Quantitative Models for the Circular Economy

Robin Molinier1

1Univ. Grenoble Alpes, G-SCOP, F-38000 Grenoble, France
CNRS, G-SCOP, F-38000 Grenoble, France
Team : Bernard PENZ1/ Fabien MANGIONE1

Journee "Sustainable Production Planning", GT P2LS, 2015
Outline

1. Modelling closed loop supply chain
 - Closed Loop Network architecture
 - Industrial Cases
 - Model building

2. Lot Sizing Models: implications of closing the loop
 - Inventory Policy Models
 - Dynamic Lot Sizing Models

3. Dynamic Lot Sizing Models: partial investigations
 - A first model: Reuse and Remanufacturing
 - additional criteria investigations
 - Model1: Static Analysis

4. Conclusion and Further investigations
Modelling choices

Network Modelling

Interdependencies among supply chain parts and value drivers

- Forward and Reverse Operations: Which one to focus on?
- Demand structure and returns modelling: Quality issues.
- The set of relevant economic parameters.
Modelling closed loop supply chain
Lot Sizing Models: implications of closing the loop
Dynamic Lot Sizing Models: partial investigations
Conclusion and Further investigations

Closed Loop Network architecture
Industrial Cases
Model building

Figure: Functional Diagram (Ellen Mc Arthur Foundation)
The Circular Economy: Industrial Applications

- Coca Cola, Grigny Factory.
 PET Bottles recovery for production, Investment: 17 M euros
The Circular Economy: Industrial Applications

- Coca Cola, Grigny Factory.
 PET Bottles recovery for production, Investment: 17 M euros
- Michelin, Transportation Compagnies Service.
 Recovery of Tires and Refurbishing
The Circular Economy: Industrial Applications

- Coca Cola, Grigny Factory. PET Bottles recovery for production, Investment: 17 M euros
- Michelin, Transportation Compagnies Service. Recovery of Tires and Refurbishing
The Circular Economy: Industrial Applications

- Coca Cola, Grigny Factory. PET Bottles recovery for production, Investment: 17 M euros
- Michelin, Transportation Companies Service. Recovery of Tires and Refurbishing
- Castorama; Veolia, Partnership. Wood recovery by Veolia, Kitchen board remanufacturing
The Circular Economy: Industrial Applications

- Coca Cola, Grigny Factory.
 PET Bottles recovery for production, Investment: 17 M euros
- Michelin, Transportation Compagnies Service.
 Recovery of Tires and Refurbishing
- Renault, Vehicle repairing and Recycling.
 Car modules for repair and use of 29% of recycled Metals.
- Castorama; Veolia, Partnership.
 Wood recovery by Veolia, Kitchen board remanufacturing
- Kalundborg; Le Havre, Eco-Industrial Parks.
 Cascading valorisation of waste as inputs
Model Design Variables

Product Design

Design to fit with Circularity needs

- Modularity and disassembly.
- Bill of Materials: technical coefficients.
- Product state is changing over the chain and cycles.
Model design variables

Mathematical formulation

How to represent such a system

- Exogeneous parameters: Structuring the problem.
- Decision variables: Directly acting for managing the chain.
- Status variables: Ensure consistency and realism.
Model Design

New Business Models

Sustainability must be addressed by criteria and constraints

- Economic side: Financial requirements.
- Environmental side: Polluting emissions, resources depletion.
- Social side: Workforce well being, localization of activities.
Inventory Policy Models: New Design Variables

- Product return patterns.
- Collection operations.
- Component inventories.
- Remanufactured product inventories.
- Recovery operations.
Example

Saadany, Jaber (2010): A production-remanufacture model with returns subassemblies managed differently (Int. J. Production Economics)
Decision variables:
Remanufacturing and production binaries; reuse ratio

\[H_1 = h_r \frac{DT_r^2}{2} + h_p \frac{DT_p^2}{2} = h_r \frac{D\beta_x^2 T^2}{2} + h_p \frac{D(1-\beta_x)^2 T^2}{2} \]

\[= \frac{DT^2}{2} (h_r \beta_x^2 + h_p (1-\beta_x)^2) \]

Figure: Objective Function

Here, extreme policies are tested
Dynamic Lot Sizing Models: new patterns

- Product return patterns.
- Component management.
- Remanufacturing.
- Recovery and disposal operations.
Example

Pan and Al (2008):
Capacitated dynamic lot sizing problems in CLSC
(European Journal of Operational Research)

Fig. 1. The closed-loop supply chain with production, disposal and remanufacturing.
Decision variables:

Remanufacturing and production; inventory levels; disposal

\[
\begin{align*}
\text{min} & \quad \sum_{t=1}^{T} (g_t(y_t) + e_t(z_t) + \theta_t(I_t^r) + \phi_t(I_t^s)) \\
\text{subject to} & \quad I_t^r = I_{t-1}^r + R_t - y_t \quad \forall t, \\
& \quad I_t^s = I_{t-1}^s + y_t + z_t - D_t \quad \forall t, \\
& \quad y_t \leq C_t^r \quad \forall t, \\
& \quad z_t \leq C_t^p \quad \forall t, \\
& \quad I_t^r, I_t^s, y_t, z_t \in R^+ \quad \forall t.
\end{align*}
\]

Figure: The Mathematical Programm

Aim: Introduce capacity constraints and derive implications for different specifications under several scenarios
Our Focus: Development of Quantitative Models for CLSC

- An investigation Tool.
 Raising trade-offs, structuring CLSC analysis
- Normative assessment.
 Adressing trade-offs, provide recommendations
- Need to develop innovative models.
 network configuration, criterias, constraints
We must target a **focal firm** to name the recovery operations. Scales are related to a final product (different representations).
Model1: Reuse and Remanufacturing

- Our focus: Level 1 and 0 for a vertically integrated firm: B2C framework with segmentation, Profit Maximization.
Model1: Reuse and Remanufacturing

NIVEAU 2: SOURCING

Procurement

\(X_{a,2}(t) \)

[Modules Inventory]

\(X_{c,2} \)

Reuse and Remanufacturing

\(X_{c,2}(t) \)

NIVEAU 1: PRODUCTION

Production

\(X_{a,1}(t) \)

\(X_{a,0}(t) \)

\(X_{a,1}(t) \)

NIVEAU 0: DISTRIBUTION

[Finished Products Inventory]

\(X_{c,0}(t) \)

\(X_{c,1} \)

\(d_a(t) \)

\(d_b(t) \)

\(d_c(t) \)

Collection Center

\(r_i'(t) \)

Waste

\(X_{w}(t) \)

NIVEAU 0: DISTRIBUTION

Mgmt

\(X_{w}(t) \)

\(R_{i}(t) \)
Modelling closed loop supply chain
Lot Sizing Models: implications of closing the loop
Dynamic Lot Sizing Models: partial investigations
Conclusion and Further investigations

Model 1: Reuse and Remanufacturing

Objective Function: PROFIT MAXIMIZATION

\[
\max \sum_{t=1}^{T} \sum_{i=1}^{L} \sum_{m} X_{m0}(t) p_m(t) - (s_{mi}(t) S_{mi}(t) + c_{mi}(t) X_{mi}(t) + c_w(t) X_w(t) + h_{mi} l_{mi}(t) + h_{ri} l_{ri}(t))
\]

\(t \in \{0, T\}\) the time periods
\(i \in \{1, L\}\) the supply chain levels (where 0 stands for the distribution) where: the returns of level \(i\) are usable at \(j \geq i\) value recovery options
\(m \in \{a; c\}\) the new or used status of items where: "a" stands for the new items and "c" for the used ones (red flows)
Model 1: Reuse and Remanufacturing

Model Parameters:
- $d_a(t)$, demand for new product
- $d_b(t)$, demand accepting both products
- $d_c(t)$, demand for used product
- $p_a(t)$, market price for new product
- $p_c(t)$, market price for used product
Model1: Reuse and Remanufacturing

Model Parameters:

$Cap_{mi}(t)$, Capacity for activities

$s_{mi}(t)$, set-up cost for activity in level i

$c_{mi}(t)$, item of level i unit cost

$c_w(t)$, waste disposal unit cost

$h_{mi}(t)$, item of level i inventory unit cost

$h_{ri}(t)$, returned products of level i inventory unit cost

$r'_i(t)$, amount of returns of items of level i in t
Model 1: Reuse and Remanufacturing

Decision Variables:
- $R_i(t)$, quantity of returned item of least reusable level "i" sorted
- $X_{mi}(t)$, quantity of servicable items of "i" level
- $X_w(t)$, quantity of disposed items (wasted)

Status Variables:
- $l_{mi}(t)$, Inventory for item of level i
- $l_{ri}(t)$, Inventory for returned item of level i
- $S_{mi}(t)$, Boolean indicating if activity is performed in t
- $X'_{ci}(t)$, quantity of used items allocated from R_j.
Model 1: Reuse and Remanufacturing

Demand Constraints:

\[X_{a0}(t) \leq d_a(t) + d_b(t) \quad \forall t \] \hspace{1cm} (2)

\[X_{c0}(t) \leq d_c(t) + d_b(t) \quad \forall t \] \hspace{1cm} (3)

\[X_{a0}(t) + X_{c0}(t) \leq d_a(t) + d_b(t) + d_c(t) \quad \forall t \] \hspace{1cm} (4)
Model 1: Reuse and Remanufacturing

Capacity Constraint and Set up trigerring:

$$X_{mi}(t) \leq S_{mi}(t)Cap_{mi}(t) \quad \forall t, m, (i \neq 0)$$ \hspace{1cm} (5)

Recovery Decisions Constraints:

$$\sum_{j=1}^{i} R_j(t) \geq \sum_{j=1}^{i} X'_{c,j}(t) \quad \forall t, 0 < i < L$$ \hspace{1cm} (6)

$$\sum_{j=1}^{L} R_j(t) = \sum_{j=1}^{L} (X'_{c,j}(t)) + X_w(t) \quad \forall t$$ \hspace{1cm} (7)
Model 1: Reuse and Remanufacturing

Inventories Dynamics:

\[I_{ri}(t) = I_{ri}(t-1) + r_i'(t) - R_i(t) \quad \forall t, i \quad (8) \]
\[I_{m0}(t) = I_{m0}(t-1) + X_{m1}(t) - X_{m0}(t) \quad \forall t, m \quad (9) \]
\[I_{ci}(t) = I_{ci}(t-1) + X_{ci}'(t) - X_{ci}(t) \quad \forall t, \forall (i \neq 0) \quad (10) \]
\[I_{ai}(t) = I_{ai}(t-1) + X_{a(i+1)}(t) + X_{c(i+1)}(t) - X_{ai}(t) \quad \forall t, \forall (i \neq 0) \quad (11) \]

Variables Sets:

\[S_{mi}(t) \in \{0, 1\} \quad (12) \]
\[X_{mi}(t), X_{w}(t), X_{ci}'(t), R_i(t), l_{mi}(t), I_{ri}(t) \in \mathbb{R}^+ \quad (13) \]
Some Simulations (X-Press)
Economic Sustainability: Financial issues

- No Bankruptcy: loss compensation by gain

\[
\sum_{t=1}^{k} \pi(t) \geq 0 \quad (14)
\]

- No persistent losses: no more than \((\tau - 1)\) consecutive periods

\[
\sum_{t=1}^{\tau} \gamma(t) + \sum_{t=(\tau + 1)}^{k} (\gamma(t) - \gamma(t-\tau)) \leq (\tau - 1) \quad s.t: \quad M \gamma(t) \geq -\pi(t) \quad (15)
\]

- Loss occurrence limitation: mitigating losses frequency

\[
Objective: \quad MAX(\Pi) - \Gamma \sum_{t=1}^{T} \gamma(t) \quad s.t: \quad M \gamma(t) \geq -\pi(t) \quad (16)
\]
Social Sustainability: Workforce well-being

- Workload balance:

\[\text{Objective} : \max (\Pi) - \omega \dot{W} \quad \text{s.t.} \quad \dot{W} \geq W(t) \forall t \quad (17) \]

- Workload volatility

\[\text{Objective} : \max (\Pi) - \Theta \sum_{t=1}^{T} \Delta(t) \quad \text{s.t.} \quad W(t+1) - W(t) = \Delta(t) \quad (18) \]

- Compensation scheme for over the limit worked hours

\[\text{Objective} : \max (\Pi) - \omega \sum_{t=1}^{T} \theta(t) \quad \text{s.t.} \quad M \theta(t) \geq (W - W_{\text{max}}) \quad (19) \]
Some Simulations with Workforce Consideration

Figure: Workload volatility mitigation
Environmental Sustainability: Waste and pollutions

- Natural capital regeneration: ecosystem services

\[
\sum_{t=1}^{k} \sum_{\text{activities}} E(t,\text{act}) \leq \epsilon \quad (20)
\]

- Pollution mitigation
 Include unitary, fixed costs for emissions.

- Additional constraints
 on emissions in periods or over the planning horizon, Cumulative Waste Constraint.
Static Analysis

Single Period Trade-offs

Investigate decisions in a period about circular schemes relevance

- Parameters configuration
- Priority rules for optimality
- Issues related to capacities
Static Analysis

The methodology is based on:

- Cases discussion: Parameters for resources and costs
- Optimization: Allocations orientation
- Determination of values: min/ Max operators
Static Analysis: Elements of interest

- for activities Mark-up:

Procurement: \(m_P = p_a(X_{P,a} + X_{P,b}) - c_P X_P - c_{a,1} X_P - c_{a,0} X_P \)

Reuse: \(m_{RU} = p_c(X_{RU,c} + X_{RU,b}) - c_{RU} X_{RU} - c_{c,0} X_{RU} \)

reman: \(m_{rm} = p_a(X_{rm,a} + X_{rm,b}) - c_{rm} X_{rm} - c_{a,1} X_{rm} - c_{a,0} X_{rm} \)

- for resources from returns:

\(r' \leq (d_b + d_c) \), few returns available

\(r' \leq (d_a + d_b + d_c) \), not enough for all

\(r' \geq (d_a + d_b + d_c) \), large enough for all
Static Analysis: problem setting

MAXIMIZE PROFIT

Under Demand/Supply decomposition constraints:

\[X_P = X_{P,a} + X_{P,b} \]
\[X_{RU} = X_{RU,c} + X_{RU,b} \]
\[X_{rm} = X_{rm,a} + X_{rm,b} \]
\[d_a \geq X_{P,a} + X_{rm,a} \]
\[d_b \geq X_{P,b} + X_{rm,b} + X_{RU,b} \]
\[d_c \geq X_{RU,c} \]
\[d_c + d_b \geq X_{RU} \]
\[d_a + d_b \geq X_P + X_{rm} \]
\[d_a + d_b + d_c \geq X_P + X_{rm} + X_{RU} \]

Meaning: Lost sales are allowed and market is segmented

Robin Molinier
Quantitative Models for the Circular Economy
How and Why to analyse the single period system behavior? Parameters drive the resolution path, tricky configurations addressed. Optimizing the Demand-Activities-Resources channels:

- Intensively:
 The Mark-up defines priorities for resource allocation.
- Extensively:
 Lost sales must be avoided (carefully analyse d_c status).
- Leakages:
 Disposal is neutral because of the assumed mark-up rankings.
Static Analysis: Outcomes without Capacities

Table: Case 1-1: $r' \leq (d_b + d_c)$

<table>
<thead>
<tr>
<th>$m_{RU} > m_{rm} > m_P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_{RU,c} = \min{r'; d_c}$</td>
</tr>
<tr>
<td>$X_{RU,b} = \max{r' - d_c; 0}$</td>
</tr>
<tr>
<td>$X_{rm,a} = 0$</td>
</tr>
<tr>
<td>$X_{rm,b} = 0$</td>
</tr>
<tr>
<td>$X_{Pa} = d_a$</td>
</tr>
<tr>
<td>$X_{P,b} = d_b + \min{d_c - r'; 0}$</td>
</tr>
<tr>
<td>$W = 0$</td>
</tr>
</tbody>
</table>
Static Analysis: Outcomes with Capacities

Table: Case 1;1: \(r' \leq (d_b + d_c) \)

<table>
<thead>
<tr>
<th>(m_{RU})</th>
<th>(m_{rm})</th>
<th>(m_P)</th>
</tr>
</thead>
</table>

\[
X_{RU} = \min\{r'; K_{RU}\} \\
X_{rm} = \max\{0; \min\{K_{rm}; r' - K_{RU}\}\} \\
X_P = d_a + d_b - \max\{0; X_{RU} - d_c\} - X_{rm} \\
W = \max\{r' - (K_{rm} + K_{RU}); 0\}
\]
Static Analysis: Profit Diagrams

- infinite capacities, $m_{Ru} > m_{Rm} > m_P$.

![Diagram showing profit diagrams with marks for r', demand, d_c, d_b, d_a, m_P, m_{Rm}, and m_{Ru}]
finite capacities, $m_{Ru} > m_{Rm} > m_P$.

\begin{align*}
\text{Static Analysis: Profit Diagrams} \\
\text{finite capacities, } m_{Ru} > m_{Rm} > m_P.
\end{align*}
finite capacities, \(m_{Rm} > m_{Ru} + m_P \).
Static Analysis: Profit Diagrams

- finite capacities, $m_{Rm} < m_{Ru} + m_P$.
Static Analysis: Profit Diagrams

- Lost sales plays an important role (High opportunity cost)
Conclusion and further investigations

- "Green" and "Social" Criteria.
 Energy, Disposal, WorkForce:
 Need to refine objective functions and constraints

- Dynamics Analysis.
 Inventories, demands and cost structure evolutions:
 How to manage inter-temporal channels activities

- Optimization Mechanism for Dynamic Lot Sizing Problem.
 Which characterizes an optimal plan?:
 Necessary conditions, dynamic interactions
Conclusion and further investigations

- Adressing model relevance.
 Economic conditions:
 Do not focus on irrelevant cases

- Enlight regulatory issues.
 Endogeneizing mark-up:
 Regulator objectives, incentive schemes

- Returns modelling and industrial collaborations.
 Consumers implication, bargaining over incremental value:
 Techno-economic models for business development
Some references

- Saadany, Jaber, 2010: A production-remanufacture model with returns subassemblies managed differently
- Pineyro, Viera, 2013: The economic lot sizing problem with remanufacturing and one way substitution
- Ramezani and Al, 2014: CLSC network design: a financial approach
- Pan and Al, 2008: Dynamic lot sizing problems in CLSC
Modelling closed loop supply chain
Lot Sizing Models: implications of closing the loop
Dynamic Lot Sizing Models: partial investigations
Conclusion and Further investigations

Thank you for your attention!