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Abstract

The homogenized constrained mixture theory (H-CMT) is an attractive and efficient computational framework to
simulate growth and remodeling (G&R) of soft tissues within finite deformations. It considers several prestressed
constituents within a mixture and it enables their continuous individual mass removal and production to be taken
into account. However, the referred theory was developed for specific mixtures, whose remodeling occurred on uni-
dimensional constituents (fibers) only, while being embedded in an isotropic matrix. As the microstructure of soft
tissues is generally more complex, we propose an extension of the H-CMT, which enables remodeling to occur on
tridimensional constituents. This was achieved by manipulating the remodeling stress rate equation of the H-CMT.
By rearranging the tensorial expression, it was possible to re-interpret its terms as variables of the classical plasticity
theory and the resulting equation is a particular case of kinematic hardening. This interpretation, in turn, enables stan-
dard return mapping algorithms, which are classical in plasticity, to be quickly adapted to G&R problems. Therefore,
not only we explore the intersection of both the H-CMT and the plasticity frameworks, but we also propose new algo-
rithmic implementations of G&R that closely resemble those used in standard elasto-plastic problems. Applications
to the simulation of G&R in anisotropic tissues such as arteries are eventually shown to demonstrate the capabilities
of the new algorithms.
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1. Introduction

The research field known as mechanobiology encom-
passes the study of growth and remodeling (G&R) in re-
sponse to mechanical or chemical cues, through which
biological tissues seek to restore or maintain a homeo-
static state (Loerakker and Ristori, 2020), while its con-
stituents are continuously produced or degraded. The
study of G&R has grown substantially during the past
years (Cyron and Humphrey, 2017) and researchers
made efforts to develop adequate computational mod-
els, so as to support a deeper understanding of the un-
dergoing phenomena.

Among these models, a significant number of them
were developed on top of the noticeable constrained
mixture theory (CMT) (Humphrey and Rajagopal,
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2002). Such a framework was extensively used to pre-
dict the evolution of pathologies related to the aorta
(Watton et al., 2004; Valentin et al., 2009; Cardamone
et al., 2010) or other blood vessels (Ramachandra et al.,
2017), while varying hemodynamic loads or simulating
the effects of inflammation. The CMT was also used
to elucidate questions about how a functional neo-tissue
could be formed from a degrading Tissue-Engineered
Vascular Graft (TEVG) (Khosravi et al., 2015; Miller
et al., 2015; Szafron et al., 2019; Drews et al., 2020;
Blum et al., 2022). These examples show that phe-
nomenological models might support the development
of several clinical applications, such as the prevention
of aneurysmal diseases or the design of TEVGs.

Despite the continuing insights into G&R, the CMT
remains computationally expensive (Latorre et al.,
2022). It requires to store in memory all past config-
urations of every constituent within the mixture, as their
stresses and mass evolutions are based on hereditary in-
tegrals. The main approach to circumvent this issue is to
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represent the simulated material with simplified geome-
tries, such as cylinders. However, if one wishes to pre-
dict G&R on patient-specific geometries, memory stor-
age will likely be a bottleneck. This, in turn, motivated
the development of models that are cost effective (i.e.,
“reduced models”).

Cyron et al. (2016) proposed a reduced version of the
CMT by homogenizing the elastic and inelastic defor-
mation gradients in time. It is referred to as the H-CMT.
Its key feature relies on assuming that the Cauchy stress
rate “σ̇” can be defined via a mass-averaged Cauchy
stress of all mass increments. From that rate expres-
sion in tensor form, Cyron et al. (2016) derived a scalar
variant, which is appropriate to describe the remodel-
ing of 1D-like materials only. For instance, Cyron et al.
(2016) used Fung exponential (Fung, 1973; Holzapfel
et al., 2000) strain energy density functions (SEDs) to
test that scalar expression of remodeling. An explicit
and ready-to-use equation was only presented for these
unidimensional cases and, to our knowledge, no explicit
framework was given about its original tensor form.

This reduced approach paved the way for the ap-
plication of the H-CMT to more complex geometries.
For instance, Mousavi and Avril (2017) and Mousavi
et al. (2019) studied the development of aortic aneurys-
mal growth via the H-CMT, while using patient-specific
data. In those studies, elastin was the only constituent
of the mixture to be modeled as a tridimensional and
isotropic solid, and it is assumed not to remodel. On the
other hand, all other constituents suffer remodeling and
are all represented as 1D Fung exponentials. As only
the fibers undergo remodeling, Cyron et al. (2016) im-
plemented the aforementioned scalar-rate equation, as
there was no need to implement its tensor variant.

Another attempt to circumvent the computational
costs of the classical CMT was the development of
a mechanobiologically equilibrated CMT (ME-CMT)
(Latorre and Humphrey, 2020a,b). Here, the hereditary
integrals are transformed into rate expressions, while as-
suming that equilibrium occurs at a time that is much
larger than the characteristic G&R time-scale.

Although being built under a more stringent assump-
tion, it describes well the G&R problems cited above.
For instance, Latorre and Humphrey (2018) studied an
aortic aneurysm by locally varying the mass fractions
of elastin, while Latorre et al. (2022) went further and
used this reduced framework to predict G&R occurring
in TEVGs.

The development of H-CMT & ME-CMT are impor-
tant steps towards patient-specific simulations on irreg-
ular (patient-specific) geometries. However, numerical
issues might still arise. For instance, such models could

experience convergence issues, if (almost) no 3D ma-
terial is cementing the aforementioned fibers within an
element. Briefly, these instabilities might occur, as 1D
fibers do not support shear. This leads to undesired high
shear effects in the 3D materials, if the latter are almost
absent within the mixture.

A logical solution to alleviate this problem is the in-
clusion of a 3D constituent in the model, so the ma-
terial can support these shear effects. This 3D con-
stituent could be isotropic and is implemented solely for
numerical stability. Another alternative is the substitu-
tion of the unidimensional constituents to an equivalent
3D anisotropic material, such as a dispersed-like fiber
proposed by Gasser et al. (2006). This material is a
combination of an unidimensional component with an
isotropic one.

In both cases, the inclusion of either an isotropic or
an anisotropic material would require G&R to occur in
the added material as well. If the H-CMT is the cho-
sen approach to develop such a model, one requires to
solve the stress rate equation of the H-CMT in its ten-
sor form. To our best knowledge, the referred origi-
nal tensor-like equation was not explicitly presented, as
the implementation of its scalar variant was sufficient to
predict remodeling of all cited problems (Cyron et al.,
2016; Mousavi et al., 2019).

In the current paper, we propose a formal extension of
the H-CMT that can address remodeling more globally,
and in particular within 3D isotropic and anisotropic
materials. For that, we modeled G&R as a variant of
finite plasticity, as already suggested by Vignes and
Papadopoulos (2010); Grillo et al. (2019); Soleimani
(2019); Lamm et al. (2022). This enabled manipulating
the H-CMT stress rate and re-interpreting it as a partic-
ular form of kinematic hardening. Not only both frame-
works seemed to match well, but the resulting algorithm
was able to generate results that were in good agree-
ment with experimental data (Eichinger et al., 2020).
Lastly, we also tested our algorithm on models contain-
ing anisotropic dispersed fibers.

2. Theory

2.1. Kinematics

We start from 2 assumptions that arise from the H-
CMT and the CMT frameworks:

1. The studied solid mixture is composed of several
constituents, each of them having a specific stress-
free configuration,
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2. The total deformation gradient F of the referred
mixture can be decomposed into an elastic and an
inelastic component.

Since all materials in this mixture deform together via
the unified F, the combination of the aforementioned
assumptions can be expressed for every constituent “i”
with

F = Fi
e Fi

gr, (1)

where Fi
e is the elastic deformation gradient, which gen-

erates the stresses; Fi
gr is the inelastic component; and

the superscript “i” indicates a property or a variable of
the constituent “i”.

The inelastic term Fi
gr represents the G&R occurring

within the mixture and it can be decomposed further
into 2 additional components:

Fi
gr = Fi

r Fi
g, (2)

where Fi
r is associated with remodeling (i.e., changes in

the tissue’s micro-structure) and Fi
g is related to a con-

stituent’s differential mass turnover.
In this work, it is assumed that the growth deforma-

tion Fi
g of a volume element is affected by the combined

mass variations of all constituents. We assume that the
growth deformation satisfies (Braeu et al., 2017)

Fi
g = Fg =

(
Jg − 1

)
N⊥ ⊗ N⊥ + I, (3)

where N⊥ is a vector indicating the growth direction [for
instance along the sample’s thickness for a blood vessel
(Braeu et al., 2017)], and

Jg =
ρ0

ρ0 init
,

ρ0 =
∑

ρi
0,

ρ0 init =
∑

ρi
0 init,

(4)

where ρ0 and ρi
0 are the reference mass densities of the

mixture and of a constituent “i” at current time, respec-
tively; and the subscript “init” indicates densities being
evaluated at the beginning of the G&R process (i.e., at
“t = 0”).

Eqs. (1, 2, 3) can then be combined and recast as

F = Fi
e Fi

r Fg. (5)

In this decomposition [Eq. (5)], we can establish proper
configurations and they are schematically presented in
Fig. 1. The inelastic deformations (Fi

r Fg) modify the
material points from the reference configuration Γ0 to
the intermediate remodeling configuration Γ̄i. Fi

e is the

deformation from the intermediate configuration to the
current configuration Γ. We also define the intermediate
growth configuration Γ̃ as the deformation of Γ0 by the
growth deformation Fg only.

Figure 1: Multiplicative split used in the Homogenized Constrained
Mixture Theory and related configurations. We show an example of a
mixture with 2 constituents: constituent “⃝” & constituent “□”.

For a given state where all deformation gradients F,
Fi

e, Fi
r and Fg are known, we wish to derive their incre-

ments for any material point. Relevant quantities for the
increments of remodeling deformations are:

• the remodeling velocity gradient tensor

L̄i
r = Ḟi

r Fi−1

r , (6)

• the symmetric remodeling velocity gradient tensor

D̄i
r = sym

[
L̄i

r

]
, (7)

• the rate of the right Cauchy-Green remodeling de-
formation tensor

˙̃Ci
r = 2FiT

r D̄i
rF

i
r. (8)

The objective of our study is to extend the framework
proposed by Cyron et al. (2016) from 1D materials to
3D isotropic and anisotropic constituents. It is done by
defining a flow rule as in plasticity and with the help of
Eqs. (6, 7, 8) [used in Sec. 2.5].

2.2. Equilibrium & constitutive equations

The quasi-static equilibrium of the mixture can be
written as

DIV (P) + ρ0b0 = 0,
ρ0 = ρ |F|,

(9)

where P is the 1st Piola-Kirchhoff stress, b0 is the body
force per unit reference mass and ρ is the current and
unchanged total mass density.
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The stress tensor P is derived from the total SED per
unit reference volume ψ (i.e., P = ∂ψ

∂F ),

ψ =
∑

ρi
0W i, (10)

being W i a SED per unit reference mass of the con-
stituent “i”. In turn, the 2nd Piola-Kirchhoff stress of the
mixture (S) and of each constituent (Si) can be obtained
such as

S = 2
∂ψ

∂C
= 2

∑
ρi

0
∂W i

∂C
=

1
ρ0

∑
ρi

0Si,

Si = 2ρ0
∂W i

∂C
.

(11)

Finally, by using a push-forward operation, one can ob-
tain the Cauchy stress σi of a constituent “i”:

σi =
1
|F|

FSiFT . (12)

In this work, the variations of the stress σi [Eq. (12)]
for a constituent “i” occur due to remodeling. As several
new variables are introduced further, the superscripts “i”
used so far are dropped from here onwards for the sake
of clarity.

2.3. Intersecting H-CMT with plasticity

In the H-CMT (Cyron et al., 2016), it is assumed that
remodeling occurs while the growth and the total de-
formation gradients are kept constant. Accordingly, the
Cauchy stress rate of a single constituent “i” satisfies

σ̇|F,Fg=const. = −

[
ρ̇0+

ρ0

] [
σ − σpre

]
, (13)

where σ is the current Cauchy stress, σpre is the pre-
ferred or homeostatic stress, and ρ̇0+ is referred to as the
deposition rate.

Cyron et al. (2016) also assumed that the rate of mass
removal (ρ̇0−) is governed by a Poisson process, such as

ρ̇0− = −
ρ0

T
, (14)

where T is the exponential survival function or the aver-
aged turnover time. Hence, the total rate of the reference
density is

ρ̇0 = ρ̇0+ + ρ̇0−. (15)

From here, we combine 4 features that are commonly
implemented in finite plasticity or modeled biological
tissues:

1. Discrete time steps, denoted tn, are introduced
and an approximate solution of Eq. (13) is com-
puted with the backward (implicit) Euler scheme
(Bonet and Wood, 1997; Hashiguchi and Ya-
makawa, 2012; de Souza Neto et al., 2011; Simo,
1992),

2. The remodeling tensor Fi
r is incompressible (Cyron

et al., 2016; Braeu et al., 2017),
3. The SED of the 3D material can be split into a vol-

umetric and a deviatoric contribution,
4. It is assumed that only the isochoric component of

the preferred stress σpre triggers remodeling in the
tissue.

In this section, we only present the final equation
that can be established from the aforementioned points.
More details can be found in Appendix A. Here, we
recast Eq. (13) as

σ̂′(tn+1) = σ′(tn+1) − σ′r(tn+1) = 0, (16)

where σ̂ is the relative stress, σr is the backstress and
the superscript “′” is an indication that only the devi-
atoric term should be taken into account. In turn, the
backstress can be represented as

σr(tn+1) =
[(

△ ρ0+

△ ρ0+ + ρ0

)
k+1

σpre +

(
ρ0

△ ρ0+ + ρ0

)
k+1

σ(tn)
]
,

(17)
where the tensor σ(tn) indicates a fictitious stress state
prior to remodeling but after growth, the subscript
“k + 1” represents the updated density quantities related
to the phenomena of growth prior to remodeling. △ρ0+
is the incremental equivalent of ρ̇0+ and it is also dis-
cretized with the same time-integration scheme, which
results in

(△ρ0+)k+1 =


(
1 + △t

T

)
ρ0k+1 − ρ0k , if △ρ0+ ≥ 0,

0, otherwise,
(18)

where ρ0k is the reference density of the material before
growth, and △t is the time increment (i.e., △t = tn+1−tn).

By introducing the Kirchhoff stresses τ = Jσ (more
commonly used in problems involving incompressible
plasticity), we recast Eq. (16) into

τ̂′ = τ′ − τ′r = 0. (19)

As τ̂′ is a null tensor, all meaningful deviatoric invari-
ants are zero as well (i.e., J2 = J3 = 0). In agreement
with standards in plasticity, we chose J2 as the mean-
ingful scalar stress equivalent and we rewrote Eq. (19)
such as

f =
1
2
τ̂′ : τ̂′ = 0, (20)
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where f is a scalar function which can be re-interpreted
as a yield criterion in plasticity and it sets the basis to
establish a flow rule providing the remodeling deforma-
tion rates of Eq. (13).

2.4. Comparing the H-CMT with the plasticity frame-
work

2.4.1. Similarities
We established a bridge between the H-CMT (Cy-

ron et al., 2016) and classical plasticity through the “ f ”
scalar function in Eq. (20), which can be interpreted as
a von Mises yield criterion with kinematic hardening.
The backstress tensor τr is the variable responsible for
that hardening effect. It triggers remodeling to occur in
the material.

Re-interpreting the H-CMT framework as a kine-
matic hardening problem is in perfect agreement with
the work of Cyron and Aydin (2017), who proposed
that the total energy of a material undergoing remodel-
ing could be split into an elastic (ψc

e) and a remodeling
energy (ψc

r), such that

ψc(Fe,Fr) = ψc
e(Fe) + ψc

r(Fr). (21)

Feeding the Clausius-Duhem inequality with Eq. (21)
naturally leads to kinematic hardening. Moreover, that
procedure also shows that the current stress σ emerges
from the elastic SED ψc

e, whereas the backstress σr

emerges from its inelastic counterpart (ψc
r).

2.4.2. Differences
In spite of the aforementioned similarities, Eq. (20)

is different from standard kinematic hardening. A typi-
cal yield criterion of that type would be written such as
(Hashiguchi and Yamakawa, 2012; de Souza Neto et al.,
2011):

fp =

√
3
2
τ̂′ : τ̂′ − τ0 ≤ 0,

elastic, if fp < 0
plastic, if fp = 0

(22)

However, in Eq. (20), τ0 = 0, or in other words, the
yield criterion f is always null. This singularity reduces
our von Mises “circle” (defining the elastic domain) to
a “dot”. As a consequence, the backstress τr and the
current stress τ are always identical.

Another aspect of Eq. (20) is its applicability on
anisotropic materials. It is well known that yield sur-
faces of such materials are usually defined with extra co-
efficients or with exotic combinations of “J2” and “J3”
(Lou and Yoon, 2017). However, since both invariants
are null in Eq. (19), equations containing both invariants

would lead us to expressions that are also null. This fea-
ture can be interpreted geometrically in the stress space:
As an elastic domain is not present in Eq. (20), any
formulation (i.e., the classical von Mises “circle” or a
complex anisotropic yield function) will be reduced to
a “dot”.

Another key difference is related to how the back-
stress is obtained in both frameworks. In standard plas-
ticity, the backstress is traditionally obtained from a pre-
defined inelastic SED [as shown in Eq. (21)]. In the H-
CMT framework, there is no explicit expression and the
backstress tensor is recovered from stress rate expres-
sions given in Eq. (13) instead.

2.5. Deriving remodeling deformation rates

Following the notation of Hashiguchi and Yamakawa
(2012), we introduce Mandel and Eshelby-like stresses,
so as to describe the yield criterion such as

f =
1
2
τ̂′ : τ̂′ =

1
2

ˆ̄M′ : ˆ̄M′T =
1
2

ˆ̃M′ : ˆ̃M′T = 0, (23)

where ˆ̄M and ˆ̃M represent the relative Mandel stress
(configuration Γ̄) and Eshelby-like stress (configuration
Γ̃), respectively, such as

ˆ̄M = FT
e τ̂F−T

e ,

ˆ̃M =
(
FF−1

g

)T
τ̂
(
FF−1

g

)−T
.

(24)

We can now define the direction of a plastic flow rule
with a flow vector N̄, while considering that the stress-
like tensors in Eq. (23) might not be isotropic. To that
end, we use the widely assumed spinless & isoclinic
configuration Γ̄ (Gurtin et al., 2010; Hashiguchi and Ya-
makawa, 2012; Latorre and Montans, 2018; Grillo et al.,
2019; Hashiguchi, 2019; Yamakawa et al., 2021). By
also defining it to be of the associative type, it follows
that

N̄ = sym
[
∂ f
∂M̄

] /∥∥∥∥∥sym
[
∂ f
∂M̄

] ∥∥∥∥∥, (25)

where M̄ is the Mandel stress.
With the aforementioned assumptions, skew[L̄r] = 0

and the remodeling velocity tensor is symmetric:

L̄r = D̄r = λ̇N̄, (26)

where λ̇ is the plastic multiplier rate.
By performing a pull-back operation of Eq. (26) to

the configuration Γ̃,
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˙̃Cr = 2
√

2 λ̇
sym

[(
∂ f
∂M̃

)T
Cr

]
√[

Cr
∂ f
∂M̃ C−1

r

]
:
(
∂ f
∂M̃

)
+

(
∂ f
∂M̃

)
:
(
∂ f
∂M̃

)T
(27)

where Cr is the right Cauchy-Green tensor
(
Cr = FT

r Fr

)
.

Lastly, we use the well-known exponential time-
integration scheme (Vladimirov et al., 2008; Simo,
1992; Hashiguchi and Yamakawa, 2012; Yamakawa
et al., 2021), ensuring plastic incompressibility and we
obtain

Cr(tn+1) = [Q(tn+1)] Cr(tn) [Q(tn+1)]T ,

Q = exp [Z]

Z =
√

2△λ
ˆ̃M′√[

C−1
r

ˆ̃M′Cr

]
: ˆ̃M′ + ˆ̃M′ : ˆ̃M′T

.
(28)

where △λ is the incremental plastic multiplier △λ =
△t λ̇.

3. Methods

3.1. Algorithmic implementations
This section is focused on the algorithmic implemen-

tation of the theory exposed in the previous section. We
choose the Newton-Raphson Method to solve the sys-
tem of nonlinear (and incremental) equations, as it is
standard in plasticity. We developed algorithms for 3
specific applications:

1. Remodeling with prescribed growth: The sim-
plest of all cases are those where the variation
of reference mass density is given. For instance,
Drews et al. (2020) uses an analytical function to
describe the mass evolution related to inflamma-
tion in a tissue. For this type of problem, the cor-
responding “ρ0” can be directly assigned into the
algorithm at each time increment.

2. Stress-mediated G&R: It is acknowledged in
mechanobiology that mass degradation or deposi-
tion are stress dependent (Mousavi et al., 2019; Ra-
machandra et al., 2017). Therefore, an extra ex-
pression that relates mass variations and stresses
should be added to the system of equations.

3. Mixture: Aforementioned approaches deal only
with materials that are modeled with a single SED.
However, mixtures is widely used in soft tissue
biomechanics. Therefore, we present possible im-
plementations of this framework in the context of
a composite containing 2 isotropic constituents un-
dergoing G&R.

3.2. Remodeling with prescribed growth

Only Eqs. (23, 28) should be solved if the ref-
erence mass densities ρ0k and ρ0k+1 are known [see
Eqs. (17, 18)].

Moreover, due to the similarities between the H-CMT
and kinematic hardening [see Sec. 2.4.1], Eqs. (23, 28)
can be easily adapted to already exisiting codes related
to plasticity. Since the Newton-Raphson Method is used
in this work, these expressions are rewritten as residu-
als:

RCr = Cn+1
r −QCn

r QT = 0,

R f = f =
1
2

ˆ̃M′ : ˆ̃M′T = 0.
(29)

As Cr is symmetric, it is possible to use the Voigt
notation and RCr can be transformed into a vector with
6 components. We symbolically represent and group the
residuals’ elements of RCr and R f together in a vector
YPG. The same procedure is performed on Cr and △λ
which are gathered in vector XPG:

YPG =

RCr

R f


7x1

, XPG =

Cr

△λ


7x1

, (30)

where the “PG” subscript means that a “Prescribed
Growth” problem is considered here.

Linearization is achieved by introducing a Jacobian
tensor JPG in Voigt notation and a corrector for XPG (de-
fined here as △XPG), such as

JPG ∗ △XPG = −YPG,

JPG =


∂RCr
∂Cr

∂RCr
∂△λ

∂R f

∂Cr

∂R f

∂△λ


7x7

. (31)

Each individual derivative of JPG in Eq. (31) can be
found in Appendix B.

3.3. Stress-mediated G&R

In the previous section we assumed that the mass
density rates are known prior to remodeling. How-
ever, mass density rates may evolve as functions of
stresses and deformations (Ramachandra et al., 2015;
Braeu et al., 2017; Ghavamian et al., 2020; Drews et al.,
2020). For instance, Ghavamian et al. (2020) postulated
that the degradation of uniaxial fibers depends on the
I4 pseudo-invariant and Drews et al. (2020) proposed a
mass deposition rate based on the stresses. More gener-
ally, we may describe the rate of reference mass density
such as

ρ̇0 ≡ ρ̇0

(
σ,σpre,Fe,Fh

)
. (32)
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Table 1: Test cases to demonstrate the coupling of Jacobian matrices
Case 1 Case 2

material a PG [Eq. (31)] GR [Eq. (35)]
material b GR [Eq. (35)] GR [Eq. (35)]

The mass turnover is not known beforehand and
growth should be coupled with remodeling as an ad-
ditional algebraic equation to complete Eq. (29). By
applying the backward Euler method to Eq. (32) and
transforming it into an a residual expression, we obtain

Rρ0 = ρ0k+1 − ρ0k − △t ρ̇0k+1 = 0. (33)

This residual and the updated variable “ρ0” are then
included in the vectors introduced in Eq. (30). The up-
dated expression is

YGR =


RCr

R f

Rρ0


8x1

, XGR =


Cr

△λ

ρ0


8x1

, (34)

where the “GR” subscript means that a “Growth & Re-
modeling” problem is considered here.

The Newton-Raphson algorithm for G&R becomes

JGR ∗ △XGR = −YGR,

JGR =


∂RCr
∂Cr

∂RCr
∂△λ

∂RCr
∂ρ0

∂R f

∂Cr

∂R f

∂△λ

∂R f

∂ρ0

∂Rρ0
∂Cr

∂Rρ0
∂△λ

∂Rρ0
∂ρ0


8x8

.
(35)

Each additional derivative of JGR in Eq. (35) can be
found in Appendix D.

3.4. Mixture
Eqs. (31, 35) only deal with a single SED. In this sec-

tion, we show an example involving 2 materials. Each
material should be implemented with either Eqs. (31) or
(35) and we considered 2 cases as reported in Tab. 1.

“Material a” might affect the remodeling of “material
b”, and vice versa, via the growth deformation gradi-
ent Fg. As shown in Eq. (3), this tensor evolves w.r.t.
to the mass densities of all constituents of the mixture.
Therefore, coupling between the 2 materials should be
explicitly defined in the final Jacobian matrix.

For “Case 1”, the updated mass density ρ0 from the
“material b” should affect the remodeling of “mate-
rial a” via a sub-matrix JGR⇀PG: JPG JGR⇀PG

0 JGR

 ∗ △
XPG

XGR

 = −
YPG

YGR

 . (36)

The detailed expressions of JGR⇀PG are given in Ap-
pendix C.

For “Case 2”, the mass densities of one material in-
terferes with the other. Hence, 2 sub-matrices should be
included in the global Jacobian matrix, which are named
JGR a⇀GR b and JGR b⇀GR a, yielding JGR a JGR b⇀GR a

JGR a⇀GR b JGR b

 ∗ △
XGR a

XGR b

 = −
YGR a

YGR b

 .
(37)

Each derivative in Eq. (37) can be found in Appendix
E.

The sub-matrices have different dimensions and ele-
ments depending on how remodeling is defined for each
constituent, as they can be ruled by either the “PG” case
or the “GR” one. Fig. 2 illustrates how the elements of
the global Jacobian matrices shown in Eqs. (36, 37) are
arranged.

Figure 2: raphical illustration of the global Jacobian matrices of
“case 1” [Eq. (36)] and “case 2” [Eq. (37)].

It shows that coupling effects between 2 3D con-
stituents only results from the variations of their individ-
ual mass densities. The coupling terms are the column-
like arrays in both global matrices, which correspond to
partial derivatives w.r.t. ρ0.

4. Numerical examples

The stress updating algorithms shown in Eqs. (31,
35, 36, 37) were incorporated in an in-house FEM
code and the consistent tangent modulus was computed
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by means of the perturbation technique (Simo, 1992;
Miehe, 1996). For the examples in Secs. 4.1 & 4.2,
we chose the Nearly Incompressible Neo-Hookean ma-
terial to represent the elastic response of isotropic con-
stituents. It can be formulated such as

ψ̂e
e =

µ

2

[
Î1 − 3

]
,

Ue
e =
Λe

2

[
Ie
3 − 1

]2
,

Ie
3 =

√
|be|,

Î1 =
[
Ie
3

]− 2
3 [be : I] ,

(38)

where µ and κ are material constantsand be is the elastic
left Cauchy-Green tensor

(
be = FeFT

e

)
.

Naturally, we chose the same SED to represent the
isochoric preferred stress, which is computed from a
preferred homeostatic stretch tensor Fh such as,

τ′pre = Rτ′hRT ,

τ′h = µ Ih
3
−2/3

[
bh −

1
3

Ih
1I

]
,

Ih
3 =

√
|bh|,

Ih
1 =

[
Ih
3

]− 2
3 [bh : I] ,

bh = FhFT
h .

(39)

As for the example in Sec. 4.3, we implemented an
anisotropic material, which is suitable for modeling dis-
persed collagen fibers (Gasser et al., 2006).

4.1. Remodeling with prescribed growth
4.1.1. Proof-of-concept

The first example is an implementation of Eq. (31),
where the rate of mass deposition is equal to that of
degradation. For that, we enforce ρ̇0+ = ρ̇0− and, con-
sequently, ρ̇0 = 0. Fig. 3 shows the simulated element,
which is constrained at all facets with the exception of
the top surface (this also serves for the numerical exam-
ple of next subsection).

Figure 3: Constrained geometry. All gray facets are constrained. The
only unconstrained surface is the frontal one. The normal direction of
that facet is defined to be the growth direction N⊥ [Eq. (3)].

The material is set to be stress-free at the start of the
simulation, while the preferred deformation state Fh is

set to be Fh = diag
[
λ, 1

√
λ
, 1
√
λ

]
. Tensor Fh is given

to Eq. (39), which, in turn, provides the algorithm with
τ′pre. Then, the internal stresses of the material develop
from a stress-free state towards τ′pre as the simulation
progresses.

Fig. 4 (a) shows the internal stresses of the element
presented in Fig. 3. As expected, the isochoric com-
ponents of the stresses undergo remodeling, so as to de-
velop the internal stresses until eventually reaching τ′pre.

This evolution can also be seen in the stress-space
from the deviatoric plane [Fig. 4 (b)]. The stress tensor
starts at the axes origin [σ(t = 0)] and it approaches the
prestress σpre. In the same figure, we also depict the
yield surface (as explained before, it reduces to a dot as
the yield surface’s radius is actually null).

Figure 4: (a): Evolution of the isochoric Cauchy stress components.
(b): Stresses in the stress-space and viewed from the deviatoric plane.

4.1.2. Comparison against experimental data
We also used Eq. (31) to reproduce experimental data.

Eichinger et al. (2020) measured the tension produced
by constrained cell-seeded collagen in uniaxial and bi-
axial settings, showing that the cells tend to establish
and maintain a preferred (homeostatic) tension.

In the right-hand side of Fig. 5, we depict cell-seeded
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collagen elements. The regions where they are con-
strained and where the tension was measured is repre-
sented by gray facets. In the left-hand side of the same
figure, one can see that the measured tension on those
facets stabilizes to a certain homeostatic tension.

In another experiment, Eichinger et al. (2020) in-
hibited cell proliferation. This corresponds to a case,
where the mass density remains approximately constant
(ρ̇0 ≈ 0). These conditions allowed us to compare the
“PG” algorithm [Eq. (31)] to their findings.

Fig. 5 shows that the results predicted by our algo-
rithm are in very good agreement with the experimental
measurements. While 2 mass turnovers were necessary
to mimic the experimental data in Figs. 5 (a) and (c);
only one was sufficient for Fig. 5 (b).

Particular attention was paid to the comparison
shown in Fig. 5 (c). That experiment starts after an ini-
tial stretch of 1.8% along the x-direction and the tension
normal to the yz plane is pronounced at the start of the
experiment. Due to the in-plane coupling, the tension
along the coordinate y is also non-zero, even though the
values are less prominent. Nevertheless, our predicted
stress evolution along both directions were still in very
good agreement with the experiments.

Figure 5: (a) Measurements performed in a uniaxial setting. Eq. (31)
was applied on a isotropic material with 2 mass turnover rates:
T1=7 hours (ϕ1 = 50%) and T2=8 hours (ϕ2 = 50%). In order to

reproduce the uniaxial protocol, Fh was set to be diag
[
λ, 1√

λ
, 1√

λ

]
.

(b) Measurements of the equi-biaxial setting. A single mass turnover
rate of T=5 hours was sufficient to fit our simulated data to the experi-
ments. Here, Fh was set to be diag

[
λ, λ, 1

λ2

]
. (c) Strip-biaxial protocol

after applying an initial stretch of λi = 1.018 to the cell-seeded col-
lagen. A short mass turnover rate of T1=0.21 hours (ϕ1 = 33%) and
another of T2 =21 hours (ϕ = 67%) provided us with the simulated
data shown in the graph. Fh was set to be the same as in (b). Eichinger
et al. (2020) authorized the authors to expose their experimental data
in this work.

4.2. Stress-mediated G&R

Here, the model shown in Fig. 3 was used to test
the algorithm of Eq. (35). The top facet was uncon-
strained and the z coordinate was set to be the direction
of growth, such that N⊥ = [0, 0, 1] in Eq. (3). The
density rate expression in Appendix J was used in this
example and it was set to reproduce 2 phenomena:

1. In the first numerical experiment, there is more de-
position than degradation of mass, i.e., ρ̇0 > 0.

2. In the second numerical experiment, degradation
was more pronounced, with ρ̇0 < 0.

In both cases, the material was stress-free at the begin-
ning of the simulation.
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The evolution of a stress component is shown for
both simulations in Fig. 6. It can be noted that inter-
nal stresses converge towards the preferred stress. The
difference between the 2 numerical experiments is the
time required for the convergence.

In the case where the deposition dominates (ρ̇0 > 0),
the isochoric stress and σ′pre are practically equal at t =
4T . However, the other case shows a slower increase of
the stresses towards the homeostatic value.

These results are physically consistent. The higher
the rate of mass deposition, the sooner the average stress
within a given volume will reach σ′pre. Conversely, the
average stress would evolve slower if lower quantities
of mass deposition were prescribed, which was the case
of the second experiment (ρ̇0 < 0).

Figure 6: Evolution of the Cauchy stress under a more pronounced
deposition (ρ̇0 > 0) and degradation (ρ̇0 < 0)

4.3. Mixture with Anisotropic Constituents

In this section, we present an implementation of
[Eqs. (36, 37)] on mixtures, while taking into account
the presence of anisotropic constituents. The test model
is shown in Fig. 7 and it represents a tissue strip of arte-
rial walls (Horvat et al., 2021). This model is composed
of 3 constituents: 2 families of (anisotropic) dispersed
fibers (Gasser et al., 2006) and an isotropic elastin ma-
trix.

Figure 7: Model of a tissue representing a strip of an arterial wall.
This model is composed of an elastin matrix (shown in white) and 2
dispersed fiber families (Gasser et al., 2006). The direction of these
fibers are shown as black lines and their dispersion are represented
with the color gray. The vectors n, ez, eθ represent the current con-
figuration of the normal, axial and circumferential directions of the
arterial wall, respectively. The vectors a1 and a2 are the current direc-
tions of the 2 fibers constituents.

The only constituents that undergo G&R in this
model are the 2 fiber families and this characteristic
allows Eq. (37) to be our candidate of choice for this
section. The expression describing the growth of these
constituents is shown in Appendix J.

The SED of the elastin constituent used here is the
one shown in Eq. (38) and the anisotropic SED ψ̂

f
e of

the dispersed fibers is (Gasser et al., 2006):

ψ
f
e = ψ̂

f
e + U f

e

ψ̂
f
e (Ce) =

k1

2 k2

[
exp

{
k2

[
κĪ1 + (1 − 3κ)Ī4 − 1

]2
}
− 1

]
Ī1 = tr

[(
I f
3

)−2/3
Ce

]
Ī4 =

(
I f
3

)−2/3

Cgr : (a0 ⊗ a0)
[C : (a0 ⊗ a0)]

U f
e =
Λ f

2

[
I f
3 − 1

]2
,

I f
3 =

√
|be|,

Cgr = FT
g Cr Fg,

(40)
where a0 is the fiber direction in reference configura-
tion.

The boundary condition of the test model is of the
dirichlet type and it is represented by “λ” in Fig. 7.
The prescribed displacement is set under 2 distinct con-
ditions in order to analyze the evolution of the fiber
stresses’:

• Stage 1: (t < T ) At this stage, the model is set
with an initial configuration, which is under home-
ostasis. Then, the tissue is monotonically stretched
up to “λ = 1.1” under a period of 100 simulated
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Table 2: Material parameters used for the mixture model. In this ex-
ample, 2 fibers were implemented and they only differ in orientation
(i.e., the variable “φ”).

Constituent Parameters Value

Elastin
Eq. (38)

ρe
0 [kg/m3]
µ [J/kg]
Λ [J/kg]

241.5
12.42
20 µ

Dispersed
fibers

Eq. (40)

ρ
f
0 [kg/m3]
k1 [J/kg]

k2 [−]
κ [−]
Λ [−]

φ [degrees]
T [days]

α [−] (Appendix J)

404.25
352.74

4.45
0.046
20 k1
±10o

100
10−9

days, a time frame which is equivalent to the pre-
scribed mass turnover “T” of the dispersed fibers
(see Tab. 2). This time setting allows the fiber con-
stituents to undergo growth and remodel, while be-
ing stretched. A purely elastic case is also run at
this stage, so as to analyze the effects of G&R on
the stresses of the fibers.

• Stage 2: (T < t < 8T )

After reaching a prescribed stretch of “λ = 1.1”,
the boundary condition is kept constant and the
simulation is run up to 800 simulated days (i.e.,
“t = 8T”). Since the model is fixed and the
simulated period is much larger than the mass
turnover “T” (see Tab. 2), it is expected that the
fibers’ stresses will be driven towards its homeo-
static state.

The parameters used in each constituent of the mate-
rial is shown in Tab. 2 and the simulation was run using
the Newton-Raphson algorithm represented in Eq. (37).
Fig. 8 shows the evolution of one of the fibers’ stresses
during the first 100 simulated days. The model starts
at homeostasis and the stress increases as the tissue is
continuously stretched.

Also, since the simulated time frame is equivalent to
the fibers’ mass turnover “T”, the G&R algorithm is
able to significantly affect the stress configuration of the
fibers. This is seen more clearly, by analyzing the stress
evolution alongside a purely elastic case (shown in the
same figure) and it is evident that the current framework
enables the fiber constituents to return to their homeo-
static state.

Figure 8: Evolution of stress of the fiber pointing at the direction “a1”,
while being continuously pulled. The variable shown in the figure is
“σ′ : (a1 ⊗ a1)/ρ0”. The solid line shows the stress configuration, if
Eq. (37) is implemented. The dashed lines presented the same model,
while assuming the constituents to behave elastically.

The tendency towards returning to a homeostatic
stress configuration becomes more evident by analyzing
the results obtained in “Stage 2” and they are presented
in Fig. 9. Since the tissue is fixed between 100 and 800
simulated days, the fibers are free to undergo G&R until
its stress configuration reaches homeostasis.

Figure 9: Solid lines: Evolution of the stress components “σ′ : (a1 ⊗

a1)” (red) and “σ′ : (n⊗n)” (blue). Dashed lines: homeostatic targets
“σ′pre : (a1 ⊗ a1)” (red) and “σ′pre : (n ⊗ n)” (blue).

5. Discussion and concluding remarks

In the current paper, for the first time, we provide ex-
plicit and ready-to-use expressions describing remod-
eling of 3D isotropic and anisotropic materials using
the H-CMT. Our approach uses similar expressions
as in kinematic hardening models in standard plastic-
ity. These expressions were obtained by transforming
the rate-like equation of the H-CMT [Eq. (13)] into
incremental-type equation [Eq. (20)], where an equiv-
alent backstress tensor arises naturally.

Standard numerical strategies of classical plasticity,
such as the exponential time-integration scheme, were
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implemented here to expand the works of Cyron et al.
(2016) to 3D materials. As several modeled biological
tissues are assumed to be incompressible, this technique
could be used in Eq. (20) as well.

We were able to demonstrate the capabilities of our
algorithms with several test cases (Sec. 4). In all ex-
amples, the simulations provided physically consistent
results. With the simplest case [Sec. 4.1 (no mass vari-
ation)], we showed that the model clearly evolves from
a stress-free state towards homeostasis (determined by
σ′pre) with Eq. (31).

The model was also validated against experimental
data in cell-seeded collagen (Eichinger et al., 2020).
Moreover, we showed that the algorithm is sensitive to
rates of mass deposition and degradation. Moreover,
in Fig. 5, we showed that the larger the mass deposi-
tion, the faster the internal tension reaches homeostasis
(σ′pre).

We also explored interactions among anisotropic con-
stituents, which are governed by Eqs. (31) or (35).
These interactions are accounted for with a “coupling
sub-matrix” [presented in Eqs. (36) and (37)]. The re-
sults shown in Fig. 8 and Fig. 9 show that the pro-
posed coupling also simulates G&R of anisotropic con-
stituents within a mixture.

Lastly, it should be noted that the the proposed cou-
pling is a direct consequence of the chosen assump-
tions related to the growth deformation gradient Fg. As
a major application of our models are related to vas-
cular grafts, veins and arteries, it was reasonable to
restrict growth to a single direction [Eq. (3)] (Braeu
et al., 2017). This simplification permitted to only elab-
orate a scalar residual related to the constituent’s den-
sity [Eq. (33)]. In applications where a more general
growth tensor would be needed, a tensor residual should
be developed instead. Its implementation would go be-
yond the scope of this work and but an algorithm of
anisotropic growth was recently proposed (Lamm et al.,
2022).
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Appendix A. Assumptions of Eq. (20)

Here, we explain the implications of the assumed fea-
tures in Sec. 2.3. The first bullet-point is related to trans-
forming the problem from its original rate-like form
[Eq. (13)] to its incremental variant [Eq. (16)].

That time discretization is widely used in standard
finite plasticity, even thought the original problem is
stated with rate constitutive laws and evolution equa-
tions. However, the expressions are usually solved at
an established load or time increment. This requires the
rate-like expressions to be integrated over a time inter-
val (tn and tn+1) and they are reformulated with their
equivalent expressions in incremental form.

This is a common strategy to update the stresses and
inelastic terms at tn+1. The incremental setting is typ-
ically formulated with the backward (implicit) Euler
scheme (Bonet and Wood, 1997; Hashiguchi and Ya-
makawa, 2012; de Souza Neto et al., 2011; Simo, 1992),
as it is unconditionally stable. For this reason, the
authors decided to discretize Eq. (13) with that same
scheme and the following expression is obtained:

σ (tn+1) =
(

△ ρ0+

△ ρ0+ + ρ0

)
k+1

σpre +

(
ρ0

△ ρ0+ + ρ0

)
k+1

σ (tn) .

(A.1)
The next bullet-point addresses the assumption of

volume-preserving remodeling. Incompressibility is a
feature that is often imposed in modeled biological tis-
sues with isotropic constituents (Gasser et al., 2006) and
the evolution of an incompressible remodeling is also
used by Cyron et al. (2016) and Braeu et al. (2017).
Hence, it is assumed that |Fr | = const. for all time in-
crements. Also, since F and Fg are constant quantities
between tn and tn+1, so are their jacobians (|F| & |Fg|).
As |Fr | is now fixed, it is also implied that

|Fe|n+1 = |Fe|n. (A.2)

The next assumption is that the SED of the isotropic
material is composed of a volumetric and distortional
SED, such that

ψe ≡ ψ̂e(Ce) + Ue(|Fe|), (A.3)

being ψ̂e the distortional SED and Ue, the volumetric
component. Thanks to Eqs. (A.2, A.3), it is implied that
the volumetric contributions of the stresses do not alter
between tn and tn+1.

The last bullet-point is then introduced: we postulate
that the volumetric component of the preferred stress
σpre and of the current stress are equal. It then nec-
essarily follows from Eq. (A.1) that only the isochoric
components of the stresses contribute to the evolution
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of remodeling. That equation is now pressure insensi-
tive and it follows that

σ′ (tn+1) =
(

△ ρ0+

△ ρ0+ + ρ0

)
k+1

σ′pre +

(
ρ0

△ ρ0+ + ρ0

)
k+1

σ′ (tn) .

(A.4)
Eq. (A.4) is then used to derive the equivalent yield
function in Sec. 2.3.

Appendix B. Elements of JPG [Eq. (31)]

The elements of the jacobian matrix JPG shown in
Eq. (31) are shown below:[

∂RCr

∂Cr

]
i jkl
= Ii jkl...

−
∂Qim

∂Crkl

Crmn QT
m j −QioCrop

∂QT
p j

∂Crkl

,

∂RCr

∂△λ
= −

∂Q
∂△λ

CrQT −QCr
∂QT

∂△λ
,[

∂R f

∂Cr

]
i j
=

[
∂ f

∂ ˆ̃M

]
mn

 ∂ ˆ̃M
∂Cr


mni j

,

∂R f

∂△λ
= 0,

(B.1)

Ii jkl =
1
2

(
δikδ jl + δilδ jk

)
,

∂ f

∂ ˆ̃M
= ˆ̃M′T ,[

∂Q
∂Cr

]
i jkl
=

[
∂Q
∂Z

]
i jmn

[
∂Z
∂Cr

]
mnkl

,[
∂QT

∂Cr

]
i jkl
= δinδ jm

[
∂Q
∂Cr

]
mnkl

,[
∂Q
∂△λ

]
i j
=

[
∂Q
∂Z

]
i jmn

[
∂Z
∂△λ

]
mn

(B.2)

The term ∂Q
∂Z [present in Eqs. (B.2, C.1, D.1)] were

explicitly derived by Hashiguchi and Yamakawa (2012).
As for ∂Z

∂Cr
& ∂Z

∂△λ
, they are presented in Appendix F.

Appendix C. Elements of JGR⇀PG [Eq. (36)]

The remaining elements of the sub-matrix JGR⇀PG

[Eq. (36) and displayed in Fig. 2 (a)] that must be de-
rived are the tensors

∂Ra
Cr

∂ρb
0

and
∂Ra

f

∂ρb
0
:

∂RC
a
r

∂ρb
0

= −
∂Qa

∂ρb
0

CrQT −QCr
∂QaT

∂ρb
0

,

∂Ra
f

∂ρb
0

=

[
∂ f a

∂ ˆ̃Ma

]
:

∂ ˆ̃Ma

∂ρb
0

 ,[
∂Qa

∂ρb
0

]
i j

=

[
∂Qa

∂Za

]
i jmn

[
∂Za

∂ρb
0

]
mn

,

(C.1)

Appendix D. Elements of JGR [Eq. (35)]

The tensors ∂RCr
∂Cr

, ∂RCr
∂△λ

, ∂R f

∂Cr
and ∂R f

∂△λ
of Eq. (35) are

identical to the expressions shown in Eq. (B.1). All
other tensors that must be defined for the “growth & re-
modeling” case are displayed below:

∂RCr

∂ρ0
= −

∂Q
∂ρ0

CrQT −QCr
∂QT

∂ρ0
,

∂R f

∂ρ0
=

[
∂ f

∂ ˆ̃M

]
:

∂ ˆ̃M
∂ρ0

 ,
∂Rρ0

∂Cr
= −△t

∂ρ̇0

∂Cr
,

∂Rρ0

∂△λ
= 0,

∂Rρ0

∂ρ0
= 1 − △t

∂ρ̇0

∂ρ0
,[

∂Q
∂ρ0

]
i j
=

[
∂Q
∂Z

]
i jmn

[
∂Z
∂ρ0

]
mn
.

(D.1)

Appendix E. Elements of JGR b⇀GR a [Eq. (37)]

The tensors
∂Ra

Cr

∂ρb
0

and
∂Ra

f

∂ρb
0

shown in Eq. (37) can be
implemented directly from Eq. (C.1). The remaining
derivative that should be defined is

∂Ra
ρ0

∂ρb
0

= −△t
∂ρ̇a

0

∂ρb
0

, (E.1)

Appendix F. Derivatives of the tensor Z

• Derivatives of Z:

∂Z
∂Cr
=
√

2△λ
1
D

∂ ˆ̃M′

∂Cr
−

1
2

1
D2

ˆ̃M′ ⊗
∂D2

∂Cr

 ,
∂Z
∂△λ

=
√

2
ˆ̃M′

D
,

∂Z
∂ρ0
=
√

2△λ
1
D

∂ ˆ̃M′

∂ρ0
−

1
2

1
D2

ˆ̃M′ ∂D2

∂ρ0

 ,
D =

√[
C−1

r
ˆ̃M′Cr

]
: ˆ̃M′ + ˆ̃M′ : ˆ̃M′T .

(F.1)
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• ∂D2/∂Cr:[
∂D2

∂Cr

]
i j
= T1 + T2 + T3,

[T1]kl =

∂
[
C−1

r
ˆ̃M′Cr

]
mn

∂Crkl

ˆ̃M′
mn,

∂
[
C−1

r
ˆ̃M′Cr

]
i j

∂Crkl

=
∂C−1

rim

∂Crkl

ˆ̃M′
mnCrn j + ...

C−1
rim

∂ ˆ̃M′
mn

∂Crkl

Crn j + C−1
rim

ˆ̃M′
mnIn jkl,

[T2]kl =

[
C−1

r
ˆ̃M′Cr

]
mn

∂ ˆ̃M′
mn

∂Crkl

,

[T3]kl = 2
∂ ˆ̃M′

mn

∂Crkl

ˆ̃M′T
mn

(F.2)

• ∂D2/∂ρ0:

∂D2

∂ρ0
= U1 + U2 + U3,

U1 =

∂
[
C−1

r
ˆ̃M′Cr

]
∂ρ0

: ˆ̃M′,

∂
[
C−1

r
ˆ̃M′Cr

]
i j

∂ρ0
= C−1

rim

∂ ˆ̃M′
mn

∂ρ0
Crn j ,

U2 =

[
C−1

r
ˆ̃M′Cr

]
:
∂ ˆ̃M′

∂ρ0
,

U3 = 2
∂ ˆ̃M′

∂ρ0
: ˆ̃M′T

(F.3)

• Derivatives of ˆ̃M′:

∂ ˆ̃M′
i j

∂Crkl

= Di jmn
∂ ˆ̃Mmn

∂Crkl

,

∂ ˆ̃M′
i j

∂ρ0
= Di jmn

∂ ˆ̃Mmn

∂ρ0
,

Di jkl = δikδ jl −
1
3
δi jδkl.

(F.4)

Appendix G. Derivatives of the relative stress-like
tensors

The residuals shown in Appendix B, Appendix C,
Appendix D, Appendix E and the exponential terms in
Appendix F are directly or indirectly dependent on the
tensors ∂ ˆ̃M

∂Cr
, ∂ ˆ̃M
∂ρ0

and ∂ ˆ̃Ma

∂ρb
0

.
The manner by which these terms are computed de-

pend on the algorithm at hand. They are shown next

for each case and labeled with the subscripts “PG” or
“GR” to indicate a “Prescribed Growth” or “Growth &
Remodeling”, respectively.

• JPG [Eq. (31)]:
The remaining tensor that must be defined for the
Prescribed growth case in Eq. (B.1) is ∂ ˆ̃M

∂Cr
. With

the help of Eq. (24) and labeling the tensor with
the subscript “PG”, we obtain

 ∂ ˆ̃M
∂Cr

∣∣∣∣∣
PG


i jkl

=

[(
FF−1

g

)T
]

im

[
∂τ̂

∂Cr

∣∣∣∣∣
PG

]
mnkl

[(
FF−1

g

)−T
]

n j
.

(G.1)
The tensor ∂τ̂

∂Cr

∣∣∣
PG in Eq. (G.1) can be derived from

Eq. (19). For the cases, where the growth is pre-
scribed, the remodeling tensor Cr has no effect on
the backstress. Hence, from ∂τr

∂Cr
is null in Eq. (19)

and we finally obtain

∂τ̂

∂Cr

∣∣∣∣∣
PG
=

∂τ

∂Cr
. (G.2)

• JGR⇀PG [Eq. (36)]

The extra variable that must be defined is ∂ ˆ̃Ma

∂ρb
0

and
it is obtained with Eq. (24):∂ ˆ̃Ma

∂ρb
0

∣∣∣∣∣
PG


i j

= ...

∂F−T
g

∂ρb
0


im

[
FT τ̂aF−T

]
mn

[
FT

g

]
n j
+ ...[(

FF−1
g

)T
]

im

[
∂τ̂a

∂ρb
0

∣∣∣∣∣
PG

]
mn

[(
FF−1

g

)−T
]

n j
+ ...

[
F−T

g

]
im

[
FT τ̂aF−T

]
mn

∂FT
g

∂ρb
0


n j

(G.3)

It is worth reminding the reader that the growth de-
formation gradients of all constituents are identical
in the present work (i.e., Fa

g = Fg). Due to this and
for clarity, the superscript “a” is dropped from Fg

in Eq. (G.3).

The derivative ∂Fg

∂ρb
0

is computed with the help of
Eq. (3):

∂Fg

∂ρb
0

=

[
1

ρ0 init

]
N⊥ ⊗ N⊥. (G.4)

Here, the density of “constituent b” does affect
the backstress of “constituent a” and ∂τ̂a

∂ρb
0

∣∣∣
PG is ob-

tained via Eq. (19):

∂τ̂a

∂ρb
0

∣∣∣∣∣
PG
=
∂τa

∂ρb
0

−
∂τa

r

∂ρb
0

∣∣∣∣∣
PG

(G.5)
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• JGR [Eq. (35)]
For the growth & remodeling case, the derivatives
of the Eshelby-like stress tensors ∂ ˆ̃M

∂Cr
and ∂ ˆ̃M

∂ρ0
are

required. They can be computed with the help of
Eq. (24): ∂ ˆ̃M
∂Cr

∣∣∣∣∣
GR


i jkl

=

[(
FF−1

g

)T
]

im

[
∂τ̂

∂Cr

∣∣∣∣∣
GR

]
mnkl

[(
FF−1

g

)−T
]

n j
,

∂ ˆ̃M
∂ρ0


i j

=

∂F−T
g

∂ρ0


im

[
FT τ̂F−T

]
mn

[
FT

g

]
n j
+ ...

[(
FF−1

g

)T
]

im

[
∂τ̂

∂ρ0

]
mn

[(
FF−1

g

)−T
]

n j
+ ...

[
F−T

g

]
im

[
FT τ̂F−T

]
mn

∂FT
g

∂ρ0


n j

.

(G.6)

The terms related to ∂Fg

∂ρ0
in Eq. (G.6) are obtained

directly from Eq. (3):

∂Fg

∂ρ0
=

[
1

ρ0 init

]
N⊥ ⊗ N⊥ (G.7)

It was mentioned in Appendix B that the back-
stress is independent from remodeling in the “pre-
scribed growth” case. This does not hold for a
“growth & remodeling” material, as the updated
density is not known beforehand. Since the back-
stress is now indirectly dependent on remodeling
and the density, it follows from Eq. (19) that:

∂τ̂

∂Cr

∣∣∣∣∣
GR
=

∂τ

∂Cr
−
∂τr

∂Cr
,

∂τ̂

∂ρ0
=
∂τ

∂ρ0
−
∂τr

∂ρ0
.

(G.8)

• JGR b⇀GR a [Eq. (37)]

The tensor ∂ ˆ̃Ma

∂ρb
0

must be defined here:∂ ˆ̃Ma

∂ρb
0

∣∣∣∣∣
GR


i j

= ...

∂F−T
g

∂ρb
0


im

[
FT τ̂aF−T

]
mn

[
FT

g

]
n j
+ ...[(

FF−1
g

)T
]

im

[
∂τ̂a

∂ρb
0

∣∣∣∣∣
GR

]
mn

[(
FF−1

g

)−T
]

n j
+ ...

[
F−T

g

]
im

[
FT τ̂aF−T

]
mn

∂FT
g

∂ρb
0


n j

.

(G.9)

In this case, the backstress is also affected by the
updated densities of other constituents within the
mixture. Hence,

∂τ̂a

∂ρb
0

∣∣∣∣∣
GR
=
∂τa

∂ρb
0

−
∂τa

r

∂ρb
0

∣∣∣∣∣
GR
. (G.10)

Appendix H. Derivatives of the backstresses

This appendix shows the derivatives of the back-
stresses shown in Appendix G:

• Eq. (G.5)

∂τa
r

∂ρb
0

∣∣∣∣∣
PG
=

[
ρa

0

ρa
0 + △ρ

a
0+

]
∂τa

n

∂ρb
0

(H.1)

• Eq. (G.8)[
∂τr

∂Cr

]
i jkl
= ...[

∂ (ρ0 + △ρ0+)−1

∂Cr

]
kl

[
△ρ0+τpre + ρ0τn

]
i j
+ ...

[
ρ0 + △ρ0+

]−1
[
∂△ρ0+

∂Cr

]
kl

[
τpre

]
i j

∂τr

∂ρ0
= ...[
∂ (ρ0 + △ρ0+)−1

∂ρ0

] [
△ρ0+τpre + ρ0τn

]
+ ...

[
ρ0 + △ρ0+

]−1
[
∂△ρ0+

∂ρ0
τpre + τn + ρ0

∂τn

∂ρ0

]
(H.2)

where

∂ (ρ0 + △ρ0+)−1

∂Cr
= − (ρ0 + △ρ0+)−2

(
∂△ρ0+

∂Cr

)
,

∂△ρ0+

∂Cr
= △t

∂ρ̇0

∂Cr
,

∂ (ρ0 + △ρ0+)−1

∂ρ0
= − (ρ0 + △ρ0+)−2

(
1 +

∂△ρ0+

∂ρ0

)
,

∂△ρ0+

∂ρ0
= △t

∂ρ̇0

∂ρ0
+
△t
T
.

(H.3)

• Eq. (G.10)

∂τa
r

∂ρb
0

∣∣∣∣∣
GR
= ...∂
(
ρa

0 + △ρ
a
0+

)−1

∂ρb
0

 [△ρa
0+τ

a
pre + ρ

a
0τ

a
n

]
+ ...

[
ρa

0 + △ρ
a
0+

]−1
[
∂△ρa

0+

∂ρb
0

τa
pre + ρ

a
0
∂τa

n

∂ρb
0

]
,

(H.4)

where

∂
(
ρa

0 + △ρ
a
0+

)−1

∂ρb
0

= −
(
ρa

0 + △ρ
a
0+

)−2
(
∂△ρa

0+

∂ρb
0

)
∂△ρa

0+

∂ρb
0

= △t
∂ρ̇a

0

∂ρb
0

(H.5)
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Appendix I. Derivatives of the current stresses

The Eqs. (G.2), (G.5), (G.8) and (G.10) also depend
on derivatives of the current stress τ. In this work, we
demonstrated our results with a Nearly Incompressible
Neo-Hookean SED [Eq. (38)], but it is also applicable to
other material types as well. As to generalize the current
derivation, we assume that the stress is a function of
the left Cauchy–Green deformation tensor be, and its
invariants I1 and I3:

τ ≡ τ (be, I1, I3) ,
I1 = be : I,

I3 =
√
|be|.

(I.1)

Therefore, the derivatives of the stress w.r.t. Cr

[Eqs. (G.2, G.8)] and “ρ0” [Eqs. (G.5, G.8, G.10)] can
be represented as

∂τ

∂Cr
≡

∂τ

∂Cr

(
∂be

∂Cr
,
∂I1

∂Cr
,
∂I3

∂Cr

)
,

∂τ

∂ρ0
≡
∂τ

∂ρ0

(
∂be

∂ρ0
,
∂I1

∂ρ0
,
∂I3

∂ρ0

)
.

(I.2)

By representing the tensor be with the total deforma-
tion and the inelastic terms, we obtain:

be = FF−1
g C−1

r F−T
g FT . (I.3)

With Eq. (I.3), we can compute the derivatives required
in Eq. (I.2) and the explicit derivations are presented be-
low:[

∂be

∂Cr

]
i jkl
=

[
FF−1

g

]
im

[
∂C−1

r

∂Cr

]
mnkl

[
F−T

g FT
]

n j
,[

∂I1

∂Cr

]
kl
=

[
1
2

I1 b−1
e

]
mn

[
∂be

∂Cr

]
mnkl

,[
∂I3

∂Cr

]
kl
= δmn

[
∂be

∂Cr

]
mnkl

,[
∂C−1

r

∂Cr

]
i jkl
= −

1
2

{[
C−1

r

]
ik

[
C−1

r

]
l j
+

[
C−1

r

]
jk

[
C−1

r

]
li

}
,

∂be

∂ρ0
= F

∂F−1
g

∂ρ0

 C−1
r F−T

g FT + FF−1
g C−1

r

∂F−T
g

∂ρ0

 FT ,

∂I1

∂ρ0
=

[
1
2

I1 b−1
e

]
:
[
∂be

∂ρ0

]
,

∂I3

∂ρ0
=

[
∂be

∂ρ0

]
: I.

(I.4)

Finally, the tensors ∂τ
∂Cr

and ∂τ
∂ρ0

can be finally obtained.

Appendix J. Stress-induced density rules

The density rate expression used in Sec. 4.2 is an
adaptation of the rule proposed by Drews et al. (2020).
They created such rules for unidimensional fibers only
and they are dependent on their scalar stresses and
pseudo-invariants I4. As we work with isotropic ma-
terials, the aforementioned inputs were modified to the
invariants J2 and I1:

ρ̇0 = ρ̇
D
0+ + ρ̇

D
0−,

ρ̇D
0+ = mh

[
1 − exp(−t)

] 1 + Kσ

 J2

Jh
2

− 1
 ,

ρ̇D
0− = khρ

D
0

1 + I1

Ih
1

2 .
(J.1)

being

Jh
2 =

1
2
τ′pre : τ′pre,

Ih
1 = Fh : I.

(J.2)

The numerical experiment in Sec. 4.3 required a den-
sity rate expression for the dispersed fibers and it is
shown below:

ρ̇0 = α ρ0 fg

fg =
1
2

(τ′ − τ′pre) : (τ′ − τ′pre).
(J.3)
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