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Outline
We fill focus on sustainability issues in operational decisions.

@ Lot-sizing with remanufacturing: joint and separate set-up cost

Natural MIP formulations
Complexity results
Reformulations
Computational tests
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@ Lot-sizing with an emission constraint
» Complexity results
» Algorithms
* Lagrangian heuristic

* Pseudo-polynomial algorithm for co-behaving costs and emissions
* Fully polynomial time approximation schemes (FPTASes)

» Computational tests

@ Bi-objective lot-sizing: minimize costs and emissions

» Finding Pareto points
» Complexity results
» Efficient DP Algorithms for special cases
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Classic economic lot-sizing problem

X1, Y1 X2, Y2 X3,Y3 X4, Y4
h : A " I "
d; d> ds ds
Data:

@ T : planning horizon indexed by ¢
@ d,:demand (D, , =Y.._, d,)
@ (Ki,p:, h) : (setup, unit production, unit inventory) costs

Decisions:
® (v, x:,1;) : (setup, production, inventory) decisions

@ Trade-off between (fixed) set-up costs and (linear) holding costs.
@ Solvable in O(TlogT) time
@ subproblem in MRP/ERP (usually solved heuristically)
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Part |: Lot-sizing with remanufacturing

Classic single-item, uncapacitated lot-sizing problem (upper layer) plus:

@ A known quantity of used products r, is returned from customers in each
period .

@ ‘Returns’ can be remanufactured, so that they are as good as new.
@ When to set up the (re-)manufacuring process?

Extra decisions:
@ (y;,x;,I) : remanufacturing (setup, production, inventory) decisions
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Lot-sizing with remanufacturing

@ ‘Returns’ can be remanufactured, so that they are as good as new.
» no choice: printer cartridges, single-use cameras
> service contract: copiers
@ A known quantity of used products is returned from customers in each
period.
» remanufacturing included in more and more MRP/ERP systems
@ The manufacturing and remanufacturing process have either joint
(ELSR;j) or separate (ELSRs) set-up costs (Teunter et al., 2006)
» manufacturing and remanufacturing on the same or different production lines
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Natural formulation: separate set-ups

X N2 Y
£\
= I5
df ds
xi|vi x|ys
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min Y (K'Y + py'xy’ + I + K[y, + pix; + 1) (1)

t=1
st. I = [, +xX"+x—d, t=1,...,T @)
I = I'  —x+r, t=1,....T 3)
x' < Diry! t=1,...,T (4)
x; < Diry; t=1,...,T (5)
AL >0 Yy e {01} t=1,...,T (6)
L=I = 0 @)
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Natural formulation: joint set-ups

T
min Y (Kyyi +pyxy’ + I} + pi] + I}) (8)

=1
s.t. L = L +x"+x—d t=1,....T 9)
I = I_,—x +r t=1,...,T (10)
xjtn_’_x; S Dt,Tyt = )"'7T (11)
X' x, LI >0 v €{0,1} t=1,...,T (12)
=I5 = 0 (13)
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Complexity results

@ ELSRs is N'P-hard for constant cost parameters.
» reduction from PARTITION (see Van den Heuvel, 2006)

@ ELSR;jis solvable in O(T*) for constant cost parameters (Teunter et al.,
2006).

@ ELSR;jis N'P-hard in general.
» ELSRs is a special case of ELSR;j
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Shortest path reformulation: single-item problem

@ Based on Eppen & Martin’s (1987) shortest path reformulation of the
capacitated problem (without remanufacturing).

@ z;; is fraction of demand in each of the periods i until j that is satisfied by
production in period i.

@ Send a unit flow through the network.
@ LP relaxation gives integer optimal solution.
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Shortest path reformulation: separate set-ups

@ Extension to remanufacturing
» Also gives the possibility of final inventories (through fi, £, f3).
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Shortest path reformulation: separate set-ups
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Partial shortest path reformulation: separate set-ups
@ To reduce the number of variables, use partial shortest path
reformulation.
» See Van Vyve & Wolsey (2006) and Stadtler (1997) for classic lot-sizing
problem.
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(1, S, WW) valid inequalities
@ The (/, S, WW) inequalities are strong valid inequalities for the single item,
uncapacaitated lot-sizing problem. (Pochet and Wolsey, 1994)

@ We adapted them for both the returns and serviceables layer of lot-sizing
with remanufacturing.

@ For separate set-ups:

J
Lo+ ZDI,/' O + 1)

> D 2<i<j<T (24)
t=i
J
F+> Ryy > Ry 1<i<j<T (25)
p
@ For joint set-ups:
J
Lo+ Dyy > Dy 2<i<j<T (26)
r?z
F+Y Ryy > Ry 1<i<j<T (27)
=i

@ We added these to the Natural formulation.

W. van den Heuvel (EUR) Sustainability issues in lot-sizing models Paris, June 26, 2015 13/47



Computational tests: data
Parameter settings:

parameter T d, e

value {25,50,75}  N(100,50) {N(10,5),N(50,25),N(90,45)}
parameter K=K =K W=h =k pr=p =p

value {125,250, 500, 1000} 1 0

@ 10 replications for each setting
@ so 360 problem instances generated (both for ELSRs and ELSR;j)
@ solved with cPLEX 10.1 and 1 hour time limit

Setting £* and k" in the partial shortest path formulation:

@ Use approximations of time between orders in EOQ setting (Van der
Laan and Teunter, 2006):

180" = | —K"_ and 180 = /2K
w(d—7) '

@ We choose k* = [2- TBO*] and k" = [2 - TBO"] (formulation PSP2).
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Computational tests: results separate, 50 periods

average returns
10 50 90

2]
2 N ~ <
o E o =| E « 2| T o =
oy 2 o v 2 o v 2 o u
kot S NS T o o - 5 o o -
) zZ o o = Z o o = zZ o o =
125 avg. sol. time MmiP (s)| 12 0.4 0.7 6| 606 426 252 296| 152 325 194 106
avg. LP gap (%) 91 1.7 17 21| 8 70 70 20| 45 73 73 11
250 solved to optimality 3 10 10 10 3 10 10 7 8 10 10 9
avg. MIP gap (%) 1.7 0 0 o0/ 17 0 0 05| 04 0 0 0.1
avg. sol. time MIP (s) 3272 0.5 1.1 369|2859 843 989 2000|1122 811 805 1006
avg. LP gap (%) 89 10 1.0 18| 88 63 63 17| 56 7.8 78 11
500 solved to optimality 0o 10 10 10 3 10 10 10 6 9 9 9
avg. MIP gap (%) 5.1 0 0 0 14 0 O 0| 099 0.21 0.18 0.20
avg. sol. time MIP (s) [3600 0.5 1.3 335(3144 53 91 729|1576 390 450 607
avg. LP gap (%) 86 1.1 1.1 18 86 4.7 4.7 14 64 77 7.7 11
1000 solved to optimality 0 10 10 10 1 10 10 10 9 10 9 9
avg. MIP gap (%) 3.6 0 0 0 34 0 O 0| 0.48 0 025 0.19
avg. sol. time MIP (s) [3600 0.4 1.0 4013582 25 45 283| 724 424 592 517
avg. LP gap (%) 83 0.67 0.67 14| 83 3.8 38 12| 69 6.2 6.2 93
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Computational tests: results joint, 50 periods

average returns
10 50 90

§2]
8 N N N
a [ 2| g =| T =
g . - .
5 g o = 2 o 2 £ o 2
7} z n = z %) | 2z [
125 avg. sol. time MIP (s) [ 0.0 00 02] 0.0 0.1 0314 49 39
integer solutions LP 0 9 1 0 0 0| O 0 0
avg. LP gap (%) 89 0.009 0.91| 85 1.0 14|42 33 35
250 avg. sol. time MIP (s) | 0.8 00 02| 0.1 0.1 04[21 48 39
integer solutions LP 0 10 4 0 1 0| O 0 0
avg. LP gap (%) 87 0 070 8 048 097|53 35 4.0
500 avg. sol. time MIP (s) | 35 0.0 02| 1.9 0.0 03(34 32 37
integer solutions LP 0 10 6 0 6 3| 0 0 0
avg. LP gap (%) 84 0 0.68| 83 0.11 047| 61 3.1 37
1000 avg. sol. time MIP (s) | 168 0.0 0.2]16.8 0.0 02[62 09 24
integer solutions LP 0 10 6 0 7 5| 0 0 0
avg. LP gap (%) 80 0 045| 81 0.009 0.16|66 20 24
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Part Il: Lot-sizing with an emission constraint

Quantitative models for carbon footprint in SCM:

@ Emissions and the design of the supply chain
e.g. (Cachon, 2011)

@ Emissions and the choice of transportation mode
e.g. (Hoen et al., 2014)

@ Emissions and the level of data aggregation
e.g. (Velazquez-Martinez et al., 2014)

@ Emissions and the management of inventory
e.g. (Hua et al., 2011)

@ Emissions and operational decisions
e.g. (Benjaafar et al., 2013)
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Lot-sizing with an emission constraint

@ Focus on both costs and environmental implications of the production
process
» Limit emissions of pollutants, such as CO,.
» Legal restrictions
» Reducing carbon footprint in pursuit of a ‘greener’ image

@ Not only financial costs, but also emission levels associated with
production, keeping inventory and setting up the production process

@ Difference with capacitated lot-sizing (with set-up times):

» Constraint for each period vs. one global constraint
» Keeping inventory may also emit pollutants.
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Lot-sizing with an emission constraint: definition

X1, Y1 X2, Y2 X3, Y3 X4, Ya
hoo Lo Ko
dr d> d3 da
T
min Z (pe(xe) + he(Ly)) (28)
=1
S.t. I[ = I[_l +xt_d[ t= 1,...7T (29)
I, = 0 (30)
x, I, > 0 t=1,....T (31)
T
S () + i) < € (32)

t=1

@ All functions are assumed concave, nondecreasing and nonnegative.

» Includes the case with fixed set-up costs (and emissions) and linear
production and holding costs (and emissions).
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Some related literature

@ Benjaafar et al. (2013):
» Four emission policies: (i) taxes, (ii) caps, (iii) cap-and-trade mechanisms
and (iv) offsets
» ltillustrates the impact of lot-sizing decisions on emissions

@ Absi et al. (2013):
» Unit emission cap of the combination of production modes
» Four models: (i) periodic, (ii) cumulative, (iii) global and (iv) rolling
» Periodic polynomial, the rest N'’P-complete
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Complexity result

@ Lot-sizing with an emission constraint is A"P-hard, even if only production
emits pollutants and these production emissions are linear.

» Reduction from KNAPSACK

@ Consequence: lot-sizing with two production modes in each period is
NP-hard, even if only production emits pollutants (linearly) and either all
(financial) costs or all emissions are time-invariant.

W. van den Heuvel (EUR) Sustainability issues in lot-sizing models Paris, June 26, 2015 21/47



Lagrangian heuristic

T

(50 + (1) + A (i) + it = €)

=1

min

\|M~; ||M~;

(Pt Xt + )\Pt -xt + ht(lt) + )‘ht(lf)) - )‘é

s.t. L, = Lao4+x—d t=1,...,T
x> 0 t=1,...,T

Ih = 0

A >0

@ Dualise the emission constraint.

@ For a given A:

pi 4+ Ap: and h, + i, are concave functions

AC is a constant

we have a classic (uncapacitated) lot-sizing problem
solvable in O(T?)

\{

vYyy
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Lagrangian heuristic

@ For a given )\ we have a classic (uncapacitated) lot-sizing problem.

T

2 =min 7 (pi) + A) + (L) + Na(1))

=

st. I, = Li+x—d t=1,...,T
xwl > 0 t=1,...,T
I = 0

@ A lower bound and corresponding A* is found by solving

max{z(A)}

A>0

@ There is an algorithm (see Megiddo (1979), Gusfield (1983), Wagelmans
(1990)) that:
» finds an interval such that \* is one of the endpoints;
> runsin O (T*) time.
» For \*, we are indifferent between two solutions, of which one is feasible and
the other infeasible.
» Thus, we get both a feasible solution and a lower bound.
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Structural properties

We can show that an optimal solution satisfies the following properties:

@ Let the production periods (sources) be given. If, for each period, the
cheapest source to satisfy demand is also the cleanest:

» single sourcing property holds
(a period’s demand is all procured from one production period)

» Costs and emissions that satisfy this property are called co-behaving.

» This includes the case with Wagner-Whitin (non-speculative) costs and
emissions.

» Also includes the case in which emissions are time-invariant and holding
emissions are zero
(or costs are time-invariant and holding costs are zero).

@ In general:
» Single sourcing in all but (at most) one period.
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Pseudo—polynomial algorithm (co-behaving costs & emissions)

@ Assume integer parameters.
@ Minimise emissions under budget constraint.

@ Because single sourcing property holds, we can extend Wagner and
Whitin’s algorithm.

@ f(t,B) gives the minimum emissions for periods ¢ until T, given budget B.

@ With f(T + 1, B) = 0 with have for 1 < < T the recursion:

f(,B) = min  {e(t,s) +f(s+ 1,B—c(1,5))} (33)
s>1: B>c(t,s)
o (34)
where  c(t,s) = p(Diy)+ Y h-(Dry) (35)
s—1
e(t,s) = pi(Dis) + Zilf (D~.s) (36)

@ f(1, B) gives the minimum emissions given budget B.
@ Try budget B = 1,2, 3, ... until minimum emissions < emission cap.
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Pseudo-polynomial algorithm (co-behaving costs & emissions)
@ Recursion:

fTELB) = 0,
f(t,B) = min  {e(t,s) +f(s+1,B—c(t,5))} , t <T,

s>t B>c(t,s)

s—1
where c(tys) = pi (D) + Z hr (Drys)
T=t

s—1
e(tv S) = ﬁt (Dt,s) + Z il'r (DT,S)
T=t

@ f(1,B) gives the minimum emissions given budget B.
@ Try budget B = 1,2, 3, ... until minimum emissions < emission cap.

@ Optimal production quantities can be found with a simple backtracking
procedure.

@ Required memory is O (Topt).
@ Running time is O (T?opt) with opt the optimal objective value.
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FPTAS for co-behaving costs & emissions

@ We turn the pseudo-polynomial algorithm into a FPTAS by reducing the
number of states.

f(t,B)=min {e(r,s) +f(s+ 1,round(B — c(t,s)))}

s>t: B>c(t,5)
@ Round down the budget to the nearest value of
k € ¢
s (14 )
@ Try budget B = A', A2, A, ... until minimum emissions < emission cap.

® This leads to an FPTAS with O (22 running time and © (=22
memory Consumption

Al %2 A3 A4 AS
1
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Using the heuristic to speed up the FPTAS

@ We can use the heuristic’s LB to avoid small intervals at the start.
@ Using this idea leads to improved running times:

3 n( 2t [
» O (%(L%)) for the FPTAS for WW costs and emissions;

» O (%) for the general FPTAS.

0 2e-LB
1

LB (1+&)*t  (1+e)*? (1+e)+
| l l l l l

1 1 1 1
1B 3e-LB (1+¢)
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Computational tests: data

@ We generated 1800 problem instances to test all algorithms.
» CPLEX 10.1 for comparison
» ‘natural’ formulation and shortest path reformulation
@ All costs and emissions were fixed-plus-linear.
@ Three ‘degrees of co-behaviour’:
» co-behaving costs and emissions
» 1T pairs (1, s) violate the co-behaviour property
» all periods form pairs, such that the instance corresponds to a problem with
1T periods with two production modes: ‘cheap & dirty’ and ‘expensive &
clean’

@ T = 25,50, 100
@ ¢ =0.10,0.05,0.01
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Computational tests: results (aigorithms for co-behaving inst.)

T 25 50 100
Megiddo Avg. sol. time (s) 0.001 0.013 0.16
Avg. post. gap (%) 1.5 0.85 0.41
Avg. true gap (%) 0.47 0.41 0.26
FPTAS-CB-LB(0.1) Avg. sol. time (s) 0.002 0.019 0.20
Avg. post. gap (%) 0.81 0.44 0.17
Avg. true gap (%) 0.021 0.024 0.015
FPTAS-CB-LB(0.05)Avg. sol. time (s) 0.003 0.024 0.24
Avg. post. gap (%) 0.55 0.34 0.16
Avg. true gap (%) 0.0022 | 0.0067 | 0.0060
FPTAS-CB-LB(0.01)Avg. sol. time (s) 0.009 0.067 0.59
Avg.post. gap (%) 0.15 0.12 0.075
Avg.true gap (%) 0.00044 | 0.00016 | 0.00014

)

)

)

)

)

)

)

)

)

)

)

)

FPTAS-CB(0.1)  Avg. sol. time (s| 0.008 0.052 0.35
Avg. post. gap (%

Avg. true gap (%

FPTAS-CB(0.05) Avg. sol. time (
Avg. post. gap (%,

Avg. true gap (%

FPTAS-CB(0.01)  Avg. sol. time (s
Avg. post. gap (%

Avg. true gap (%

3.4 3.4 3.5
0.010 0.020 0.017
0.018 0.11 0.77

1.7 1.7 1.7

0.0021 | 0.0054 | 0.0042
0.093 0.67 52
0.33 0.34 0.34
0.000088 | 0.00015 | 0.00015
0.24 1.8 22

2

PP-CB Avg. sol. time (s
CPLEX 10.1 Nat.  Avg. sol. time (s
CPLEX 10.1 SP Avg. sol. time (s,

0.045 0.44 -
0.030 0.069 0.22
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Computational tests: results (general algorithms)

T 25 25 26 50 50 50 100 100 100

data set co-bhv.  gen. 2 modes co-bhv.  gen. 2 modes co-bhv.  gen. 2 modes

Megiddo Avg. sol. time (s) 0.001 0.001 0.001 0.013 0.013 0.014 0.16  0.16 0.16
Avg. post. gap (%) 15 28 12 085 1.3 6.2 041 061 238

Avg. true gap (%) 047 12 6.1 041 074 338 026 0.41 2.1
FPTAS-gen-LB(0.1)Avg. sol. time (s) 0.006 0.010  0.028 0.082 0.12 0.26 1.3 1.6 2.8
Avg. post. gap (%) 1.0 1.6 37 0.45 0.62 23 0.16 021 0.69

Avg. true gap (%) 0.0053 0.070  0.028 0.0065 0.028  0.042 0.0048 0.017  0.0080
FPTAS-gen-LB(0.05) Avg.sol.time(s) 0.010 0.019 0.59 0.14 022 057 24 30 5.9
Avg. post. gap (%) 092 14 23 0.44 0.61 1.9 0.16  0.21 0.69

Avg. true gap (%) 0.00055 0.043 0.028 0.0011  0.025 0.038 0.0014 0.014  0.0080
FPTAS-gen-LB(0.01) Avg.sol.time(s) 0.042 0.13 0.66 0.63 1.4 6.9 1 17 58
Avg. post. gap (%) 0.41 0.46 0.54 0.31 0.38 0.53 0.15 0.20 0.46

Avg. true gap (%) 0.000014 0.012 0.013 | 0.000080 0.014 0.0048 | 0.0000087 0.011 0.0076

FPTAS-gen(0.1)  Avg. sol. time (s) 0.0561 0.26 0.75 0.68 24 8.5 11 25 68
Avg. post. gap (%) 6.6 6.6 6.4 6.6 6.6 6.4 6.6 6.6 6.4

Avg. true gap (%) 0.0042 0.038  0.021 0.0048 0.023  0.0063 0.0046 0.016  0.011

FPTAS-gen(0.05) Avg. sol. ime (s) 0.10 090 29 14 85 32 22 72 234
Avg. post. gap (%) 33 33 32 33 33 32 33 33 3.2

Avg.true gap (%) 0.00048 0.018 0.0047 0.00084 0.018 0.015 0.0017 0.012  0.0069

FPTAS-gen(0.01) Avg. sol. time (s) 0.56 23 69 73 191 765 113 1280 5163
Avg. post. gap (%) 0.67 0.66 0.65 0.67 0.66 0.64 0.67 0.66 0.64

Avg. true gap (%) | 0.000027 0.0057 0.00073 | 0.000064 0.0068 0.0026 | 0.000049 0.0044 0.0040

CPLEX 10.1 Nat.  Avg. sol. time (s) 0.045 0.041 0.035 0.44  0.38 0.12 - - -
CPLEX 10.1 SP Avg. sol. time (s) 0.030 0.031  0.053 0.069 0.072 0.14 022 0.26 0.55
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Part Ill: Bi-Objective Lot-Sizing Problems

Data:
@ T : planning horizon indexed by ¢
@ d,:demand (d,. = >_._,d)
@ (fi,ci, ) 1 (setup, unit production, unit inventory) costs
) (ﬁ,é,,fz,) : (setup, unit production, unit inventory) emissions
@ /: length of the emission block

Decisions:
@ (y,x:,1I;) : (setup, production, inventory) decisions
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Different levels of aggregation for emissions

Partitioning the planning horizon:

@ We partition the planning horizon into blocks of length ¢
@ We minimize the max emission over the blocks (/¢ blocks in total)
o Different levels of aggregation depending on ¢

Special cases:

@ Whole-horizon emissions (¢ = T)
@ Period emissions (¢ = 1)
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The Bi-Objective Economic Lot-Sizing Problem

Costs:

g°0)

Block emissions: g% ()

T
minimize ( > [fiye + e + hl]
=1

subject to

X+ 1

Xt

Y
xi, 1
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The Pareto frontier

Example instance with 7' = 15:
demands cost parameters  emission parameters
(10,10,4,2,1,40,10,10,10,10,10,3,4,7,3) (25,5,1) 0,5, 1)

Pareto frontier
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Pareto efficient outcomes

Pareto efficient outcomes are found by, for each b € R, solving

T
minimize Y "[fiy: + e, + hil,]
=1
SUbjeCt to (fp(l) (l;))
x+hLy = d+1 t=1,...,T
x < diry t=1,...,T
10 = 0
» € {0,1} t=1,...,T
X,y = 0 t=1,...,T
il
Z [ﬁyt+étxt+iltlt] < b i=1,...,T/t
1=(i—1)¢+1
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e-dominating sets

Difficulty of multi-objective problems:

@ Describing the Pareto frontier is challenging in Multi-Objective

Combinatorial Optimization Ulungu and Teghem (1994); Ehrgott and
Gandibleux (2000, 2004)

@ Focus on e-dominating set in the outcome space, see e.g. Blanquero and
Carrizosa (2002)

Definition: Z* is an e-dominating set for

min - (g(2), 8"(2))

if, for each z € Z, there exists a z* € Z* such that

W. van den Heuvel (EUR)
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Finding an s-dominating set

Let p™n (h™*) be the minimum (maximum) value of b

Simple algorithm for finding an :-dominating set

Step 0. Calculate b™" and b™
Let {b'} be a grid of [p™, p™%] of width e
SetZ* =0
Step 1. Vi, solve (P (b)) and add its optimal solution to Z*

Goal:
e finding efficient algorithms for (P©) (b))
@ we will focus on special cases with time-invariant cost parameters
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Time-invariant whole-horizon case

(P (b)) is equivalent to solving lot-sizing problems with a fixed number of
setupsn,Vn=1,...,T,

T
minimize ZI,
=1
subject to
x+IL_1 = d+1I, t=1,....T
X < diry t=1,...,T
Iy = 0
y € {0,1} t=1,...,T
x, I, > 0 t=1,....T
= n

T
ZYt
=1

Polynomial time algorithm (van Hoesel and Wagelmans, 2000)
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Whole-horizon case: complexity overview

The same algorithm works for

¢ costs emissions running time
T fi=fa=c fi=f &=¢ h=ah O(T?)

Complexity overview:

costs emissions | complexity
fi ¢ and h fr ¢ h
¢ non-speculative | ¢ ¢ ah, | polynomially solvable
c non-speculative | v 0 0 NP-hard
¢ non-speculative | 0 v 0 NP-hard
¢ non-speculative | 0 0 ¢ NP-hard
Our results for the whole-horizon case are tight J
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Time-invariant period case
Main approach:

@ decomposition the problem in subplans [u, v]

@ compute the cost of a subplan efficiently
Definitions:

@ A block/period is called tight if its emission constraint is binding

@ A block/period is called extreme if either tight or no production
Properties:

@ The only possible non-tight production period is u

@ Consider 1 (u < r < v) with inventory I, such that:

> X = (b f hl,)/c >0,

> L1 :=1 —%+d >0.
Then ¢t is a tight production period with production quantity x;, and
incoming inventory equal to 7,_;.

Main result

The optimal cost of all subplans can be calculated in O(7?) time by a
backward DP algorithm.
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Period case: complexity overview

The same algorithm works for

¢ costs emissions running time
1 f,>fis1, non-speculative f,=f &=¢& h=h O

Complexity overview:

costs emissions | complexity
fi ¢, and h; fi ¢l
non-increasing non-speculative | ¢ ¢ ¢ | polynomially solvable
c non-speculative | v. ¢ 0 | AP-hard
c non-speculative | 0 v 0 | A'P-hard
c non-speculative | 0 0 v | open
Our results for the period case are almost tight J
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Time-invariant block case: production and setup

T

GGG '\‘,i'{ [O»O»O*OHO»O‘ OGOO

Definitions:
@ b(v) (e(v)) denotes the first (last) period of the block that contains v

@ Two consecutive subplans are called connected if they have production
in the same block.

@ A sequence of connected subplans is called a maximal sequence of
subplans if it does not contain a smaller sequence.

Proposition:
@ Except for the first, all blocks fully contained in a maximal sequence of

connected subplans [t, w] are extreme. If the last block is split, then there
is no production in [b(w), w]
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Block case: production and setup emissions

]

General solution approach:
@ Decompose solution into maximal sequences of connected subplans
@ Decompose maximal sequences in subplans
@ Compute the cost of a subplan efficiently

Main result:

@ We can derive a DP algorithm to compute the subplan costs using:
(u, v; w), a subplan [u, v] contained in a maximal sequence ending in period w
keeping track of the number of production blocks and setups.
@ The optimal cost of all subplans can be calculated in O(77/¢) time by a
backward DP algorithm.

vy
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Block emissions: complexity overview

Complexity overview in case of block emissions:

costs emissions | complexity
fi ¢ and h, fi & M
v non-speculative | ¢ ¢ 0 | polynomially solvable
¢ non-speculative | v. 0 0 | NP-hard
¢ non-speculative | 0 v 0 | NP-hard
¢ non-speculative | 0 0 ¢ | NP-hard
Our results for the block case are tight J
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Conclusions & further research

@ Lot-sizing with remanufacturing:

» ELSRs and ELSRj are both N'P-hard.
» Computational tests indicate that reformulations SP and PSP perform well

» Extend shortest path formulations with capacities
» Use solution of LP relaxation in a rounding heuristic
» How to incorporate stochastic returns?
@ Lot-sizing with emission constraint:
» is N"P-hard
» A Lagrangean heuristic gives a LB as well as a feasible solution in O (7“)
» There is an FPTAS which works faster in case of co-behaviour property.

» applying the same technique to create FPTASes for other problems

@ Bi-objective lot-sizing:

Special classes of problem instances are polynomially solvable
We have shown the tightness of our polynomiality results
Results can be used to find an e-dominating set

v

v

v

\4

Close the complexity gap
Overlapping blocks case
Algorithms for the N'P-complete cases

v

v
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