 - assembly
- inventory balance + BOM constraints
 - returned products
 - parts
 - remanufactured products

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Plan

Introduction

- 2) State of the art
- 3 Deterministic optimization problem
- 4 Stochastic optimization problem
 - 5 Preliminary computational results
 - 6 Conclusion and perspectives

・ロト ・回ト ・ ヨト

Uncertainty

Uncertainty

Consequences

Demand

 \rightarrow Impact limited to the remanufactured product inventory

Image: A match the second s

Uncertainty

Consequences

- Demand
 - \rightarrow Impact limited to the remanufactured product inventory
- Returns quantity and quality
 - \rightarrow Disorganization of the disassembly and assembly production plan

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Uncertainty representation

Continuous random variables

- Uncertainty mostly due to forecasting errors
- Forecasting errors = Normally distributed random variables
- Terms involving integrals in the mathematical formulation
- $\bullet \ \to \ Computational \ difficulties$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Uncertainty representation

Continuous random variables

- Uncertainty mostly due to forecasting errors
- Forecasting errors = Normally distributed random variables
- Terms involving integrals in the mathematical formulation
- $\bullet \ \to \ Computational \ difficulties$

A finite set of discrete scenarios

- Monte Carlo sampling of the continuous random variables
- A scenario = a possible realization of all uncertain parameters For each period:
 - demand for each remanufactured product
 - returned quantity for each quality level of each used product
- The larger the sample size, the better the approximation.

A two-stage decision process

A two-stage decision process

 "Here-and-now" decisions Before the realization of the uncertain parameters Decisions common for all scenarios

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A two-stage decision process

- "Here-and-now" decisions Before the realization of the uncertain parameters Decisions common for all scenarios
- "Wait-and-see" decisions / Recourse actions After the realization of the uncertain parameters Decisions specific to each scenario

A B A B A B A

First stage decisions

• • • • • • • • • • •

Stochastic optimization problem

Two-stage stochastic programming approach

First stage constraints

Image: A math a math

Stochastic optimization problem

Two-stage stochastic programming approach

First stage costs

First stage costs

<ロト <回ト < 回ト

Stochastic optimization problem

Two-stage stochastic programming approach

Stochastic optimization problem

Two-stage stochastic programming approach

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A B A B A B A

Stochastic optimization problem

Two-stage stochastic programming approach

Image: A match the second s

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

・ロト ・ 日 ・ ・ ヨ ト

Linear programming formulation

Minimize total production costs

- = first-stage decision costs
 - disassembly/assembly cost
 - new parts acquisition cost
- $+ \,$ expected value of the second-stage decision costs
 - inventory holding cost
 - used products disposal cost
 - new part rush acquisition cost
 - lost sales cost

subject to :

- first-stage constraints
 - disassembly capacity
 - assembly capacity
- second-stage constraints
 - inventory balance of returned products
 - inventory balance of parts
 - inventory balance of remanufactured products
 - link between the initial and adjusted disassembled quantities

Plan

Introduction

- 2 State of the art
- 3 Deterministic optimization problem
- 4 Stochastic optimization problem
- 5 Preliminary computational results
 - 6 Conclusion and perspectives

<ロト <回ト < 回ト

Instances

Instance size

	Used/remanuf.	Quality		
	products	levels	Parts	Periods
Instance 1	2	1	1	2

Numerical values of the deterministic parameters

Case study presented in [Jayaraman, 2006] Remanufacturing of mobile phones

Scenario generation

- Random parameters: uniform probability distribution
- Expected value based on the case study presented in [Jayaraman, 2006]
- \bullet Support interval: +/- 10% around the expected value

イロト イヨト イヨト イヨト

Preliminary results

Scenarios	Variables	Constraints	Optimal cost
1	11	6	58.8
10	189	135	75.7
100	617	309	243.5
1000	19994	13995	352.7
2000	39994	27995	483.2
2600	_	-	_

イロト イヨト イヨト イヨト

Plan

Introduction

- 2 State of the art
- 3 Deterministic optimization problem
- 4 Stochastic optimization problem
- 5 Preliminary computational results
- 6 Conclusion and perspectives

・ロト ・回ト ・ヨト

Conclusion

Remanufacturing planning under uncertainty

- Aggregate production planning
- Multi-product multi-period problem
- Disassembly/Reassembly coordination
- Uncertainty on the demand, returns quantity and quality

・ロン ・回 と ・ ヨン・

Conclusion

Remanufacturing planning under uncertainty

- Aggregate production planning
- Multi-product multi-period problem
- Disassembly/Reassembly coordination
- Uncertainty on the demand, returns quantity and quality

Two-stage stochastic programming approach

- Uncertainty represented by a set of discrete scenarios
- First-stage decisions: initial production and supply planning
- Second-stage decisions: planning adjustments applicable in practice
- Formulation of a large-size linear program

・ロト ・回ト ・ヨト ・

Perspectives

Short-term perspectives

- Develop a efficient solution approach based on the L-shaped method
- Assess the practical interest of using stochastic programming

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Perspectives

Short-term perspectives

- Develop a efficient solution approach based on the L-shaped method
- Assess the practical interest of using stochastic programming

Mid-term perspectives

- Improve the production planning problem representation:
 - more activities: sorting/grading, part refurbishing
 - hybrid manufacturing/remanufacturing system
 - non-linear production costs
- Improve the uncertainty representation
 - \rightarrow multi-stage decision process

・ロト ・回ト ・ヨト ・
Thank you for your attention !

◆□ > ◆□ > ◆臣 > ◆臣 >