Incorporating some sustainability issues in lot-sizing models

Wilco van den Heuvel

Econometric Institute, Erasmus University Rotterdam, e-mail: wvandenheuvel@ese.eur.nl

joint work with Raf Jans, Mathijn Retel Helmrich, Dolores Romero Morales, Edwin Romeijn and Albert Wagelmans

Paris, June 26, 2015

Outline

We fill focus on sustainability issues in operational decisions.

- Lot-sizing with remanufacturing: joint and separate set-up cost
 - Natural MIP formulations
 - Complexity results
 - Reformulations
 - Computational tests
- 2 Lot-sizing with an emission constraint
 - Complexity results
 - Algorithms
 - Lagrangian heuristic
 - * Pseudo-polynomial algorithm for *co-behaving* costs and emissions
 - Fully polynomial time approximation schemes (FPTASes)
 - Computational tests
- Bi-objective lot-sizing: minimize costs and emissions
 - Finding Pareto points
 - Complexity results
 - Efficient DP Algorithms for special cases

Classic economic lot-sizing problem

Data:

- T : planning horizon indexed by t
- d_t : demand ($D_{t,\tau} = \sum_{s=t}^{\tau} d_s$)
- (K_t, p_t, h_t) : (setup, unit production, unit inventory) costs

Decisions:

- (y_t, x_t, I_t) : (setup, production, inventory) decisions
- Trade-off between (fixed) set-up costs and (linear) holding costs.
- Solvable in $\mathcal{O}(T \log T)$ time
- subproblem in MRP/ERP (usually solved heuristically)

Part I: Lot-sizing with remanufacturing

Classic single-item, uncapacitated lot-sizing problem (upper layer) plus:

- A known quantity of used products *r*_t is returned from customers in each period *t*.
- 'Returns' can be remanufactured, so that they are as good as new.
- When to set up the (re-)manufacuring process?

Extra decisions:

• (y_t^r, x_t^r, I_t^r) : remanufacturing (setup, production, inventory) decisions

Lot-sizing with remanufacturing

- 'Returns' can be remanufactured, so that they are as good as new.
 - no choice: printer cartridges, single-use cameras
 - service contract: copiers
- A known quantity of used products is returned from customers in each period.
 - remanufacturing included in more and more MRP/ERP systems
- The manufacturing and remanufacturing process have either *joint* (ELSRj) or *separate* (ELSRs) set-up costs (Teunter et al., 2006)
 - manufacturing and remanufacturing on the same or different production lines

Natural formulation: separate set-ups

$$\min \sum_{t=1}^{T} \left(K_t^m y_t^m + p_t^m x_t^m + h_t^s I_t^s + K_t^r y_t^r + p_t^r x_t^r + h_t^r I_t^r \right)$$
(1)

Natural formulation: joint set-ups

$$\min \sum_{t=1}^{T} \left(K_t y_t + p_t^m x_t^m + h_t^s I_t^s + p_t^r x_t^r + h_t^r I_t^r \right)$$
(8)

s.t.
$$I_t^s = I_{t-1}^s + x_t^m + x_t^r - d_t$$
 $t = 1, ..., T$ (9)
 $I_t^r = I_{t-1}^r - x_t^r + r_t$ $t = 1, ..., T$ (10)

$$x_t^m + x_t^r \leq D_{t,T} y_t$$
 $t = 1, ..., T$ (11)

$$x_t^m, x_t^r, I_t^s, I_t^r \ge 0 \qquad y_t \in \{0, 1\} \qquad t = 1, \dots, T$$

$$I_0^s = I_0^r = 0 \qquad (13)$$

Complexity results

- ELSRs is \mathcal{NP} -hard for constant cost parameters.
 - reduction from PARTITION (see Van den Heuvel, 2006)
- ELSRj is solvable in $\mathcal{O}(T^4)$ for constant cost parameters (Teunter et al., 2006).
- ELSRj is \mathcal{NP} -hard in general.
 - ELSRs is a special case of ELSRj

Shortest path reformulation: single-item problem

- Based on Eppen & Martin's (1987) shortest path reformulation of the capacitated problem (without remanufacturing).
- *z_{i,j}* is fraction of demand in *each* of the periods *i* until *j* that is satisfied by production in period *i*.
- Send a unit flow through the network.
- LP relaxation gives integer optimal solution.

Shortest path reformulation: separate set-ups

- Extension to remanufacturing
 - Also gives the possibility of final inventories (through f_1, f_2, f_3).

Shortest path reformulation: separate set-ups

$$\min\left(\sum_{l=1}^{T} \left(k_{t}^{m} y_{t}^{m} + k_{t}^{r} y_{t}^{r} + c_{l}^{f} f_{l}\right) + \sum_{i=1}^{T} \sum_{j=i}^{T} \left(c_{l,j}^{\mathsf{sm}} \sum_{i,j=1}^{\mathsf{sm}} + c_{l,j}^{\mathsf{sr}} \sum_{i,j=1}^{\mathsf{sr}} + c_{l,j}^{\mathsf{r}} \sum_{i,j=1}^{\mathsf{r}} + c_{l,j}^{\mathsf{sr}} \sum_{i,j=1}^{\mathsf{sr}} + c_{l,j}^{\mathsf{sr}} + c_{l,j}^{\mathsf{sr$$

s.t.

$$1 = \sum_{\substack{j=1\\r}}^{T} \left(z_{1,j}^{\text{sm}} + z_{1,j}^{\text{sr}} \right)$$
(15)

$$\sum_{i=1}^{t-1} \left(z_{i,t-1}^{\text{sm}} + z_{i,t-1}^{\text{sr}} \right) = \sum_{j=t}^{T} \left(z_{i,j}^{\text{sm}} + z_{i,j}^{\text{sr}} \right) \quad t = 2, \dots, T$$
(16)

$$\sum_{i=1}^{I} \tilde{z}_{i,j}^{\text{sm}} \leq y_t^m \qquad t = 1, \dots, T$$
(17)

$$\sum_{i=r}^{T} z_{i,j}^{sr} \leq y_i^r \qquad t = 1, \dots, T$$
(18)

$$1 = \sum_{j=1}^{I} z_{1,j}^{r} + f_{1}$$
(19)

$$\sum_{i=1}^{t-1} z_{i,t-1}^{T} = \sum_{j=t}^{T} z_{t,j}^{T} + f_{t} \qquad t = 2, \dots, T$$
(20)

$$\sum_{i=1}^{r} z_{i,t}^{r} \leq y_{t}^{r} \qquad t = 1, \dots, T$$
(21)

$$\sum_{i=1}^{l} R_{i,i} z_{i,j}^{I} = \sum_{j=t}^{l} D_{t,j} z_{t,j}^{St} \qquad t = 1, \dots, T$$

$$\sum_{i=1}^{Sm} \sum_{j=t}^{Sr} z_{i,j} z_{i,j}^{T} z_{i,j} \geq 0 \qquad 1 \le i \le j \le T$$
(22)

$$z_{i,j}^r \ge 0 \qquad 1 \le i \le j \le T$$
(23)

Partial shortest path reformulation: separate set-ups

- To reduce the number of variables, use partial shortest path reformulation.
 - See Van Vyve & Wolsey (2006) and Stadtler (1997) for classic lot-sizing problem.

(l, S, WW) valid inequalities

- The (*l*, *S*, *WW*) inequalities are strong valid inequalities for the single item, uncapacaitated lot-sizing problem. (Pochet and Wolsey, 1994)
- We adapted them for both the returns and serviceables layer of lot-sizing with remanufacturing.
- For separate set-ups:

$$I_{i-1}^{s} + \sum_{t=i}^{j} D_{t,j} (y_{t}^{m} + y_{t}^{r}) \geq D_{i,j} \quad 2 \leq i \leq j \leq T$$

$$I_{j}^{r} + \sum_{t=i}^{j} R_{i,t} y_{t}^{r} \geq R_{i,j} \quad 1 \leq i \leq j \leq T$$
(24)
(25)

For joint set-ups:

$$I_{i-1}^{s} + \sum_{\substack{t=i \ j}}^{j} D_{t,j} y_t \ge D_{i,j} \qquad 2 \le i \le j \le T$$
 (26)

$$I_{j}^{r} + \sum_{t=i}^{j} R_{i,t} y_{t} \geq R_{i,j} \qquad 1 \leq i \leq j \leq T$$
 (27)

We added these to the Natural formulation.

Computational tests: data

Parameter settings:

parameter	T	d_t		r_t	
value	{25, 50, 75}	N(100, 50)	${N(10,5)}$, N(50, 25), N(90, -)	45)}
	•				
parameter	$K_t^m = K_t^r$	$= K \qquad h_t^s$	$= h_t^r = h^r$	$p_t^m = p_t^r = p^r$	
value	{125, 250, 50	$0,1000\}$	1	0	

- 10 replications for each setting
- so 360 problem instances generated (both for ELSRs and ELSRj)
- solved with CPLEX 10.1 and 1 hour time limit

Setting k^s and k^r in the partial shortest path formulation:

• Use approximations of time between orders in EOQ setting (Van der Laan and Teunter, 2006):

$$TBO^s = \sqrt{\frac{2\bar{K}^s}{\bar{h}^s(\bar{d}-\bar{r})}}$$
 and $TBO^r = \sqrt{\frac{2\bar{K}^r}{\bar{h}^r\bar{r}}}$.

• We choose $k^s = \lceil 2 \cdot TBO^s \rceil$ and $k^r = \lceil 2 \cdot TBO^r \rceil$ (formulation PSP2).

Computational tests: results separate, 50 periods

						a	verag	e retu	irns				
			1	0		50				90			
set-up costs		Natural	SP	PSP2	(<i>I</i> , <i>S</i> , <i>WW</i>)	Natural	SP	PSP2	(<i>I</i> , <i>S</i> , <i>WW</i>)	Natural	SP	PSP2	(I, S, WW)
125	avg. sol. time MIP (s)	12	0.4	0.7	6	606	426	252	296	152	325	194	106
	avg. LP gap (%)	91	1.7	1.7	21	89	7.0	7.0	20	45	7.3	7.3	11
250	solved to optimality	3	10	10	10	3	10	10	7	8	10	10	9
	avg. MIP gap (%)	1.7	0	0	0	1.7	0	0	0.5	0.4	0	0	0.1
	avg. sol. time MIP (s)	3272	0.5	1.1	369	2859	843	989	2000	1122	811	805	1006
	avg. LP gap (%)	89	1.0	1.0	18	88	6.3	6.3	17	56	7.8	7.8	11
500	solved to optimality	0	10	10	10	3	10	10	10	6	9	9	9
	avg. MIP gap (%)	5.1	0	0	0	1.4	0	0	0	0.99	0.21	0.18	0.20
	avg. sol. time MIP (s)	3600	0.5	1.3	335	3144	53	91	729	1576	390	450	607
	avg. LP gap (%)	86	1.1	1.1	18	86	4.7	4.7	14	64	7.7	7.7	11
1000	solved to optimality	0	10	10	10	1	10	10	10	9	10	9	9
	avg. MIP gap (%)	3.6	0	0	0	3.4	0	0	0	0.48	0	0.25	0.19
	avg. sol. time MIP (s)	3600	0.4	1.0	401	3582	25	45	283	724	424	592	517
	avg. LP gap (%)	83	0.67	0.67	14	83	3.8	3.8	12	69	6.2	6.2	9.3

Computational tests: results joint, 50 periods

		average returns								
		10 50						90		
set-up costs		Natural	SP	(l, S, WW)	Natural	SP	(l, S, WW)	Natural	SP	(l, S, WW)
125	avg. sol. time MIP (s)	0.0	0.0	0.2	0.0	0.1	0.3	1.4	4.9	3.9
	integer solutions LP	0	9	1	0	0	0	0	0	0
	avg. LP gap (%)	89	0.009	0.91	85	1.0	1.4	42	3.3	3.5
250	avg. sol. time MIP (s)	0.8	0.0	0.2	0.1	0.1	0.4	2.1	4.8	3.9
	integer solutions LP	0	10	4	0	1	0	0	0	0
	avg. LP gap (%)	87	0	0.70	85	0.48	0.97	53	3.5	4.0
500	avg. sol. time MIP (s)	35	0.0	0.2	1.9	0.0	0.3	3.4	3.2	3.7
	integer solutions LP	0	10	6	0	6	3	0	0	0
	avg. LP gap (%)	84	0	0.68	83	0.11	0.47	61	3.1	3.7
1000	avg. sol. time MIP (s)	168	0.0	0.2	16.8	0.0	0.2	6.2	0.9	2.4
	integer solutions LP	0	10	6	0	7	5	0	0	0
	avg. LP gap (%)	80	0	0.45	81	0.009	0.16	66	2.0	2.4

Part II: Lot-sizing with an emission constraint

Quantitative models for carbon footprint in SCM:

- Emissions and the design of the supply chain e.g. (Cachon, 2011)
- Emissions and the choice of transportation mode e.g. (Hoen et al., 2014)
- Emissions and the level of data aggregation e.g. (Velázquez-Martínez et al., 2014)
- Emissions and the management of inventory e.g. (Hua et al., 2011)
- Emissions and operational decisions e.g. (Benjaafar et al., 2013)

Lot-sizing with an emission constraint

- Focus on both costs and environmental implications of the production process
 - Limit emissions of pollutants, such as CO₂.
 - Legal restrictions
 - Reducing carbon footprint in pursuit of a 'greener' image
- Not only *financial costs*, but also *emission* levels associated with production, keeping inventory and setting up the production process
- Difference with capacitated lot-sizing (with set-up times):
 - Constraint for each period vs. one global constraint
 - Keeping inventory may also emit pollutants.

Lot-sizing with an emission constraint: definition

min
$$\sum_{t=1}^{I} (p_t(x_t) + h_t(I_t))$$
 (28)

s.t.
$$I_t = I_{t-1} + x_t - d_t$$
 $t = 1, ..., T$ (29)
 $I_0 = 0$ (30)

$$x_t, I_t \geq 0$$
 $t = 1, \dots, T$ (31)

$$\sum_{t=1}^{I} \left(\hat{p}_t(x_t) + \hat{h}_t(I_t) \right) \leq \hat{C}$$
(32)

- All functions are assumed concave, nondecreasing and nonnegative.
 - Includes the case with fixed set-up costs (and emissions) and linear production and holding costs (and emissions).

W. van den Heuvel (EUR)

Т

Sustainability issues in lot-sizing models

Some related literature

- Benjaafar et al. (2013):
 - Four emission policies: (i) taxes, (ii) caps, (iii) cap-and-trade mechanisms and (iv) offsets
 - It illustrates the impact of lot-sizing decisions on emissions
- Absi et al. (2013):
 - Unit emission cap of the combination of production modes
 - Four models: (i) periodic, (ii) cumulative, (iii) global and (iv) rolling
 - ► Periodic polynomial, the rest *NP*-complete

Complexity result

- Lot-sizing with an emission constraint is NP-hard, even if only production emits pollutants and these production emissions are linear.
 - Reduction from KNAPSACK
- Consequence: lot-sizing *with two production modes* in each period is \mathcal{NP} -hard, even if only production emits pollutants (linearly) and either all (financial) costs or all emissions are time-invariant.

Lagrangian heuristic

min

$$\sum_{t=1}^{T} (p_t(x_t) + h_t(I_t)) + \lambda \sum_{t=1}^{T} (\hat{p}_t(x_t) + \hat{h}_t(I_t) - \hat{C})$$

$$= \sum_{t=1}^{T} (p_t(x_t) + \lambda \hat{p}_t(x_t) + h_t(I_t) + \lambda \hat{h}_t(I_t)) - \lambda \hat{C}$$
s.t. $I_t = I_{t-1} + x_t - d_t$ $t = 1, \dots, T$
 $x_t, I_t \ge 0$ $t = 1, \dots, T$
 $I_0 = 0$
 $\lambda \ge 0$

- Dualise the emission constraint.
- For a given λ :
 - $p_t + \lambda \hat{p}_t$ and $h_t + \lambda \hat{h}_t$ are concave functions
 - $\lambda \hat{C}$ is a constant
 - we have a classic (uncapacitated) lot-sizing problem
 - solvable in $\mathcal{O}(T^2)$

Lagrangian heuristic

• For a given λ we have a classic (uncapacitated) lot-sizing problem.

$$z(\lambda) = \min \sum_{t=1}^{T} \left(p_t(x_t) + \lambda \hat{p}_t(x_t) + h_t(I_t) + \lambda \hat{h}_t(I_t) \right)$$

s.t. $I_t = I_{t-1} + x_t - d_t \quad t = 1, \dots, T$
 $x_t, I_t \ge 0 \qquad t = 1, \dots, T$
 $I_0 = 0$

• A lower bound and corresponding λ^* is found by solving

 $\max_{\lambda \ge 0} \{ z(\lambda) \}$

- There is an algorithm (see Megiddo (1979), Gusfield (1983), Wagelmans (1990)) that:
 - finds an interval such that λ^* is one of the endpoints;
 - runs in $\mathcal{O}(T^4)$ time.
 - For λ*, we are indifferent between two solutions, of which one is feasible and the other infeasible.
 - Thus, we get both a feasible solution and a lower bound.

Structural properties

We can show that an optimal solution satisfies the following properties:

- Let the production periods (sources) be given. If, for each period, the cheapest source to satisfy demand is also the cleanest:
 - single sourcing property holds
 (a period's demand is all procured from one production period)
 - Costs and emissions that satisfy this property are called *co-behaving*.
 - This includes the case with Wagner-Whitin (non-speculative) costs and emissions.
 - Also includes the case in which emissions are time-invariant and holding emissions are zero

(or costs are time-invariant and holding costs are zero).

- In general:
 - Single sourcing in all but (at most) one period.

Pseudo-polynomial algorithm (co-behaving costs & emissions)

- Assume integer parameters.
- Minimise emissions under budget constraint.
- Because single sourcing property holds, we can extend Wagner and Whitin's algorithm.
- f(t, B) gives the minimum emissions for periods t until T, given budget B.
- With f(T + 1, B) = 0 with have for $1 \le t \le T$ the recursion:

$$f(t,B) = \min_{s>t: B \ge c(t,s)} \{ e(t,s) + f(s+1, B - c(t,s)) \}$$
(33)

(34)

where
$$c(t,s) := p_t(D_{t,s}) + \sum_{\tau=t}^{s-1} h_{\tau}(D_{\tau,s})$$
 (35)

$$e(t,s) := \hat{p}_t(D_{t,s}) + \sum_{\tau=t}^{s-1} \hat{h}_{\tau}(D_{\tau,s})$$
 (36)

- *f*(1,*B*) gives the minimum emissions given budget *B*.
- Try budget B = 1, 2, 3, ... until minimum emissions \leq emission cap.

Pseudo-polynomial algorithm (co-behaving costs & emissions)

Recursion:

$$\begin{array}{lll} f(T+1,B) & = & 0, \\ f(t,B) & = & \min_{s>t: \ B\geq c(t,s)} \left\{ e(t,s) + f(s+1,B-c(t,s)) \right\} \ , \ t\leq T, \end{array}$$

where
$$c(t,s) := p_t (D_{t,s}) + \sum_{\tau=t}^{s-1} h_{\tau} (D_{\tau,s})$$

 $e(t,s) := \hat{p}_t (D_{t,s}) + \sum_{\tau=t}^{s-1} \hat{h}_{\tau} (D_{\tau,s})$

- f(1, B) gives the minimum emissions given budget *B*.
- Try budget B = 1, 2, 3, ... until minimum emissions \leq emission cap.
- Optimal production quantities can be found with a simple backtracking procedure.
- Required memory is $\mathcal{O}(Topt)$.
- Running time is $\mathcal{O}(T^2 opt)$ with opt the optimal objective value.

FPTAS for co-behaving costs & emissions

 We turn the pseudo-polynomial algorithm into a FPTAS by reducing the number of states.

$$f(t,B) = \min_{s>t: B \ge c(t,s)} \{ e(t,s) + f(s+1, \mathsf{round}(B - c(t,s))) \}$$

Round down the budget to the nearest value of

$$\Delta^k := \left(1 + \frac{\varepsilon}{(e-1)(T+1)}\right)^k$$

- Try budget $B = \Delta^1, \Delta^2, \Delta^3, \dots$ until minimum emissions \leq emission cap.
- This leads to an FPTAS with $\mathcal{O}\left(\frac{T^3\ln(opt)}{\varepsilon}\right)$ running time and $\mathcal{O}\left(\frac{T^2\ln(opt)}{\varepsilon}\right)$ memory consumption

Using the heuristic to speed up the FPTAS

- We can use the heuristic's LB to avoid small intervals at the start.
- Using this idea leads to improved running times:

$$0 \qquad 2\varepsilon \cdot LB \qquad LB \qquad (1+\varepsilon)^{k+1} \qquad (1+\varepsilon)^{k+2} \qquad (1+\varepsilon)^{k+3}$$

$$\varepsilon \cdot LB \qquad 3\varepsilon \cdot LB \qquad (1+\varepsilon)^k$$

Computational tests: data

- We generated 1800 problem instances to test all algorithms.
 - CPLEX 10.1 for comparison
 - 'natural' formulation and shortest path reformulation
- All costs and emissions were fixed-plus-linear.
- Three 'degrees of co-behaviour':
 - co-behaving costs and emissions
 - $\frac{1}{2}T$ pairs (t, s) violate the co-behaviour property
 - all periods form pairs, such that the instance corresponds to a problem with $\frac{1}{2}T$ periods with two production modes: 'cheap & dirty' and 'expensive & clean'
- T = 25, 50, 100
- $\varepsilon = 0.10, 0.05, 0.01$

Computational tests: results (algorithms for co-behaving inst.)

	Т	25	50	100
Megiddo	Avg. sol. time (s)	0.001	0.013	0.16
	Avg. post. gap (%)	1.5	0.85	0.41
	Avg. true gap (%)	0.47	0.41	0.26
FPTAS-CB-LB(0.	1) Avg. sol. time (s)	0.002	0.019	0.20
	Avg. post. gap (%)	0.81	0.44	0.17
	Avg. true gap (%)	0.021	0.024	0.015
FPTAS-CB-LB(0.	05)Avg. sol. time (s)	0.003	0.024	0.24
	Avg. post. gap (%)	0.55	0.34	0.16
	Avg. true gap (%)	0.0022	0.0067	0.0060
FPTAS-CB-LB(0.	01)Avg. sol. time (s)	0.009	0.067	0.59
	Avg.post. gap (%)	0.15	0.12	0.075
	Avg.true gap (%)	0.00044	0.00016	0.00014
FPTAS-CB(0.1)	Avg. sol. time (s)	0.008	0.052	0.35
	Avg. post. gap (%)	3.4	3.4	3.5
	Avg. true gap (%)	0.010	0.020	0.017
FPTAS-CB(0.05)	Avg. sol. time (s)	0.018	0.11	0.77
	Avg. post. gap (%)	1.7	1.7	1.7
	Avg. true gap (%)	0.0021	0.0054	0.0042
FPTAS-CB(0.01)	Avg. sol. time (s)	0.093	0.67	5.2
	Avg. post. gap (%)	0.33	0.34	0.34
	Avg. true gap (%)	0.000088	0.00015	0.00015
PP-CB	Avg. sol. time (s)	0.24	1.8	22
CPLEX 10.1 Nat.	Avg. sol. time (s)	0.045	0.44	-
CPLEX 10.1 SP	Avg. sol. time (s)	0.030	0.069	0.22

Computational tests: results (general algorithms)

	Т	25	25	26	50	50	50	100	100	100
	data set	co-bhv.	gen.	2 modes	co-bhv.	gen.	2 modes	co-bhv.	gen.	2 modes
Megiddo	Avg. sol. time (s)	0.001	0.001	0.001	0.013	0.013	0.014	0.16	0.16	0.16
	Avg. post. gap (%)	1.5	2.8	12	0.85	1.3	6.2	0.41	0.61	2.8
	Avg. true gap (%)	0.47	1.2	6.1	0.41	0.74	3.8	0.26	0.41	2.1
FPTAS-gen-LE	B(0.1)Avg. sol. time (s)	0.006	0.010	0.028	0.082	0.12	0.26	1.3	1.6	2.8
	Avg. post. gap (%)	1.0	1.6	3.7	0.45	0.62	2.3	0.16	0.21	0.69
	Avg. true gap (%)	0.0053	0.070	0.028	0.0065	0.028	0.042	0.0048	0.017	0.0080
FPTAS-gen-LE	B(0.05) Avg.sol.time(s)	0.010	0.019	0.59	0.14	0.22	0.57	2.4	3.0	5.9
	Avg. post. gap (%)	0.92	1.4	2.3	0.44	0.61	1.9	0.16	0.21	0.69
	Avg. true gap (%)	0.00055	0.043	0.028	0.0011	0.025	0.038	0.0014	0.014	0.0080
FPTAS-gen-LE	B(0.01) Avg.sol.time(s)	0.042	0.13	0.66	0.63	1.4	6.9	11	17	58
	Avg. post. gap (%)	0.41	0.46	0.54	0.31	0.38	0.53	0.15	0.20	0.46
	Avg. true gap (%)	0.000014	0.012	0.013	0.000080	0.014	0.0048	0.0000087	0.011	0.0076
FPTAS-gen(0.	 Avg. sol. time (s) 	0.051	0.26	0.75	0.68	2.4	8.5	11	25	68
	Avg. post. gap (%)	6.6	6.6	6.4	6.6	6.6	6.4	6.6	6.6	6.4
	Avg. true gap (%)	0.0042	0.038	0.021	0.0048	0.023	0.0063	0.0046	0.016	0.011
FPTAS-gen(0.	05) Avg. sol. time (s)	0.10	0.90	2.9	1.4	8.5	32	22	72	234
	Avg. post. gap (%)	3.3	3.3	3.2	3.3	3.3	3.2	3.3	3.3	3.2
	Avg.true gap (%)	0.00048	0.018	0.0047	0.00084	0.018	0.015	0.0017	0.012	0.0069
FPTAS-gen(0.	01) Avg. sol. time (s)	0.56	23	69	7.3	191	765	113	1280	5163
	Avg. post. gap (%)	0.67	0.66	0.65	0.67	0.66	0.64	0.67	0.66	0.64
	Avg. true gap (%)	0.000027	0.0057	0.00073	0.000064	0.0068	0.0026	0.000049	0.0044	0.0040
CPLEX 10.1 Na	at. Avg. sol. time (s)	0.045	0.041	0.035	0.44	0.38	0.12	-	-	-
CPLEX 10.1 S	 Avg. sol. time (s) 	0.030	0.031	0.053	0.069	0.072	0.14	0.22	0.26	0.55

Part III: Bi-Objective Lot-Sizing Problems

Data:

- T : planning horizon indexed by t
- d_t : demand $(d_{t,\tau} = \sum_{s=t}^{\tau} d_s)$
- (f_t, c_t, h_t) : (setup, unit production, unit inventory) costs
- $(\hat{f}_t, \hat{c}_t, \hat{h}_t)$: (setup, unit production, unit inventory) emissions
- ℓ : length of the emission block

Decisions:

• (y_t, x_t, I_t) : (setup, production, inventory) decisions

Different levels of aggregation for emissions

Partitioning the planning horizon:

- $\bullet\,$ We partition the planning horizon into blocks of length $\ell\,$
- We minimize the max emission over the blocks $(T/\ell$ blocks in total)
- Different levels of aggregation depending on l

Special cases:

- Whole-horizon emissions ($\ell = T$)
- Period emissions ($\ell = 1$)

The Bi-Objective Economic Lot-Sizing Problem

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Costs: } g^{\text{C}}() \end{array} \\ \end{array} \\ \text{minimize} \left(\begin{array}{c} \overbrace{\sum_{t=1}^{T} [f_t y_t + c_t x_t + h_t I_t]}^{T}, \overbrace{\max_{i=1, \dots, T/\ell} \sum_{t=(i-1)\ell+1}^{i\ell} [\hat{f}_t y_t + \hat{c}_t x_t + \hat{h}_t I_t]} \end{array} \right) \\ \text{subject to} \end{array}$$

$$\begin{array}{rclrcl} x_t + I_{t-1} &=& d_t + I_t & t = 1, \dots, T \\ x_t &\leq& d_{1,T} y_t & t = 1, \dots, T \\ I_0 &=& 0 & & \\ y_t &\in& \{0,1\} & t = 1, \dots, T \\ x_t, I_t &\geq& 0 & t = 1, \dots, T \end{array}$$

The Pareto frontier

Pareto efficient outcomes

Pareto efficient outcomes are found by, for each $\hat{b} \in \mathbb{R}_+$, solving

minimize
$$\sum_{t=1}^{T} [f_t y_t + c_t x_t + h_t I_t]$$

subject to

$$(\mathcal{P}^{(\ell)}(\hat{b}))$$

$$\begin{array}{rcl} x_t + I_{t-1} &=& d_t + I_t & t = 1, \dots, T \\ & x_t &\leq& d_{1,T} y_t & t = 1, \dots, T \\ & I_0 &=& 0 & \\ & y_t &\in& \{0,1\} & t = 1, \dots, T \\ & x_t, I_t &\geq& 0 & t = 1, \dots, T \\ & \sum_{t=(i-1)\ell+1}^{i\ell} [\hat{f}_t y_t + \hat{c}_t x_t + \hat{h}_t I_t] &\leq& \hat{b} & i = 1, \dots, T/\ell \end{array}$$

ε -dominating sets

Difficulty of multi-objective problems:

- Describing the Pareto frontier is challenging in Multi-Objective Combinatorial Optimization Ulungu and Teghem (1994); Ehrgott and Gandibleux (2000, 2004)
- Focus on ε-dominating set in the outcome space, see e.g. Blanquero and Carrizosa (2002)

Definition: Z^* is an ε -dominating set for

$$\min_{z \in Z} \quad (g^{\mathbf{C}}(z), g^{\mathbf{E}}(z))$$

if, for each $z \in Z$, there exists a $z^* \in Z^*$ such that

$$\begin{array}{rcl} g^{\mathrm{C}}(z^{*}) & \leq & g^{\mathrm{C}}(z) + \varepsilon \text{ and} \\ g^{\mathrm{E}}(z^{*}) & \leq & g^{\mathrm{E}}(z) + \varepsilon \end{array}$$

Finding an ε -dominating set

Let \hat{b}^{\min} (\hat{b}^{\max}) be the minimum (maximum) value of \hat{b}

Simple algorithm for finding an ε -dominating set

Step 0. Calculate
$$\hat{b}^{\min}$$
 and \hat{b}^{\max}
Let $\{\hat{b}^i\}$ be a grid of $[\hat{b}^{\min}, \hat{b}^{\max}]$ of width ε
Set $Z^* = \emptyset$

Step 1. $\forall i$, solve $(\mathcal{P}^{(\ell)}(\hat{b}^i))$ and add its optimal solution to Z^*

Goal:

- finding efficient algorithms for $(\mathcal{P}^{(\ell)}(\hat{b}))$
- we will focus on special cases with time-invariant cost parameters

Time-invariant whole-horizon case

 $(\mathcal{P}^{(T)}(\hat{b}))$ is equivalent to solving lot-sizing problems with a fixed number of setups n, $\forall n = 1, \ldots, T$,

minimize
$$\sum_{t=1}^{T} I_t$$

subject to

$$\begin{aligned} x_t + I_{t-1} &= d_t + I_t & t = 1, \dots, T \\ x_t &\leq d_{1,T} y_t & t = 1, \dots, T \\ I_0 &= 0 & \\ y_t &\in \{0,1\} & t = 1, \dots, T \\ x_t, I_t &\geq 0 & t = 1, \dots, T \\ \sum_{t=1}^T y_t &= n \end{aligned}$$

Polynomial time algorithm (van Hoesel and Wagelmans, 2000)

W. van den Heuvel (EUR)

Whole-horizon case: complexity overview

The same algorithm works for

l	costs	emissio	ns	running time	
Т	$f_t = f, c_t = c$	$\hat{f}_t = \hat{f}$	$\hat{c}_t = \hat{c}$	$\hat{h}_t = \alpha h_t$	$\mathcal{O}(T^2)$

Complexity overview:

	costs		niss	ions	complexity
f_t	c_t and h_t	\hat{f}_t	\hat{c}_t	\hat{h}_t	
С	non-speculative	С	С	αh_t	polynomially solvable
С	non-speculative	v	0	0	\mathcal{NP} -hard
С	non-speculative	0	v	0	\mathcal{NP} -hard
С	non-speculative	0	0	С	\mathcal{NP} -hard

Our results for the whole-horizon case are tight

Time-invariant period case

Main approach:

- decomposition the problem in subplans [u, v]
- compute the cost of a subplan efficiently

Definitions:

- A block/period is called tight if its emission constraint is binding
- A block/period is called extreme if either tight or no production

Properties:

- The only possible non-tight production period is u
- Consider t ($u < t \le v$) with inventory I_t such that:

•
$$\bar{x}_t := (\hat{b} - \hat{f} - \hat{h}I_t)/\hat{c} > 0,$$

• $\bar{I}_{t-1} := I_t - \bar{x}_t + d_t > 0.$

Then *t* is a tight production period with production quantity \bar{x}_t , and incoming inventory equal to \bar{I}_{t-1} .

Main result

The optimal cost of all subplans can be calculated in $\mathcal{O}(T^2)$ time by a backward DP algorithm.

W. van den Heuvel (EUR)

Period case: complexity overview

The same algorithm works for

ℓ	costs	emissions		running time
1	$f_t \ge f_{t+1}$, non-speculative	$\hat{f}_t = \hat{f} \qquad \hat{c}_t = \hat{c}$	$\hat{h}_t = \hat{h}$	$\mathcal{O}(T^2)$

Complexity overview:

CC	sts	en	nissi	ons	complexity
f_t	c_t and h_t	\hat{f}_t	\hat{c}_t	\hat{h}_t	
non-increasing	non-speculative	С	С	С	polynomially solvable
С	non-speculative	v	С	0	\mathcal{NP} -hard
С	non-speculative	0	v	0	\mathcal{NP} -hard
С	non-speculative	0	0	v	open

Our results for the period case are almost tight

Time-invariant block case: production and setup emissions

Definitions:

- b(v) (e(v)) denotes the first (last) period of the block that contains v
- Two consecutive subplans are called **connected** if they have production in the same block.
- A sequence of connected subplans is called a **maximal sequence of subplans** if it does not contain a smaller sequence.

Proposition:

• Except for the first, all blocks fully contained in a maximal sequence of connected subplans [t, w] are extreme. If the last block is split, then there is no production in [b(w), w]

Block case: production and setup emissions

General solution approach:

- Decompose solution into maximal sequences of connected subplans
- Decompose maximal sequences in subplans
- Compute the cost of a subplan efficiently

Main result:

- We can derive a DP algorithm to compute the subplan costs using:
 - (u, v; w), a subplan [u, v] contained in a maximal sequence ending in period w keeping track of the number of production blocks and setups.
- The optimal cost of all subplans can be calculated in O(T⁷/l) time by a backward DP algorithm.

Block emissions: complexity overview

Complexity overview in case of block emissions:

	costs	en	nissio	ons	complexity
f_t	c_t and h_t	\hat{f}_t	\hat{c}_t	\hat{h}_t	
V	non-speculative	С	С	0	polynomially solvable
С	non-speculative	v	0	0	\mathcal{NP} -hard
С	non-speculative	0	v	0	\mathcal{NP} -hard
С	non-speculative	0	0	С	\mathcal{NP} -hard

Our results for the block case are tight

Conclusions & further research

Lot-sizing with remanufacturing:

- ELSRs and ELSRj are both \mathcal{NP} -hard.
- Computational tests indicate that reformulations SP and PSP perform well
- Extend shortest path formulations with capacities
- Use solution of LP relaxation in a rounding heuristic
- How to incorporate stochastic returns?

Ict-sizing with emission constraint:

- ▶ is NP-hard
- A Lagrangean heuristic gives a LB as well as a feasible solution in $\mathcal{O}(T^4)$.
- There is an FPTAS which works faster in case of *co-behaviour* property.
- applying the same technique to create FPTASes for other problems

Bi-objective lot-sizing:

- Special classes of problem instances are polynomially solvable
- We have shown the tightness of our polynomiality results
- Results can be used to find an
 e-dominating set
- Close the complexity gap
- Overlapping blocks case
- ► Algorithms for the *NP*-complete cases

References

- N. Absi, S. Dauzère-Pérès, S. Kedad-Sidhoum, B. Penz, and C. Rapine. Lot-sizing with carbon emission constraints. European Journal of Operational Research, 227(1):55–61, 2013.
- S. Benjaafar, Y. Li, and M. Daskin. Carbon footprint and the management of supply chains: Insights from simple models. IEEE Transactions on Automation Science and Engineering, 10(1):99–116, 2013.
- R. Blanquero and E. Carrizosa. A D.C. biobjective location model. Journal of Global Optimization, 23:139–154, 2002.
- G.P. Cachon. Supply chain design and the cost of greenhouse gas emissions. Technical report, The Wharton School, University of Pennsylvania, 2011.
- M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, 22:425-460, 2000.
- M. Ehrgott and X. Gandibleux. Approximative solution methods for multiobjective combinatorial optimization. TOP, 12(1):1-89, 2004.
- K.M.P. Hoen, T. Tan, J.C. Fransoo, and G.J. van Houtum. Effect of carbon emission regulations on transport mode selection under stochastic demand. Flexible Services and Manufacturing Journal, 26(1–2):170–195, 2014.
- G. Hua, T.C.E. Cheng, and S. Wang. Managing carbon footprints in inventory management. International Journal of Production Economics, 132:178–185, 2011.
- E.L. Ulungu and J. Teghem. Multi-objective combinatorial optimization problems: a survey. Journal of Multi-Criteria Decision Analysis, 3:83–104, 1994.
- C.P.M. van Hoesel and A.P.M. Wagelmans. Parametric analysis of setup cost in the economic lot-sizing model without speculative motives. International Journal of Production Economics, 66:13–22, 2000.
- J.C. Velázquez-Martínez, J.C. Fransoo, E.E. Blanco, and J. Mora-Vargas. The impact of carbon footprinting aggregation on realizing emission reduction targets. Flexible Services and Manufacturing Journal, 26(1–2):196–220, 2014.