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Outline
We fill focus on sustainability issues in operational decisions.

1 Lot-sizing with remanufacturing: joint and separate set-up cost
I Natural MIP formulations
I Complexity results
I Reformulations
I Computational tests

2 Lot-sizing with an emission constraint
I Complexity results
I Algorithms

F Lagrangian heuristic
F Pseudo-polynomial algorithm for co-behaving costs and emissions
F Fully polynomial time approximation schemes (FPTASes)

I Computational tests

3 Bi-objective lot-sizing: minimize costs and emissions
I Finding Pareto points
I Complexity results
I Efficient DP Algorithms for special cases
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Classic economic lot-sizing problem

Data:
T : planning horizon indexed by t

dt : demand (Dt,τ =
∑τ

s=t ds)
(Kt, pt, ht) : (setup, unit production, unit inventory) costs

Decisions:
(yt, xt, It) : (setup, production, inventory) decisions

Trade-off between (fixed) set-up costs and (linear) holding costs.
Solvable in O(T log T) time
subproblem in MRP/ERP (usually solved heuristically)
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Part I: Lot-sizing with remanufacturing

Classic single-item, uncapacitated lot-sizing problem (upper layer) plus:
A known quantity of used products rt is returned from customers in each
period t.
‘Returns’ can be remanufactured, so that they are as good as new.
When to set up the (re-)manufacuring process?

Extra decisions:
(yr

t , x
r
t , I

r
t ) : remanufacturing (setup, production, inventory) decisions
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Lot-sizing with remanufacturing

‘Returns’ can be remanufactured, so that they are as good as new.
I no choice: printer cartridges, single-use cameras
I service contract: copiers

A known quantity of used products is returned from customers in each
period.

I remanufacturing included in more and more MRP/ERP systems
The manufacturing and remanufacturing process have either joint
(ELSRj) or separate (ELSRs) set-up costs (Teunter et al., 2006)

I manufacturing and remanufacturing on the same or different production lines
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Natural formulation: separate set-ups

min
T∑

t=1

(Km
t ym

t + pm
t xm

t + hs
t I

s
t + Kr

t yr
t + pr

t x
r
t + hr

t I
r
t ) (1)

s.t. Is
t = Is

t−1 + xm
t + xr

t − dt t = 1, . . . ,T (2)
Ir
t = Ir

t−1 − xr
t + rt t = 1, . . . ,T (3)

xm
t ≤ Dt,T ym

t t = 1, . . . ,T (4)
xr

t ≤ Dt,T yr
t t = 1, . . . ,T (5)

xm
t , x

r
t , I

s
t , I

r
t ≥ 0 ym

t , y
r
t ∈ {0, 1} t = 1, . . . ,T (6)

Is
0 = Ir

0 = 0 (7)
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Natural formulation: joint set-ups

min
T∑

t=1

(Ktyt + pm
t xm

t + hs
t I

s
t + pr

t x
r
t + hr

t I
r
t ) (8)

s.t. Is
t = Is

t−1 + xm
t + xr

t − dt t = 1, . . . ,T (9)
Ir
t = Ir

t−1 − xr
t + rt t = 1, . . . ,T (10)

xm
t + xr

t ≤ Dt,T yt t = 1, . . . ,T (11)

xm
t , x

r
t , I

s
t , I

r
t ≥ 0 yt ∈ {0, 1} t = 1, . . . ,T (12)

Is
0 = Ir

0 = 0 (13)
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Complexity results

ELSRs is NP-hard for constant cost parameters.
I reduction from PARTITION (see Van den Heuvel, 2006)

ELSRj is solvable in O(T4) for constant cost parameters (Teunter et al.,
2006).
ELSRj is NP-hard in general.

I ELSRs is a special case of ELSRj
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Shortest path reformulation: single-item problem

Based on Eppen & Martin’s (1987) shortest path reformulation of the
capacitated problem (without remanufacturing).
zi,j is fraction of demand in each of the periods i until j that is satisfied by
production in period i.
Send a unit flow through the network.
LP relaxation gives integer optimal solution.
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Shortest path reformulation: separate set-ups
Extension to remanufacturing

I Also gives the possibility of final inventories (through f1, f2, f3).
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Shortest path reformulation: separate set-ups

min

 T∑
t=1

(
Km

t ym
t + Kr

t yr
t + Cf

t ft
)

+

T∑
i=1

T∑
j=i

(
Csm

i,j zsm
i,j + Csr

i,jzsr
i,j + Cr

i,jzri,j

) (14)

s.t. 1 =

T∑
j=1

(
zsm
1,j + zsr

1,j

)
(15)

t−1∑
i=1

(
zsm
i,t−1 + zsr

i,t−1
)

=
T∑

j=t

(
zsm
t,j + zsr

t,j

)
t = 2, . . . , T (16)

T∑
j=t

zsm
t,j ≤ ym

t t = 1, . . . , T (17)

T∑
j=t

zsr
t,j ≤ yr

t t = 1, . . . , T (18)

1 =
T∑

j=1
zr1,j + f1 (19)

t−1∑
i=1

zri,t−1 =
T∑

j=t
zrt,j + ft t = 2, . . . , T (20)

t∑
i=1

zri,t ≤ yr
t t = 1, . . . , T (21)

t∑
i=1

Ri,t zri,t =
T∑

j=t
Dt,j zsr

t,j t = 1, . . . , T (22)

zsm
i,j , zsr

i,j, zri,j ≥ 0 1 ≤ i ≤ j ≤ T (23)

W. van den Heuvel (EUR) Sustainability issues in lot-sizing models Paris, June 26, 2015 11 / 47



Partial shortest path reformulation: separate set-ups
To reduce the number of variables, use partial shortest path
reformulation.

I See Van Vyve & Wolsey (2006) and Stadtler (1997) for classic lot-sizing
problem.
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(l, S,WW) valid inequalities
The (l, S,WW) inequalities are strong valid inequalities for the single item,
uncapacaitated lot-sizing problem. (Pochet and Wolsey, 1994)
We adapted them for both the returns and serviceables layer of lot-sizing
with remanufacturing.
For separate set-ups:

Is
i−1 +

j∑
t=i

Dt,j (ym
t + yr

t ) ≥ Di,j 2 ≤ i ≤ j ≤ T (24)

Ir
j +

j∑
t=i

Ri,t yr
t ≥ Ri,j 1 ≤ i ≤ j ≤ T (25)

For joint set-ups:

Is
i−1 +

j∑
t=i

Dt,j yt ≥ Di,j 2 ≤ i ≤ j ≤ T (26)

Ir
j +

j∑
t=i

Ri,t yt ≥ Ri,j 1 ≤ i ≤ j ≤ T (27)

We added these to the Natural formulation.
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Computational tests: data
Parameter settings:

parameter T dt rt

value {25, 50, 75} N(100, 50) {N(10, 5),N(50, 25),N(90, 45)}

parameter Km
t = Kr

t = K hs
t = hr

t = hr pm
t = pr

t = pr

value {125, 250, 500, 1000} 1 0

10 replications for each setting
so 360 problem instances generated (both for ELSRs and ELSRj)
solved with CPLEX 10.1 and 1 hour time limit

Setting ks and kr in the partial shortest path formulation:

Use approximations of time between orders in EOQ setting (Van der
Laan and Teunter, 2006):

TBOs =

√
2K̄s

h̄s(d̄ − r̄)
and TBOr =

√
2K̄r

h̄r r̄
.

We choose ks = d2 · TBOse and kr = d2 · TBOre (formulation PSP2).
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Computational tests: results separate, 50 periods

average returns
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125 avg. sol. time MIP (s) 12 0.4 0.7 6 606 426 252 296 152 325 194 106
avg. LP gap (%) 91 1.7 1.7 21 89 7.0 7.0 20 45 7.3 7.3 11

250 solved to optimality 3 10 10 10 3 10 10 7 8 10 10 9
avg. MIP gap (%) 1.7 0 0 0 1.7 0 0 0.5 0.4 0 0 0.1
avg. sol. time MIP (s) 3272 0.5 1.1 369 2859 843 989 2000 1122 811 805 1006
avg. LP gap (%) 89 1.0 1.0 18 88 6.3 6.3 17 56 7.8 7.8 11

500 solved to optimality 0 10 10 10 3 10 10 10 6 9 9 9
avg. MIP gap (%) 5.1 0 0 0 1.4 0 0 0 0.99 0.21 0.18 0.20
avg. sol. time MIP (s) 3600 0.5 1.3 335 3144 53 91 729 1576 390 450 607
avg. LP gap (%) 86 1.1 1.1 18 86 4.7 4.7 14 64 7.7 7.7 11

1000 solved to optimality 0 10 10 10 1 10 10 10 9 10 9 9
avg. MIP gap (%) 3.6 0 0 0 3.4 0 0 0 0.48 0 0.25 0.19
avg. sol. time MIP (s) 3600 0.4 1.0 401 3582 25 45 283 724 424 592 517
avg. LP gap (%) 83 0.67 0.67 14 83 3.8 3.8 12 69 6.2 6.2 9.3
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Computational tests: results joint, 50 periods

average returns
10 50 90
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125 avg. sol. time MIP (s) 0.0 0.0 0.2 0.0 0.1 0.3 1.4 4.9 3.9
integer solutions LP 0 9 1 0 0 0 0 0 0
avg. LP gap (%) 89 0.009 0.91 85 1.0 1.4 42 3.3 3.5

250 avg. sol. time MIP (s) 0.8 0.0 0.2 0.1 0.1 0.4 2.1 4.8 3.9
integer solutions LP 0 10 4 0 1 0 0 0 0
avg. LP gap (%) 87 0 0.70 85 0.48 0.97 53 3.5 4.0

500 avg. sol. time MIP (s) 35 0.0 0.2 1.9 0.0 0.3 3.4 3.2 3.7
integer solutions LP 0 10 6 0 6 3 0 0 0
avg. LP gap (%) 84 0 0.68 83 0.11 0.47 61 3.1 3.7

1000 avg. sol. time MIP (s) 168 0.0 0.2 16.8 0.0 0.2 6.2 0.9 2.4
integer solutions LP 0 10 6 0 7 5 0 0 0
avg. LP gap (%) 80 0 0.45 81 0.009 0.16 66 2.0 2.4
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Part II: Lot-sizing with an emission constraint

Quantitative models for carbon footprint in SCM:

Emissions and the design of the supply chain
e.g. (Cachon, 2011)
Emissions and the choice of transportation mode
e.g. (Hoen et al., 2014)
Emissions and the level of data aggregation
e.g. (Velázquez-Martínez et al., 2014)
Emissions and the management of inventory
e.g. (Hua et al., 2011)
Emissions and operational decisions
e.g. (Benjaafar et al., 2013)
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Lot-sizing with an emission constraint

Focus on both costs and environmental implications of the production
process

I Limit emissions of pollutants, such as CO2.
I Legal restrictions
I Reducing carbon footprint in pursuit of a ‘greener’ image

Not only financial costs, but also emission levels associated with
production, keeping inventory and setting up the production process

Difference with capacitated lot-sizing (with set-up times):
I Constraint for each period vs. one global constraint
I Keeping inventory may also emit pollutants.
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Lot-sizing with an emission constraint: definition

min
T∑

t=1

(pt(xt) + ht(It)) (28)

s.t. It = It−1 + xt − dt t = 1, . . . ,T (29)
I0 = 0 (30)

xt, It ≥ 0 t = 1, . . . ,T (31)
T∑

t=1

(
p̂t(xt) + ĥt(It)

)
≤ Ĉ (32)

All functions are assumed concave, nondecreasing and nonnegative.
I Includes the case with fixed set-up costs (and emissions) and linear

production and holding costs (and emissions).
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Some related literature

Benjaafar et al. (2013):
I Four emission policies: (i) taxes, (ii) caps, (iii) cap-and-trade mechanisms

and (iv) offsets
I It illustrates the impact of lot-sizing decisions on emissions

Absi et al. (2013):
I Unit emission cap of the combination of production modes
I Four models: (i) periodic, (ii) cumulative, (iii) global and (iv) rolling
I Periodic polynomial, the rest NP-complete
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Complexity result

Lot-sizing with an emission constraint is NP-hard, even if only production
emits pollutants and these production emissions are linear.

I Reduction from KNAPSACK

Consequence: lot-sizing with two production modes in each period is
NP-hard, even if only production emits pollutants (linearly) and either all
(financial) costs or all emissions are time-invariant.
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Lagrangian heuristic

min
T∑

t=1

(pt(xt) + ht(It)) + λ
T∑

t=1

(
p̂t(xt) + ĥt(It)− Ĉ

)
=

T∑
t=1

(
pt(xt) + λp̂t(xt) + ht(It) + λĥt(It)

)
− λĈ

s.t. It = It−1 + xt − dt t = 1, . . . , T
xt, It ≥ 0 t = 1, . . . , T

I0 = 0
λ ≥ 0

Dualise the emission constraint.
For a given λ:

I pt + λp̂t and ht + λĥt are concave functions
I λĈ is a constant
I we have a classic (uncapacitated) lot-sizing problem
I solvable in O(T2)
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Lagrangian heuristic
For a given λ we have a classic (uncapacitated) lot-sizing problem.

z(λ) = min
T∑

t=1

(
pt(xt) + λp̂t(xt) + ht(It) + λĥt(It)

)
s.t. It = It−1 + xt − dt t = 1, . . . , T

xt, It ≥ 0 t = 1, . . . , T
I0 = 0

A lower bound and corresponding λ∗ is found by solving

max
λ≥0
{z(λ)}

There is an algorithm (see Megiddo (1979), Gusfield (1983), Wagelmans
(1990)) that:

I finds an interval such that λ∗ is one of the endpoints;
I runs in O

(
T4) time.

I For λ∗, we are indifferent between two solutions, of which one is feasible and
the other infeasible.

I Thus, we get both a feasible solution and a lower bound.
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Structural properties

We can show that an optimal solution satisfies the following properties:

Let the production periods (sources) be given. If, for each period, the
cheapest source to satisfy demand is also the cleanest:

I single sourcing property holds
(a period’s demand is all procured from one production period)

I Costs and emissions that satisfy this property are called co-behaving.
I This includes the case with Wagner-Whitin (non-speculative) costs and

emissions.
I Also includes the case in which emissions are time-invariant and holding

emissions are zero
(or costs are time-invariant and holding costs are zero).

In general:
I Single sourcing in all but (at most) one period.
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Pseudo-polynomial algorithm (co-behaving costs & emissions)

Assume integer parameters.
Minimise emissions under budget constraint.
Because single sourcing property holds, we can extend Wagner and
Whitin’s algorithm.
f (t,B) gives the minimum emissions for periods t until T, given budget B.
With f (T + 1,B) = 0 with have for 1 ≤ t ≤ T the recursion:

f (t,B) = min
s>t: B≥c(t,s)

{e(t, s) + f (s + 1,B− c(t, s))} (33)

(34)

where c(t, s) := pt (Dt,s) +

s−1∑
τ=t

hτ (Dτ,s) (35)

e(t, s) := p̂t (Dt,s) +

s−1∑
τ=t

ĥτ (Dτ,s) (36)

f (1,B) gives the minimum emissions given budget B.
Try budget B = 1, 2, 3, ... until minimum emissions ≤ emission cap.
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Pseudo-polynomial algorithm (co-behaving costs & emissions)

Recursion:

f (T + 1,B) = 0,

f (t,B) = min
s>t: B≥c(t,s)

{e(t, s) + f (s + 1,B− c(t, s))} , t ≤ T,

where c(t, s) := pt (Dt,s) +

s−1∑
τ=t

hτ (Dτ,s)

e(t, s) := p̂t (Dt,s) +

s−1∑
τ=t

ĥτ (Dτ,s)

f (1,B) gives the minimum emissions given budget B.
Try budget B = 1, 2, 3, ... until minimum emissions ≤ emission cap.
Optimal production quantities can be found with a simple backtracking
procedure.
Required memory is O (Topt).
Running time is O

(
T2opt

)
with opt the optimal objective value.
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FPTAS for co-behaving costs & emissions
We turn the pseudo-polynomial algorithm into a FPTAS by reducing the
number of states.

f (t,B) = min
s>t: B≥c(t,s)

{e(t, s) + f (s + 1, round(B− c(t, s)))}

Round down the budget to the nearest value of

∆k :=

(
1 +

ε

(e− 1)(T + 1)

)k

Try budget B = ∆1,∆2,∆3, . . . until minimum emissions ≤ emission cap.

This leads to an FPTAS with O
(

T3 ln(opt)
ε

)
running time and O

(
T2 ln(opt)

ε

)
memory consumption
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Using the heuristic to speed up the FPTAS

We can use the heuristic’s LB to avoid small intervals at the start.
Using this idea leads to improved running times:

I O
(

T3 ln( opt
LB )

ε

)
for the FPTAS for WW costs and emissions;

I O
(

T4 ln2( opt
LB )

ε2

)
for the general FPTAS.
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Computational tests: data

We generated 1800 problem instances to test all algorithms.
I CPLEX 10.1 for comparison
I ‘natural’ formulation and shortest path reformulation

All costs and emissions were fixed-plus-linear.
Three ‘degrees of co-behaviour’:

I co-behaving costs and emissions
I 1

2 T pairs (t, s) violate the co-behaviour property
I all periods form pairs, such that the instance corresponds to a problem with

1
2 T periods with two production modes: ‘cheap & dirty’ and ‘expensive &
clean’

T = 25, 50, 100
ε = 0.10, 0.05, 0.01
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Computational tests: results (algorithms for co-behaving inst.)

T 25 50 100
Megiddo Avg. sol. time (s) 0.001 0.013 0.16

Avg. post. gap (%) 1.5 0.85 0.41
Avg. true gap (%) 0.47 0.41 0.26

FPTAS-CB-LB(0.1) Avg. sol. time (s) 0.002 0.019 0.20
Avg. post. gap (%) 0.81 0.44 0.17
Avg. true gap (%) 0.021 0.024 0.015

FPTAS-CB-LB(0.05)Avg. sol. time (s) 0.003 0.024 0.24
Avg. post. gap (%) 0.55 0.34 0.16
Avg. true gap (%) 0.0022 0.0067 0.0060

FPTAS-CB-LB(0.01)Avg. sol. time (s) 0.009 0.067 0.59
Avg.post. gap (%) 0.15 0.12 0.075
Avg.true gap (%) 0.00044 0.00016 0.00014

FPTAS-CB(0.1) Avg. sol. time (s) 0.008 0.052 0.35
Avg. post. gap (%) 3.4 3.4 3.5
Avg. true gap (%) 0.010 0.020 0.017

FPTAS-CB(0.05) Avg. sol. time (s) 0.018 0.11 0.77
Avg. post. gap (%) 1.7 1.7 1.7
Avg. true gap (%) 0.0021 0.0054 0.0042

FPTAS-CB(0.01) Avg. sol. time (s) 0.093 0.67 5.2
Avg. post. gap (%) 0.33 0.34 0.34
Avg. true gap (%) 0.000088 0.00015 0.00015

PP-CB Avg. sol. time (s) 0.24 1.8 22
CPLEX 10.1 Nat. Avg. sol. time (s) 0.045 0.44 –
CPLEX 10.1 SP Avg. sol. time (s) 0.030 0.069 0.22
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Computational tests: results (general algorithms)

T 25 25 26 50 50 50 100 100 100
data set co-bhv. gen. 2 modes co-bhv. gen. 2 modes co-bhv. gen. 2 modes

Megiddo Avg. sol. time (s) 0.001 0.001 0.001 0.013 0.013 0.014 0.16 0.16 0.16
Avg. post. gap (%) 1.5 2.8 12 0.85 1.3 6.2 0.41 0.61 2.8
Avg. true gap (%) 0.47 1.2 6.1 0.41 0.74 3.8 0.26 0.41 2.1

FPTAS-gen-LB(0.1)Avg. sol. time (s) 0.006 0.010 0.028 0.082 0.12 0.26 1.3 1.6 2.8
Avg. post. gap (%) 1.0 1.6 3.7 0.45 0.62 2.3 0.16 0.21 0.69
Avg. true gap (%) 0.0053 0.070 0.028 0.0065 0.028 0.042 0.0048 0.017 0.0080

FPTAS-gen-LB(0.05) Avg.sol.time(s) 0.010 0.019 0.59 0.14 0.22 0.57 2.4 3.0 5.9
Avg. post. gap (%) 0.92 1.4 2.3 0.44 0.61 1.9 0.16 0.21 0.69
Avg. true gap (%) 0.00055 0.043 0.028 0.0011 0.025 0.038 0.0014 0.014 0.0080

FPTAS-gen-LB(0.01) Avg.sol.time(s) 0.042 0.13 0.66 0.63 1.4 6.9 11 17 58
Avg. post. gap (%) 0.41 0.46 0.54 0.31 0.38 0.53 0.15 0.20 0.46
Avg. true gap (%) 0.000014 0.012 0.013 0.000080 0.014 0.0048 0.0000087 0.011 0.0076

FPTAS-gen(0.1) Avg. sol. time (s) 0.051 0.26 0.75 0.68 2.4 8.5 11 25 68
Avg. post. gap (%) 6.6 6.6 6.4 6.6 6.6 6.4 6.6 6.6 6.4
Avg. true gap (%) 0.0042 0.038 0.021 0.0048 0.023 0.0063 0.0046 0.016 0.011

FPTAS-gen(0.05) Avg. sol. time (s) 0.10 0.90 2.9 1.4 8.5 32 22 72 234
Avg. post. gap (%) 3.3 3.3 3.2 3.3 3.3 3.2 3.3 3.3 3.2

Avg.true gap (%) 0.00048 0.018 0.0047 0.00084 0.018 0.015 0.0017 0.012 0.0069
FPTAS-gen(0.01) Avg. sol. time (s) 0.56 23 69 7.3 191 765 113 1280 5163

Avg. post. gap (%) 0.67 0.66 0.65 0.67 0.66 0.64 0.67 0.66 0.64
Avg. true gap (%) 0.000027 0.0057 0.00073 0.000064 0.0068 0.0026 0.000049 0.0044 0.0040

CPLEX 10.1 Nat. Avg. sol. time (s) 0.045 0.041 0.035 0.44 0.38 0.12 – – –
CPLEX 10.1 SP Avg. sol. time (s) 0.030 0.031 0.053 0.069 0.072 0.14 0.22 0.26 0.55
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Part III: Bi-Objective Lot-Sizing Problems

Data:
T : planning horizon indexed by t

dt : demand (dt,τ =
∑τ

s=t ds)
(ft, ct, ht) : (setup, unit production, unit inventory) costs
(f̂t, ĉt, ĥt) : (setup, unit production, unit inventory) emissions
` : length of the emission block

Decisions:
(yt, xt, It) : (setup, production, inventory) decisions
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Different levels of aggregation for emissions

Partitioning the planning horizon:

We partition the planning horizon into blocks of length `
We minimize the max emission over the blocks (T/` blocks in total)
Different levels of aggregation depending on `

Special cases:

Whole-horizon emissions (` = T)
Period emissions (` = 1)
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The Bi-Objective Economic Lot-Sizing Problem

minimize
( Costs: gC()︷ ︸︸ ︷

T∑
t=1

[ftyt + ctxt + htIt],

Block emissions: gE()︷ ︸︸ ︷
max

i=1,...,T/`

i∑̀
t=(i−1)`+1

[f̂tyt + ĉtxt + ĥtIt]
)

subject to (BOLS(`))

xt + It−1 = dt + It t = 1, . . . ,T
xt ≤ d1,Tyt t = 1, . . . ,T
I0 = 0
yt ∈ {0, 1} t = 1, . . . ,T

xt, It ≥ 0 t = 1, . . . ,T
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The Pareto frontier
Example instance with T = 15:

demands cost parameters emission parameters
(10,10,4,2,1,40,10,10,10,10,10,3,4,7,3) (25,5,1) (0, 5, 1)

Pareto frontier
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Pareto efficient outcomes

Pareto efficient outcomes are found by, for each b̂ ∈ R+, solving

minimize
T∑

t=1

[ftyt + ctxt + htIt]

subject to (P(`)(b̂))

xt + It−1 = dt + It t = 1, . . . ,T
xt ≤ d1,Tyt t = 1, . . . ,T
I0 = 0
yt ∈ {0, 1} t = 1, . . . ,T

xt, It ≥ 0 t = 1, . . . ,T
i∑̀

t=(i−1)`+1

[f̂tyt + ĉtxt + ĥtIt] ≤ b̂ i = 1, . . . ,T/`
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ε-dominating sets

Difficulty of multi-objective problems:
Describing the Pareto frontier is challenging in Multi-Objective
Combinatorial Optimization Ulungu and Teghem (1994); Ehrgott and
Gandibleux (2000, 2004)
Focus on ε-dominating set in the outcome space, see e.g. Blanquero and
Carrizosa (2002)

Definition: Z∗ is an ε-dominating set for

min
z∈Z

(gC(z), gE(z))

if, for each z ∈ Z, there exists a z∗ ∈ Z∗ such that

gC(z∗) ≤ gC(z) + ε and
gE(z∗) ≤ gE(z) + ε
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Finding an ε-dominating set

Let b̂min (b̂max) be the minimum (maximum) value of b̂

Simple algorithm for finding an ε-dominating set
Step 0. Calculate b̂min and b̂max

Let {b̂i} be a grid of [b̂min, b̂max] of width ε
Set Z∗ = ø

Step 1. ∀i, solve (P(`)(b̂i)) and add its optimal solution to Z∗

Goal:
finding efficient algorithms for (P(`)(b̂))
we will focus on special cases with time-invariant cost parameters
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Time-invariant whole-horizon case
(P(T)(b̂)) is equivalent to solving lot-sizing problems with a fixed number of
setups n, ∀n = 1, . . . ,T,

minimize
T∑

t=1

It

subject to

xt + It−1 = dt + It t = 1, . . . ,T
xt ≤ d1,Tyt t = 1, . . . ,T
I0 = 0
yt ∈ {0, 1} t = 1, . . . ,T

xt, It ≥ 0 t = 1, . . . ,T
T∑

t=1

yt = n

Polynomial time algorithm (van Hoesel and Wagelmans, 2000)
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Whole-horizon case: complexity overview

The same algorithm works for

` costs emissions running time
T ft = f , ct = c f̂t = f̂ ĉt = ĉ ĥt = αht O(T2)

Complexity overview:
costs emissions complexity

ft ct and ht f̂t ĉt ĥt

c non-speculative c c αht polynomially solvable
c non-speculative v 0 0 NP-hard
c non-speculative 0 v 0 NP-hard
c non-speculative 0 0 c NP-hard

Our results for the whole-horizon case are tight
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Time-invariant period case
Main approach:

decomposition the problem in subplans [u, v]

compute the cost of a subplan efficiently

Definitions:
A block/period is called tight if its emission constraint is binding
A block/period is called extreme if either tight or no production

Properties:
The only possible non-tight production period is u

Consider t (u < t ≤ v) with inventory It such that:
I x̄t := (b̂− f̂ − ĥIt)/ĉ > 0,
I Īt−1 := It − x̄t + dt > 0.

Then t is a tight production period with production quantity x̄t, and
incoming inventory equal to Īt−1.

Main result
The optimal cost of all subplans can be calculated in O(T2) time by a
backward DP algorithm.
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Period case: complexity overview

The same algorithm works for

` costs emissions running time
1 ft ≥ ft+1, non-speculative f̂t = f̂ ĉt = ĉ ĥt = ĥ O(T2)

Complexity overview:
costs emissions complexity

ft ct and ht f̂t ĉt ĥt

non-increasing non-speculative c c c polynomially solvable
c non-speculative v c 0 NP-hard
c non-speculative 0 v 0 NP-hard
c non-speculative 0 0 v open

Our results for the period case are almost tight
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Time-invariant block case: production and setup
emissions

Definitions:
b(v) (e(v)) denotes the first (last) period of the block that contains v

Two consecutive subplans are called connected if they have production
in the same block.

A sequence of connected subplans is called a maximal sequence of
subplans if it does not contain a smaller sequence.

Proposition:
Except for the first, all blocks fully contained in a maximal sequence of
connected subplans [t,w] are extreme. If the last block is split, then there
is no production in [b(w),w]
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Block case: production and setup emissions

General solution approach:
Decompose solution into maximal sequences of connected subplans
Decompose maximal sequences in subplans
Compute the cost of a subplan efficiently

Main result:
We can derive a DP algorithm to compute the subplan costs using:

I (u, v; w), a subplan [u, v] contained in a maximal sequence ending in period w
I keeping track of the number of production blocks and setups.

The optimal cost of all subplans can be calculated in O(T7/`) time by a
backward DP algorithm.

W. van den Heuvel (EUR) Sustainability issues in lot-sizing models Paris, June 26, 2015 44 / 47



Block emissions: complexity overview

Complexity overview in case of block emissions:
costs emissions complexity

ft ct and ht f̂t ĉt ĥt

v non-speculative c c 0 polynomially solvable
c non-speculative v 0 0 NP-hard
c non-speculative 0 v 0 NP-hard
c non-speculative 0 0 c NP-hard

Our results for the block case are tight
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Conclusions & further research
1 Lot-sizing with remanufacturing:

I ELSRs and ELSRj are both NP-hard.
I Computational tests indicate that reformulations SP and PSP perform well

I Extend shortest path formulations with capacities
I Use solution of LP relaxation in a rounding heuristic
I How to incorporate stochastic returns?

2 Lot-sizing with emission constraint:
I is NP-hard
I A Lagrangean heuristic gives a LB as well as a feasible solution in O

(
T4).

I There is an FPTAS which works faster in case of co-behaviour property.

I applying the same technique to create FPTASes for other problems

3 Bi-objective lot-sizing:
I Special classes of problem instances are polynomially solvable
I We have shown the tightness of our polynomiality results
I Results can be used to find an ε-dominating set

I Close the complexity gap
I Overlapping blocks case
I Algorithms for the NP-complete cases
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