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Abstract. In this chapter, we first review different situations in computational 

biomechanics where an inverse problem or an identification problem has to be solved. After 

this presentation, we present in details the finite-element model updating technique, which is 

traditionally used to solve inverse problems. We then present sequential methods based on 

the principle of Kalman filters, which can be very useful to solve inverse problems in dynamics. 

Finally, we present in details the virtual fields method which can be very useful and efficient in 

situations when full-field deformation measurements are available across the whole domain of 

interest of the tissue. The main objective of the chapter is to introduce the principles required 

to understand the theory of each family of inverse approach and to present these different 

methods under a unified framework. Eventually, research directions are proposed for the 

emerging field of pelvic biomechanics in combination with advanced imaging techniques. 
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5.1 Introduction 

Computational biomechanics aims at predicting the mechanical response of living 

systems: given for instance a complete description of the aorta and of the surrounding tissues, 

we can predict the deformations that are going to be induced by the deployment of a stent graft 

during surgical repair of an aneurysm [1–3]. More generally, we could predict the deformations 

of a hollow organ under the action of radial forces that could be applied for a measurement 

purpose using an appropriate intraluminal device. This problem of predicting the result of 

measurements is called the simulation problem, or the forward problem.  

The inverse problem consists of using the actual result of some measurements to infer 

the values of the parameters that characterize the system such as unknown parameters of the 



material model, unknown elements of the boundary conditions or even sometimes the 

unknown initial geometry of the solid before the application of any mechanical action (loadfree 

configuration in finite deformations). 

While the forward problem has a unique solution, the inverse problem does not. As an 

example, consider measurements of deformations in the wall of a hollow sphere, representing 

an idealized hollow organ, after the application of internal pressure. Given the precise 

description of the wall and its mechanical behavior, and given the value of support stiffness 

surrounding the hollow organ (boundary conditions), we can uniquely predict the values of the 

radial deformation (forward problem), but there are different combinations of  wall mechanical 

properties and surrounding support stiffness that give exactly the same radial deformation. 

Therefore, the inverse problem — of inferring the mechanical properties of the organ and its 

surrounding tissues from observations of the radial deformation provoked by a change of 

internal pressure — has multiple solutions (in fact, an infinite number). Because of this, in the 

inverse problem, one needs to make explicit any available a priori information on the model 

parameters.  

Formally an inverse problem implies the reconstruction of complete unknown fields (for 

instance the field of unknown material properties) and is usually illposed, which means that 

existence and uniqueness of the solution are not always guaranteed. The illposedness may 

be due to a lack of reliable data and/or to an overcomplexity of the model. When access to 

more reliable data and complexity reduction of the model are not possible in practice, 

illposedness may be overcome mathematically by resorting to regularization approaches. 

Solving such inverse problems implies the definition of a cost function, estimating the distance 

between the model predictions and the measurements. The cost function is minimized in the 

least-squares sense. In general situations the model is solved numerically using a finite-

element model updating technique (FEMU). 

A subcategory of inverse problem is made by identification problems.  An identification 

problem has a finite number of unknowns and may become well-posed. This may happen in 

very specific situations, for instance when full-field measurements are available [4]. In that 

specific case, an alternative to FEMU is possible: the Virtual Fields Method (VFM), which has 

been shown to be more robust and efficient in these situations [5]. 

In this chapter, we first review different situations in computational biomechanics where 

an inverse problem or an identification problem has to be solved, with a particular focus on the 

reproduction system. After this presentation, we present in details the FEMU technique that is 

traditionally used to solve inverse problems. We then present sequential method based on the 

principle of Kalman filters for dynamic problems. Finally, we present in details the VFM and 

show different cases of its possible application. Eventually, research directions are proposed 



for the emerging field of pelvic biomechanics and the identification of biomechanical properties 

using advanced imaging techniques of soft tissue strains. 

 

5.2 Common sources of inverse problem in soft tissue biomechanics 

For the sake of illustration and in order to focus on problems on which a significant 

research effort has been focused, the current chapter is voluntarily restricted to two main 

situations:  

1. Reconstruction of the field of material properties in soft tissues using medical 

imaging techniques that are applied in vivo. This situation is named “elastography 

of soft tissue biomechanics”; 

2. Identification of material constants driving the constitutive equations of soft tissues 

using dedicated testing where a stress strain curve fitting cannot be simply 

performed by reading load and displacements measurements. This situation is 

named “non-agreed standard testing of soft tissue biomechanics” and mostly 

concerns soft tissues in ex situ conditions. 

5.2.1 Elastography of soft tissue biomechanics 

This situation occurs when one wants to derive mechanical properties of soft tissues in 

vivo and in situ. The basic steps are: (1) subject the tissues (organs or region of the body) to 

a deformation, (2) measure the displacement field in the entire domain and (3) compute the 

mechanical properties by solving an inverse problem.  

5.2.1.1 Subject the tissues to a deformation 

The most common elastography technique, strain elastography (or compression 

elastography), relies on manually deforming a tissue with an ultrasound transducer, and 

inferring the stiffness of the tissue from the deformation observed in the ultrasound images. An 

extension of ultrasound strain elastography is acoustic radiation force impulse (ARFI) 

elastography. Instead of manually compressing the tissue, ARFI creates a focused ultrasound 

pulse that travels through the tissue. Using rapid imaging ultrasound pulse echoes, the tissue 

deformation can be tracked, and analyzed to provide a qualitative stiffness map. Its main 

advantage over strain elastography is that it is not limited to superficial tissues that can be 

manually deformed, although it is still limited by ultrasound penetration depths. 

The most common alternative to ultrasound elastography is Magnetic Resonance 

Elastography (MRE), which is a magnetic resonance imaging technique that works by 

measuring the shear wave propagation through soft tissues [6, 7]. The shear wave is generated 

by an MR-compatible mechanical transducer that is synchronized to the MR image acquisition. 

In vivo, non-invasive stimuli can also be employed; the most used one being the natural 

blood action on the arterial wall [8]. 

5.2.1.2 Measure the displacement fields 



The displacement field may be determined using either ultrasound (see [9] for an 

example), computed tomography (CT) [10] or nuclear magnetic resonance (NMR) (see [11] for 

an example). When using NMR, displacements are calculated from the phase of the measured 

magnetic field and are required to be time harmonic.  

In the case of ultrasound, a speckle image of the specimen in the undeformed state is 

recorded. Thereafter, the specimen is deformed and another speckle image is recorded. These 

images are registered to yield the displacement field. More recently, efforts to provide 

quantitative mechanical property data from ultrasound elastography led to the development of 

shear wave elastography, which relies on similar physical principles to MRE, where 

propagation of an externally imposed acoustic wave is tracked, and used to estimate the tissue 

shear modulus. This stimulus can be generated by ARFI, and its propagation imaged with high 

frame rate ultrasound, as in the supersonic elastography technique [12]. 

5.2.1.3 Compute the mechanical properties 

Strain or compression static elastography usually assumes that regions of smaller 

strains indicate higher elastic modulus [13]. It is rather a technique for detecting variations in 

relative stiffness. The use of inversion techniques has been shown to be more robust [14, 15] 

but the uncertainty in the boundary conditions and in the viscoelastic effects led static 

elastography be preferred by transient elastography. 

Transient US or MR elastography attempts to estimate the elastic properties (Young’s 

modulus or shear modulus) of a tissue based on the relationship between mechanical 

properties and the propagation characteristics of mechanical vibration waves [9, 16]. The 

inverse problem consists in deriving the local tissue modulus from the measured displacement 

fields using the wave equation written in the context of linear elasticity such as 

𝜌
𝜕2𝑼

𝜕𝑡2
= 𝜇∇2𝑼+ (𝜆 + 𝜇)∇(∇𝑼) + η

𝜕∇2𝑼

𝜕𝑡
+ (𝜉 + η)

𝜕∇(∇𝑼)

𝜕𝑡
  ,                 (1) 

where 𝑼 is the displacement vector, 𝜌 is the density of the tissue, 𝜇 is the shear modulus, 𝜆 

the second Lamé coefficient, η the shear viscosity and 𝜉 is the viscosity of the compressional 

wave. The variable 𝑡 refers to the time. Despite some concerns over the validity of this 

approach, a much simplified version is often used, that estimates local wave speed from the 

imaging data, and calculates the shear modulus from 

𝜇 = 𝜌ν2𝜆2 ,                 (2) 

where ν is the frequency of the vibration and 𝜆 is the local wavelength.  

While most applied studies use some form of direct numerical inversion like the one of 

Eq. 2, recent work is exploring the use of inversion techniques that have the potential to be 

more robust [14, 17–22]. They will be presented in details in the next sections of this chapter. 

5.2.1.4 Applications in the pelvic system 



Strain elastography of the pelvic floor carries diagnostically important information about 

the dynamic response of the pelvic floor muscle, which cannot be readily captured and 

assimilated by the observer during the scanning process. Peng et al [23] presented an 

ultrasound imaging presented an approach based on motion tracking quantitatively to analyze 

the dynamic parameters of pelvic floor muscles on the ano-rectal angle. Ami et al [24] showed 

that real-time ultrasonic strain elastography could provide detailed mapping and 

characterization of fibroids. Thyer et al [25] introduced a static-state translabial ultrasound 

method of measuring pubovisceral muscle strain during Valsalva and contraction. 

Transient ultrasound [26, 27] and MR [28] elastography is also emerging for the pelvic 

system. It has been used to identify biological and technical confounders in the nonpregnant 

cervix when applying shear wave elastography with an endovaginal transducer [26, 27]. The 

frequency-dependent elastic moduli of human uterine tissue have also been characterized by 

Kiss et al [29] and some promising results have been obtained with ex vivo uteri by Hobson et 

al [30]. 

 

5.2.2 Non destructive invasive techniques 

Whereas elastography seeks at imaging strains or material properties in soft tissues, 

less sophisticated techniques can simply apply some load on a tissue and measure the 

induced deformation at a given point. This can also be a source of inverse problems, which 

will not be presented in this chapter, as we eventually focus on problems involving imaging 

techniques and full-field measurements. We simply mention the well-known palpation 

technique and the technique of tissue aspiration, both involved in an interesting study related 

to the reproduction system conducted by Egorov et al [31]. Their approach, called vaginal 

tactile imaging, allowed biomechanical mapping of the female pelvic floor to quantify tissue 

elasticity, pelvic support, and pelvic muscle functions. An explicit axisymmetric finite element 

simulation of the aspiration experiment was used together with a Levenberg–Marquardt 

algorithm to estimate the material model parameters in an inverse parameter determination 

process (as described in section 3.3.1).  

 

5.2.3 Non agreed standard testing of soft tissue biomechanics 

Thousands of scientific publications provide material properties of soft tissues that were 

obtained by characterizing test samples excised from a dead body (cadaver). This is a source 

of many inverse problems [32–34]. Indeed, for many technical materials it is relatively easy to 

make test samples according to the agreed standards, but for most biological materials this is 

much more difficult due to a number of reasons listed below: 

1. To create a sample it has to be taken out of a body. If it concerns human tissue it is 

either left over material of surgery or post mortem material. Another option is to use tissue from 



animals. In all situations the material is taken out of the body, so it loses part of its integrity, 

the pretension found in the living system is (partly) gone or difficult to maintain, the tissue is no 

longer supplied with blood and will start to deteriorate quickly. However, when isolated and 

preserved in a proper way the negative effects of making samples of biological materials can 

be reduced considerably and the parameters may change, but the physical behavior will be 

similar to the behavior in vivo. Also during testing the physical and chemical environment of 

the material has to be controlled (humidity, temperature). 

2. It is extremely difficult to make samples according to the standards (for example a 

dogbone shape of a soft biological material). The amount of material available is usually small 

or very small. Clamping is a big issue. 

3. Often the material has inhomogeneous properties, so the assumption in standard 

tests that the stress strain field is homogeneous is not a valid assumption. 

4. Especially for soft biological materials the samples can be stretched to very high 

deformations, they behave highly nonlinear and visco-elastic so the strain and strain rate 

history play an important role and localization effects appear even if they have top be neglected 

in standard tests. 

Despite the difficulties given above, standard tests are done quite often because they 

are well defined and they constitute the only way to gain a good understanding of the physical 

behavior of the material and to define constitutive equations [32]. Some of the above problems 

can be circumvented or partly solved by using inverse methods. The biggest advantage of 

inverse methods is the enormous freedom that is created to design experiments alleviating 

some of the difficulties encountered in standard tests. The main inverse methods will be 

presented in details in the following sections. 

Concerning the reproduction system, as for other tissues, knowledge of biomechanical 

properties is critical to further developing accurate surgical techniques and physiological 

prosthetic materials. The elastic properties of the pubovisceral muscle are likely to be important 

for pelvic organ support. However, published data are scarce. We mention here the recent 

biomechanical uniaxial tension tests performed on pelvic floor tissues (ligaments and organs) 

by Chantereau et al [35] who characterized the mechanical properties of young pelvic soft 

tissues. 

 

5.3 The finite element model updating method 

5.3.1 Useful definitions and concepts 

5.3.1.1 Deformation tensors 

Deformations are mathematically described as functions, which map the material 

description 𝑿 (spatial description in the reference configuration) onto the spatial description 𝒙 

in the current configuration such as 



 𝒙 = 𝝓(𝑿, 𝑡),                 (3) 

𝑿 = 𝝓−1(𝒙, 𝑡).                (4) 

The displacement vector is defined as: 𝑼(𝑿, 𝑡) = 𝒙 − 𝑿 = 𝝓(𝑿, 𝑡) − 𝑿. 

The velocity is defined by taking time derivatives of the mapping as follows, 

�̇�(𝑿, 𝑡) = [
𝜕𝝓(𝑿, 𝑡)

𝜕𝑡
]
𝑿

  .               (5) 

It can also be expressed in terms of the spatial description by inserting the inverse mapping 

𝒗(𝒙, 𝑡) = �̇�(𝝓−1(𝒙, 𝑡), 𝑡).                 (5) 

The deformation gradient for this motion is 

𝑭(𝑿, 𝑡) =
𝜕𝝓(𝑿, 𝑡)

𝜕𝒙
.               (6) 

The right Cauchy Green and left Cauchy Green stretch tensor are respectively 

𝑪 = 𝑭𝑻𝑭 ,                 (7) 

𝑩 = 𝑭𝑭𝑻.                 (8) 

The Green-Lagrange strain tensor is: 

𝑬 =
1

2
(𝑪 − 𝟏),                 (9) 

where 𝟏 is the identity tensor. 

5.3.1.2 Stress tensors 

The first stress tensor that has to be introduced is the Cauchy stress tensor 𝝈. It gives 

us the stress state in the deformed body. It is defined in the spatial configuration. The traction 

vector 𝒕 obtained from the application of the surface normal in the spatial (deformed) 

configuration 𝒏 is called the Cauchy traction vector 

𝒕 = 𝝈. 𝒏.                 (10) 

Since it gives us the actual stress of the body, the Cauchy stress is called the true stress in 

engineering. 

It is convenient to define the second Piola-Kirchhoff stress tensor 𝑺 through a push-

forward such as 

𝑺 = 𝐽𝑭−1𝝈𝑭 .                (11) 

where 𝐽 = det (𝑭).The 𝑺 tensor is defined for the reasons that it is a material tensor which is 

defined in the reference configuration and that it is the work conjugate of the Green-Lagrange 

strain tensor 𝑬 enabling one to define different constitutive equations. It also has the attractive 

property that it is symmetric. 

5.3.1.3 Constitutive equations 

For the sake of illustration, we restrict the presentation of inversion techniques of this 

chapter to the identification of a single specific hyperelastic model often used for soft biological 

tissues of the reproduction system. In hyperelasticity, the existence of a strain energy density 



function is assumed, from which a constitutive relation between stress and strain is derived. 

The total energy that is needed to deform the body is only dependent on the initial and the end 

state, that is, the state of the body is independent of the loading path. 

Let us illustrate this throughout the whole chapter with the following strain energy 

function defined for incompressible solids [36] 

𝜓 =
𝜇1
2
(𝐼1 − 3) +

𝜇2
4𝛾
 (𝑒𝛾(𝐼𝜅−1)

2
− 1) ,                (12) 

where 𝜇1, 𝜇2, and 𝛾 are material parameters, 𝐼1is an invariant defined such as 

𝐼1 = 𝑡𝑟(𝑪),                (13) 

and 𝐼𝜅 is a compound invariant consisting of isotropic and anisotropic contributions defined 

such as 

𝐼𝜅 = 𝑪: (𝜅𝟏 + (1 − 2𝜅)𝑴⨂𝑴) ,                (14) 

where the unit vector  𝑴 = 𝑐𝑜𝑠𝜃𝒆𝟏 + 𝑠𝑖𝑛𝜃𝒆𝟐 defines the orientation along which the tissue is 

stiffest while 𝜅 characterizes the degree of anisotropy, varying between 0 and 1. 

When 𝜅 = 0, it would model a composite with all the fibers perfectly aligned in the 

direction 𝑴 and at 𝜅 = 1 the fibers would be perfectly aligned in the perpendicular direction, 

𝑴⟘. Finally, 𝜅 = 1/2 models the case where fibers would have no preferential direction 

(isotropic). The parameters 𝜇1 and 𝜇2 are the effective stiffnesses of the matrix and fiber 

phases, respectively, both having dimensions of force per unit length. The 𝛾 parameter is a 

non-dimensional parameter that governs the tissue's strain stiffening response. 

The second Piola-Kirchhoff stress tensor, 𝑺, is written as 

𝑺 = 2
𝜕𝜓

𝜕𝐼1
𝟏 + 2

𝜕𝜓

𝜕𝐼𝜅
 (𝜅𝟏 + (1 − 2𝜅)𝑴⨂𝑴) + 𝑝 𝑪−1  ,               (15) 

where 𝑝 is a Lagrange multiplier accounting for the condition of incompressibility. 

It gives after substitution 

𝑺 = 𝜇1𝟏 + 𝜇2 𝑒
𝛾(𝐼𝜅−1)

2
 (𝜅𝟏 + (1 − 2𝜅)𝑴⨂𝑴) + 𝑝 𝑪−1.                 (16) 

The Cauchy stress is given by 

𝝈 = 𝜇1𝑩 + 𝜇2 𝑒
𝛾(𝐼𝜅−1)

2
 (𝜅𝑩 + (1 − 2𝜅)𝒎⨂𝒎) + 𝑝 𝟏,                 (17) 

where 

𝒎 = 𝑭𝑴 .                (18) 

The material parameters 𝜇1, 𝜇2, 𝛾, 𝜅 and 𝜃, including parameters describing their possible 

regional variations, are represented onwards with a unique vector denoted 𝛽.  

5.3.2 Forward problem 

The mechanical fields across the reference domain, denoted 𝛺0, are governed by the 

equations of dynamics. The solution of these governing equations by a numerical method is 

the so-called forward problem. In this section, we will simplify the problem by leaving aside the 



acceleration forces (static problem). Dynamic problems will be discussed in the following 

section dedicated to sequential methods. 

5.3.2.1 Strong form 

The strong form of the quasi-static problem is: find the displacement field 𝑼 and the 

pressure 𝑝 such as 

Div[𝑭𝑺] = 𝟎 on 𝛺0 ,                (19𝑎) 

𝑼 = 𝒈 on 𝛤𝑔 ,                (19𝑏) 

𝑭𝑺.𝑵 = 𝒕 on 𝛤𝑡  ,                (19𝑐) 

where 𝛺0 is the domain of interest, 𝛤𝑡 is the boundary of the domain where tractions are applied 

while 𝛤𝑔 is the boundary of the domain where displacements are assigned. The whole boundary 

of the domain is defined such as 

𝜕𝛺0 = 𝛤𝑔 ∪ 𝛤𝑡  ,              (19𝑑) 

The equations are completed with the incompressibility constraint 

det(𝑭) − 1 = 0 on 𝛺0.                (19𝑒) 

As mentioned above, this problem statement must be augmented by the stress–strain 

relation to specify the stress in terms of the deformation (Eq. 16 or 17). 

5.3.2.2 Weak form 

The weak form can be derived easily from the strong form by multiplying Eq. 19 with a 

vector test function, integrating-by-parts over the reference domain, and utilizing the traction 

boundary condition. The incompressibility constraint is multiplied by another scalar test 

function and integrated over the reference domain. The weak form is given by: find 𝑈≡[𝑼, 𝑝] 

such as 

𝒜(𝑊,𝑈; 𝛽) − (𝒘, 𝒕)𝛤𝑡 = 0  ∀𝑊 ≡ (𝒘, 𝑞) ∈ V × P ,                (20) 

where 𝒜 is an operator defined such as 

𝒜(𝑊,𝑈, 𝛽) = ∫ 𝛁𝒘:

𝛺0

[𝑭𝑺]d𝛺0 + ∫(𝐽 − 1)𝑞d𝛺0
𝛺0

 ,              (21𝑎) 

and (. , . )𝛤𝑡 is the L2(𝛤𝑡) inner product evaluated over the 𝛤𝑡 reference boundary domain such 

as 

(𝒘, 𝒕)𝛤𝑡 = ∫ 𝒘.

𝛤𝑡

𝒕d𝑆0,              (21𝑏) 

whereas V, S and 𝑃 are vectorial spaces of second order tensors defined such as 

V = {𝒘|𝒘𝑖 ∈ H
1(𝛺0), 𝒘𝑖 = 0 on 𝛤𝑔} ,               (22) 

S = {𝒖|𝒖𝑖 ∈ H
1(𝛺0), 𝒖𝑖 = 𝒈𝑖  on 𝛤𝑔} ,              (23) 

𝑃 ⊆ L2(𝛺0).              (24) 



The weak form may be discretized by selecting finite dimensional spaces Sℎ ⊂  S, Vℎ ⊂

 V and Pℎ ⊂  P and using Galerkin’s approach. This leads to a nonlinear algebraic problem for 

the displacement and pressure degrees of freedom that may be solved using the Newton 

Raphson method. It can be solved uniquely for every feasible set of material parameters and 

arbitrary geometries and leads to a nonlinear system of equations of the type 

𝒜(𝑊ℎ , 𝑈ℎ; 𝛽) − (𝒘ℎ , 𝒕ℎ)
𝛤𝑡
= 0.                 (25) 

Starting with an initial vector 𝑈ℎ(0), the resolution consists in recursively linearizing the 

nonlinear system of equations around 𝑈ℎ(𝑛) assuming 

𝑈ℎ(𝑛 + 1) = 𝑈ℎ(𝑛) + 𝜖𝛿𝑈ℎ(𝑛),               (26) 

𝒜(𝑊ℎ , 𝑈ℎ(𝑛 + 1); 𝛽) = 𝒜(𝑊ℎ , 𝑈ℎ(𝑛); 𝛽) + 𝜖ℬ (𝑊ℎ , 𝛿𝑈ℎ(𝑛); 𝛽, 𝑈ℎ(𝑛)),               (27) 

where ℬ is an operator defined such as 

ℬ(𝑊, 𝛿𝑈; 𝛽, 𝑈) = lim
𝜖→0

𝑑

𝑑𝜖
𝒜(𝑊,𝑈 + 𝛿𝑈; 𝛽) ,              (28) 

ℬ(𝑊, 𝛿𝑈; 𝛽, 𝑈) = (𝑊,𝐾(𝛽, 𝑈). 𝛿𝑈)
𝛺0
= (𝐾𝑇(𝛽, 𝑈). 𝛿𝑈,𝑊)

𝛺0
 ,              (29) 

where (. , . )𝛺0 is the L2(𝛺0) inner product evaluated in the 𝛺0 reference domain, 𝐾(𝛽, 𝑈) is a 

linear operator defined in the S × P space transforming any field 𝑊 in 𝐾(𝛽, 𝑈).𝑊, whereas 

𝐾𝑇(𝛽, 𝑈) is the adjoint of 𝐾(𝛽, 𝑈). 

5.3.3 Inverse problem 

5.3.3.1 Definition of the cost function 

The inverse problem consists in the reconstruction of the material and geometric 

parameters, 𝛽, given the relevant (measured) displacements fields 𝑼meas.  

The inverse problem is stated as follows: given 𝑛meas measured displacement fields 

𝑼meas
1 , 𝑼meas

2 , ... 𝑼meas
𝑛 , find the 𝑁𝛽 material properties 𝛽 = [𝛽1, 𝛽2, … , 𝛽𝑁𝛽] such that the 

objective function 

𝜋(𝛽) =
1

2
∑ 𝑤𝑖‖𝑻𝑼

𝑖 − 𝑻𝑼meas
𝑖 ‖

2
+
1

2
∑𝛼𝑗𝑅(𝛽𝑗)

𝑁𝛽

𝑗=1

𝑛meas

𝑖=1

               (30) 

is minimized under the constraint that the displacement fields satisfy the equilibrium equations 

written in their weak form in Eq. 20 or after discretization in Eq. 25 (for the sake of simplification, 

no difference is made anymore in the notation between discretized and continuous variables 

onwards). In Eq. 30, each field 𝑼𝑖  correspond to a different set of boundary conditions 𝒕𝑖 , for 

instance corresponding to different time steps 𝑡𝑖 of overall loading. Since we expect their 

magnitudes to be quite different at each step 𝑖, each displacement field is multiplied by a 

weighting factor 𝑤𝑖, which is selected to ensure that the contributions to the objective function 



from all measurements are of the same order. The tensor 𝑻 is selected to possibly weight 

different components of displacement differently. 

The second term is the regularization term where 𝛼𝑗 is the regularization parameter. 

This has to be chosen appropriately depending on the noise level in the measured 

displacements and on the illposedness of the problem. The regularization term can be thought 

of as a penalty term in the objective function that ensures a certain smoothness to the 

reconstructed material properties. A possible function proposed by the group of Oberai and 

Barbone [19–21] is 

𝑅(𝛽𝑗) = ∫ √|∇𝛽𝑗|
2
+ 𝑐2

0
 𝑑0 .              (31) 

where ∇𝛽𝑗 is the gradient of material properties and 𝑐 is a coefficient controlling the 

regularization [19–21]. 

The objective function defined in Eq. 30 is usually minimized using a gradient based 

optimization method [19–21]. For this, we need an efficient way to compute the gradient of this 

function with respect to the material properties. If we represent the regional variations of 

material properties using 𝑁 piece-wise linear finite-element shape functions whose nodal 

values are the parameters of the inverse problem and if we consider the use of gradient-based 

algorithms, we can show that a straightforward calculation of the gradient requires 𝑁 solves of 

the forward elasticity problem. This cost is computationally prohibitive for typical values of 𝑁. 

To circumvent this difficulty, the adjoint method, which requires only two solves (independent 

of 𝑁) to compute the gradient, is the most appropriate. 

5.3.3.2 The adjoint method 

In order to evaluate the gradient vector, the adjoint equations can be derived at the 

continuous or the discrete level. Changing 𝛽 by a small (infinitesimal) amount 𝛿𝛽 will cause 

the displacement fields 𝑼𝑖  to change of a small amount 𝜹𝑼𝑖  and the pressure 𝑝 will change 

accordingly of a small amount 𝛿𝑝. The relationship between 𝜹𝑼𝑖  and 𝛿𝛽 can be obtained by 

differentiating Eq. 20 with respect to 𝑼 and 𝛽. One obtains 

ℬ(𝑊, 𝛿𝑈𝑖; 𝛽, 𝑈𝑖) + 𝒞(𝑊, δ𝛽; 𝑈𝑖 , 𝛽) = 0  ,             (32) 

where 𝒞 is an operator defined such as 

𝒞(𝑊, δ𝛽; 𝑈𝑖 , 𝛽) = lim
𝜖→0

𝑑

𝑑𝜖
𝒜(𝑊,𝑈𝑖; 𝛽 + 𝜖δ𝛽).               (33) 

Similarly, differentiating the objective function gives 

D𝛽𝜋(𝛽, δ𝛽) = ∑ (𝑤𝑖𝑻𝜹𝑼
𝑖 , 𝑻𝑼𝑖 − 𝑻𝑼meas

𝑖 )
0
+
1

2
∑𝛼𝑗𝐷𝛽𝑅(𝛽𝑗 , 𝛿𝛽𝑗)

𝑁𝛽

𝑗=1

𝑛meas

𝑖=1

.               (34) 

where D𝛽 denotes the differentiation with respect to the components of 𝛽. 



To compute the gradient of our objective function, one could select a basis on which to 

represent δ𝛽. Then for each basis vector, one solves Eq. 32 for 𝜹𝑼𝑖. Finally Eq. 34 can be 

used to compute the gradient for that single component of 𝛽. One would then select the next 

basis vector for δ𝛽, and repeat the process. 

A particularly efficient alternative to the brute force method just described is to use the 

adjoint equations. The following (linear) boundary value problems is introduced for the 𝑛meas 

functions 𝑊𝑖 ∈ V × P such as 

ℬ(𝑊𝑖 , 𝑉; 𝛽, 𝑈𝑖) + (𝑤𝑖𝑻𝑽, 𝑻𝑼
𝑖 − 𝑻𝑼meas

𝑖 )
0
= 0   ∀ 𝑉 ≡ [𝑽, 𝑞] ∈  V × P.               (35) 

Introducing the linear operator 𝐾𝑇(𝛽, 𝑈𝑖), one obtains 

(𝐾𝑇(𝛽, 𝑈𝑖).𝑊𝑖 , 𝑉)
0

+ (𝑤𝑖𝑻𝑽, 𝑻𝑼
𝑖 − 𝑻𝑼meas

𝑖 )
0
= 0   ∀ 𝑉 ≡ [𝑽, 𝑞] ∈  V × P  ,              (36) 

which finally can be written such as 

𝐾𝑇(𝛽, 𝑈𝑖).𝑊𝑖 = 𝑻𝑼𝑖 − 𝑻𝑼meas
𝑖  .               (37) 

In terms of 𝑊𝑖, we now may compute the gradient as follows. First, we note that since 𝛿𝑈𝑖 ∈

 V × P, we may replace 𝑉 in Eq. 36 with 𝛿𝑈𝑖. This gives 

ℬ(𝑊𝑖 , 𝛿𝑈𝑖; 𝛽, 𝑈𝑖) + (𝑤𝑖𝑻𝑽, 𝑻𝑼
𝑖 − 𝑻𝑼meas

𝑖 )
0
= 0  .                (37) 

Similarly, since 𝑊𝑖 ∈  V × P we may replace 𝑊 in Eq. 32 with 𝑊𝑖. This gives 

ℬ(𝑊𝑖 , 𝛿𝑈𝑖; 𝛽, 𝑈𝑖) + 𝒞(𝑊𝑖 , δ𝛽; 𝑈𝑖 , 𝛽) = 0 .               (38) 

We now subtract Eq. 38 from Eq. 37 to find 

(𝑤𝑖𝑻𝑽, 𝑻𝑼
𝑖 − 𝑻𝑼meas

𝑖 )
0
= 𝒞(𝑊𝑖 , δ𝛽; 𝑈𝑖 , 𝛽) .             (39) 

Eq. 39 shows that once we have computed 𝑊𝑖, we can directly evaluate the gradient of our 

data matching term for any number of δ𝛽 directions without solving another boundary value 

problem. The final expression for the gradient results by substituting Eq. 39 into Eq. 34 to 

obtain 

D𝛽𝜋(𝛽, δ𝛽) = ∑ 𝒞(𝑊𝑖 , δ𝛽; 𝑈𝑖 , 𝛽) +
1

2
∑𝛼𝑗𝐷𝛽𝑅(𝛽𝑗 , 𝛿𝛽𝑗)

𝑁𝛽

𝑗=1

𝑛meas

𝑖=1

.              (40) 

5.3.3.3 Minimization of the cost function and resolution of the inverse problem 

In a finite-element implementation all variables including displacement, pressure and 

material properties, can be represented by linear finite element basis functions. The 

optimization variables are the nodal values of the material parameters, and the gradient with 

respect to these variables is given by Eq. 40 such as 

g = D𝛽𝜋(𝛽, δ𝛽).               (41) 



More precisely, we can represent with the same shape functions as for the 

displacement and the pressure fields. Then the discrete gradient vector ∇𝜋(𝛽) may be given 

by each of its 𝑗𝐴 component which are defined such as 

g𝑗𝐴(𝛽) = D𝛽𝜋(𝛽, N𝐴(X)e𝑗)

= ∑ 𝒞(𝑊𝑖 , N𝐴(X)e𝑗; 𝑈
𝑖 , 𝛽) +

1

2
∑𝛼𝑗𝐷𝛽𝑅(𝛽𝑗 , N𝐴(X)e𝑗),

𝑁𝛽

𝑗=1

𝑛meas

𝑖=1

               (41) 

where e𝑗 is a 𝑁𝛽 dimensional vector with 1 in the 𝑗th component and zeros everywhere else.  

In the case of a linear behavior, one can define the linear operator 𝐾𝑗(𝛽, 𝑈
𝑖), which 

operates over the S × P space according to 

lim
𝜖→0

𝑑

𝑑𝜖
𝒜(𝑊𝑖 , 𝑈𝑖; 𝛽 + 𝜖N𝐴(X)e𝑗) = (𝑊

𝑖 , 𝐾𝑗(𝛽, 𝑈
𝑖) . 𝑈𝑖)

0

 .              (42) 

Having an efficient method to derive the gradient of the cost function, an iterative algorithm 

can be implemented to find the optimum value. Starting with an initialization 𝛽0, the algorithm 

of the steepest descent tries for to find a scalar 𝛼 such as the cost function 𝜋(𝛼) = 𝜋(𝛽𝑛 +

𝛼g𝑗𝐴(𝛽)) reaches its minimum at 𝛽𝑛+1 = 𝛽𝑛 + 𝛼g𝑗𝐴(𝛽) (line search). 

The initial guess 𝛽0 for the material parameters is usually homogeneous and then the 

gradient is calculated using the procedure described above, the whole process being repeated 

until convergence. 

A more efficient algorithm than the steepest descent is the BFGS method. In numerical 

optimization, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is an iterative method 

for solving unconstrained nonlinear optimization problems. The search direction 𝑝𝑛 at stage 𝑛 

is given by the solution of the analogue of the Newton equation 

𝐵𝑛𝑝𝑛 = −∇𝜋(𝛽𝑛),              (43) 

where 𝐵𝑛 is an approximation to the Hessian matrix which is updated iteratively at each stage, 

and ∇𝜋(𝛽𝑛) is the gradient of the cost function evaluated at 𝛽𝑛. A line search in the direction 

𝑝𝑛 is then used to find the next point 𝛽𝑛+1. Instead of requiring the full Hessian matrix at the 

point 𝛽𝑛+1 to be computed as 𝐵𝑛+1, the approximate Hessian at stage 𝑛 is updated by the 

addition of two matrices according to 

𝐵𝑛+1 = 𝐵𝑛 + 𝑈𝑛 + 𝑉𝑛 .              (44) 

Both 𝑈𝑛 and 𝑉𝑛 are symmetric rank-one matrices, but their sum is a rank-two update matrix. 

From an initial guess 𝛽0 and an approximate Hessian matrix 𝐵0 the following steps are 

repeated as 𝛽𝑛 converges to the solution. 

1. Obtain a direction 𝑝𝑛 by solving:  

𝐵𝑛𝑝𝑛 = −∇𝜋(𝛽𝑛).               (45) 

2. Set 𝑠𝑛 = 𝛼𝑛𝑝𝑛. 



3. Perform a line search to find an acceptable stepsize 𝛼𝑛 in the direction found in the 

first step, then update 𝛽𝑛+1 = 𝛽𝑛 + 𝑠𝑛. 

4. 𝑦𝑘 = ∇𝜋(𝛽𝑛+1) − ∇𝜋(𝛽𝑛).              (46) 

5. 𝐵𝑛+1 = 𝐵𝑛 +
𝑦𝑛𝑦𝑛

𝑇

𝑦𝑛
𝑇𝑠𝑛

−
𝐵𝑛𝑠𝑛𝑠𝑛

𝑇𝐵𝑛

𝑠𝑛
𝑇𝐵𝑛𝑠𝑛

 .              (47) 

Practically, 𝐵0 can be initialized with 𝐵0 = 𝐼, so that the first step will be equivalent to a 

gradient descent, but further steps are more and more refined by 𝐵𝑛, the approximation to the 

Hessian. 

5.3.4 Applications to the pelvic system 

FEMU was previously applied to the pelvic system by Silva et al [37, 38]. They used an 

inverse finite element analysis to calculate the Mooney–Rivlin constitutive model parameters 

for the passive mechanical behavior of the pelvic floor muscles. The numerical model of the 

pelvic floor muscles and bones was built from magnetic resonance axial images acquired at 

rest. Note also that Kauer et al. [17] applied FEMU with the tissue aspiration technique to 

estimate in vivo soft tissue material model parameters in the pelvic system. 

5.4 Sequential methods 

The FEMU approach presented in the previous section, which consists in minimizing a 

least-squares criterion which includes a regularization term and the difference between the 

observations and the model prediction, is often called a variational approach. When one has 

to model a dynamic system, as in the case of fluid-structure interactions (FSI) for 

hemodynamics, one of the main difficulties of a variational approach like the FEMU method 

lies in the iterative evaluation of the criterion, involving many solutions of the forward problem, 

and its gradient – typically adjoint-based – which usually requires a laborious implementation.  

Alternatively, a sequential approach, based on a generalization of the Kalman filter, can 

be implemented. With sequential algorithms, the model prediction is improved at every time 

instant by analyzing the discrepancy between the actual measurements and the model 

observation outputs [39]. In the fully linear case, it was proved that the Kalman filter gives the 

same result as a variational approach based on a least squares criterion. 

Let 𝑼𝑖 = 𝑼(𝑡𝑖) be the state variable at every time step 𝑡𝑖 (typically 𝑼𝑖 denotes in this 

section the finite element approximation of the displacements and the velocities in the soft 

tissue and possibly in a surrounding fluid).  We assume that the state variable satisfies 

nonlinear dynamics equations, without any model uncertainties, and that this may bring the 

following equation 

𝑼𝑖+1 = 𝑨(𝑼𝑖 , 𝒕𝑖+1; 𝛽),               (47) 

where 𝒕𝑖+1 represent the loading and 𝛽 represent the vector of model parameters to be 

identified. 



We suppose that measurement observations are available at 𝑡𝑖 

𝑼meas(𝑡𝑖) = 𝑼meas
𝑖 = 𝑯𝑼𝑖 + 𝜻(𝑡𝑖) ,             (48) 

where 𝑯 represents an observation operator applied to the real state variable 𝑼𝑖 = 𝑼(𝑡𝑖) and  

𝜻(𝑡𝑖) includes the measurement noise and the discretization error. Measurements are 

assumed to be available at every time step 𝑡𝑖, 1 ≤ 𝑖 ≤ 𝑛meas. 

In a sequential approach, the inverse problem can be viewed as minimizing a cost 

function at every time step 𝑡𝑖 like 

𝜋(𝑼𝑖+1, 𝛽𝑖+1) =
1

2
‖𝑼meas

𝑖+1 −𝑯𝑼𝑖+1‖
𝑊−1

2
+
1

2
‖𝛽𝑖+1 − 𝛽𝑖‖

(𝑃𝑖
𝛽
)
−1

2

+
1

2
‖𝑼𝑖+1 − 𝑨(𝑼𝑖 , 𝒕𝑖+1; 𝛽𝑖)‖

(𝑃𝑖
𝑼)
−1

2

    .           (49) 

In this expression, ‖ ‖
𝑊−1
2  , ‖ ‖

(𝑃𝑖
𝛽
)
−1

2  and ‖ ‖
(𝑃𝑖
𝑼)
−1

2  denote some norms used to measure 

the observations, the parameters and the state, respectively. These norms give a different 

weight to the different terms and therefore accounting for the “confidence” in the different 

quantities. From a statistical viewpoint, the “confidence” can be viewed as the inverse of 

covariance matrices (𝑊, 𝑃𝑖
𝛽

 and 𝑃𝑖
𝑼), which explains the notation. It is important to notice that 

𝑃𝑖
𝛽

 and 𝑃𝑖
𝑼 are updated at every time step as the confidence in the model increases. The cost 

function may be rewritten such as 

𝜋(𝑼𝑖+1, 𝛽𝑖+1) =
1

2
(𝑼meas

𝑖+1 −𝑯𝑼𝑖+1)
𝑇
𝑊−1(𝑼meas

𝑖+1 −𝑯𝑼𝑖+1) +
1

2
(𝛽𝑖+1 − 𝛽𝑖)

𝑇
(𝑃𝑖

𝛽
)
−1
(𝛽𝑖+1 − 𝛽𝑖)

+
1

2
(𝑼𝑖+1 − 𝑨(𝑼𝑖 , 𝒕𝑖+1; 𝛽𝑖))

𝑇
(𝑃𝑖

𝑼)
−1
(𝑼𝑖+1 − 𝑨(𝑼𝑖 , 𝒕𝑖+1; 𝛽𝑖)) .              (50) 

The sequential approach, also known as filtering, addresses the minimization problem 

in the following way: it modifies the predictions (𝛽𝑖+1 = 𝛽𝑖 and 𝑼𝑖+1 = 𝑨(𝑼𝑖 , 𝒕𝑖+1; 𝛽𝑖)) with a 

correction term that takes into account the discrepancy between actual measurements and 

observations generated by the model such as 

𝑼𝑖+1 = 𝑨(𝑼𝑖 , 𝒕𝑖+1; 𝛽𝑖) + 𝑲𝑼 (𝑼meas
𝑖+1 −𝑯𝑨(𝑼𝑖 , 𝒕𝑖+1; 𝛽𝑖)),              (51) 

𝛽𝑖+1 = 𝛽𝑖 +𝑲𝛽 (𝑼meas
𝑖+1 −𝑯𝑨(𝑼𝑖 , 𝒕𝑖+1; 𝛽𝑖)).              (52) 

The quantity 𝑼meas
𝑖+1 −𝑯𝑨(𝑼𝑖 , 𝒕𝑖+1; 𝛽𝑖) is known as the innovation, and the operators 𝑲𝑼 

and 𝑲𝛽 depend on the method. For linear problems, the most famous sequential approach is 

the Kalman filter.  

Concerning the computational complexity, whereas the variational method has to solve 

several forward and adjoint problems on the whole interval [𝑡0, 𝑡𝑛meas], the estimation in the 

sequential algorithm is computed by solving only once the filtered dynamics. However, the 

optimal the operators 𝑲𝑼 and 𝑲𝛽 are determined by operations (multiplications, inversions, 



etc.) involving full matrices of the size of the state and the observations, which may make 

Kalman-based filters prohibitive for discrete problems derived from partial differential equations 

(PDEs). 

The Kalman filter presented above is only valid when the dynamics and the observation 

operator are linear. In case of nonlinear operator, as it is the case for the hyperelastic 

identification problem considered in this chapter, the most straightforward extension consists 

in deriving tangent operators at every time step. This is the extended Kalman filter. However it 

has two drawbacks: the computation of tangent operators and the precision of the estimated 

values. The latter is critical as it can be shown that when 𝜻(𝑡𝑖) is a white Gaussian noise, the 

nonlinear operators propagate a bias in the results. This is commonly circumvented by using 

the Unscented Kalman Filter [39], which instead of deriving tangent operators, approximates 

the operators 𝑲𝑼 and 𝑲𝛽 from the values taken by the nonlinear operators at a set of vectors 

chosen initially and called particles. 

 

5.5 The virtual fields method 

5.5.1 General introduction 

The Virtual Fields Method (VFM) was developed to identify the parameters governing 

constitutive equations, the experimental data processed for this purpose being displacement 

or strain fields. It will be shown in this chapter that one of its main advantages is the fact that, 

in several cases, the sought parameters can be directly found from the measurements, without 

resorting to finite-element analysis. 

The VFM relies on the Principle of Virtual Power (PVP), which is written with particular 

virtual fields. It represents in fact the weak form the local equations of equilibrium which are 

classically introduced in mechanics of deformable media. Assuming a quasi-static 

transformation (absence of acceleration forces) and assuming the absence of body forces, the 

PVP can be written as follows for any domain defined by its volume 𝑡𝑖 in the current 

configuration and by its external boundary 𝜕𝑡𝑖 

− ∫ 𝝈: (𝛁⨂𝒗∗)

𝑡𝑖

𝑑𝜔

⏟            
𝑊𝑖𝑛𝑡
∗

+ ∫ 𝒕𝑖 . 𝒗∗

𝜕𝑡𝑖

𝑑𝑠

⏟        
𝑊𝑒𝑥𝑡
∗

= 0   ,            (53) 

where 𝝈 is the Cauchy stress tensor, 𝒗∗ is a virtual velocity field defined across the volume of 

the solid, 𝛁⨂𝒗∗ is the gradient of 𝒗∗, 𝒕𝑖 are the tractions across the boundary (surface denoted 

𝜕𝑡𝑖), 𝑊𝑖𝑛𝑡
∗  is the virtual power of internal forces and 𝑊𝑒𝑥𝑡

∗  is the virtual power of external forces. 

A very important property is in fact that the equation above is satisfied for any 

kinematically admissible (KA) virtual field 𝒗∗. By definition, a KA virtual field must satisfy the 

boundary conditions of the actual velocity field in order to cancel the contribution of the 



resulting forces on the portion of the boundary along which actual displacement are prescribed. 

It must be pointed out that this requirement is not really necessary in all cases, but this point 

is not discussed here for the sake of simplicity. KA virtual fields are also assumed to be 𝓒0 

functions. 

 

The principle of virtual power (PVP) has been used for the identification of material 

properties since 1990 [40] through the virtual fields method (VFM), which is an inverse method 

based on the use of full-field deformation data. The first step of the VFM consists in introducing 

the constitutive equations. In the case of hyperelasticity and still neglecting acceleration forces, 

Eq. 53 becomes 

− ∫(𝐽𝑖)
−1
𝑭𝑖
𝜕𝜓

𝜕𝑬𝑖
(𝑭𝑖)

𝑇
: (𝛁⨂𝒗∗)

𝑡𝑖

𝑑𝑡𝑖 + ∫ 𝒕𝑖 . 𝒗∗

𝜕𝑡𝑖

𝑑𝑠 = 0  ,             (54) 

where 𝑭𝑖 and 𝑬𝑖 are respectively the Cauchy Green stretch and the Green Lagrange strain 

tensors derived from the measured displacement field 𝑼𝑖 at time step 𝑡𝑖, and 𝐽𝑖 = det (𝑭𝑖). This 

supposes implicitly that 𝑭𝑖 can be reconstructed across the whole domain using the measured 

displacement fields [41, 42]. 

Eq. 54 being satisfied for any KA virtual field, any new KA virtual field provides a new 

equation. The VFM relies on this property by writing this equation above with a set of KA virtual 

fields chosen a priori [5]. The number of virtual fields and their type depend on the nature of 

the strain energy function. Two different cases can be distinguished: 

1. the strain energy density function depends linearly on the sought parameters. Writing 

Eq. 54 with as many virtual fields as unknowns leads to a system of linear equations which 

provides the sought parameters after inversion. 

2. the strain energy density function involve nonlinear relations with respect to the 

constitutive parameters. In this case, identification must be performed by minimizing a cost-

function derived from Eq. 54. 

With our constitutive equation defined in Eq. 12, we obtain: 

− ∫ 𝜇1𝑩
𝑖: (𝛁⨂𝒗∗)

𝑡𝑖

𝑑𝑡𝑖  − ∫ 𝜇2 𝑒
𝛾(𝐼𝜅

𝑖−1)
2

 (𝜅𝑩𝑖 + (1 − 2𝜅)𝒎𝑖⨂𝒎𝑖): (𝛁⨂𝒗∗)

𝑡𝑖

𝑑𝑡𝑖 + 

− ∫ 𝑝𝑖𝛁. 𝒗∗

𝑡𝑖

𝑑𝑡𝑖 = ∫ 𝒕𝑖 . 𝒗∗

𝜕𝑡𝑖

𝑑𝑠 .              (55) 

 

Measurements usually provide the deformed configuration so it is convenient that this 

equation is written in the deformed configuration. 



The equation is valid for any virtual fields. As we are not interested in 𝑝𝑖, it has been 

shown that 𝒗∗ should be chosen such as: 𝛁. 𝒗∗ = 0 . 

Other rules for choosing appropriate virtual fields are very specific to each problem. A 

systematic choice was proposed for linear elastic constitutive equations [43, 44] and further 

extended to elastoplasticity [45] and hyperelasticity [46]. These virtual fields were optimized 

for minimizing noise effects in the case of linear elasticity. In the case of hyperelastic 

constitutive equations, noise in the data is less an issue as tissues undergo large strains. In 

that case, we have recently proposed virtual fields that would be appropriate for different types 

of loading (tension inflation test [47], bulge inflation test [48]). They permit to obtain equations 

such as 

𝜇1𝐴𝑖𝑗 + 𝜇2𝜅𝐵𝑖𝑗(𝛾) + 𝜇2(1 − 2𝜅)𝐶𝑖𝑗(𝛾, 𝜃) = 𝐿𝑖𝑗  ,              (56) 

where 𝐴𝑖𝑗, 𝐵𝑖𝑗, 𝐶𝑖𝑗, and 𝐿𝑖𝑗 can be evaluated directly from the experimental measurements. 

Index 𝑖 is for the different time steps for which deformations and loads are measured and index 

𝑗 is for different possible choices of virtual fields. 

Eq. 56 is an equation of the unknown material parameters for each choice of virtual 

field 𝑖 and at every stage 𝑗 of the test. The equation is linear in 𝜇1, 𝜅𝜇2 and 𝜇2(1 − 2𝜅) but it is 

nonlinear in 𝛾 and 𝜃. The solution is found by minimizing a cost function defined such as 

𝜋(𝛽) =∑∑(𝜇1𝐴𝑖𝑗 + 𝜇2𝜅𝐵𝑖𝑗(𝛾) + 𝜇2(1 − 2𝜅)𝐶𝑖𝑗(𝛾, 𝜃) − 𝐿𝑖𝑗)
2

𝑖𝑗

 .              (57) 

This cost function can be minimized by the simplex method or using a genetic algorithm 

in case of multiple minima.  

 In summary, the VFM is an efficient method for the identification of material properties 

but it requires specific conditions for its application, especially the availability of deformation 

gradients across the whole domain of interest. Such requirement is not needed by variational 

or sequential methods presented before.  

5.5.2 Applications to soft tissues 

Regarding applications to soft tissues, the VFM was first applied to the identification of 

uniform material properties in arterial walls [47]. Recent extension in the same field were 

proposed for the inverse characterization of regional, nonlinear, anisotropic properties of 

murine aortas with different types of lesions [49–51].  

The VFM was recently applied successfully in biaxial tension by Kazerooni et al [52] to 

identify the parameters of a Holzapfel model [53] for the skin. In ophtalmology, it was used by 

Girard et al [54], Zhang et al. [55] and further by [46] to identify material properties of the lamina 

cribosa, which is a connective tissue structure in the optical nerve head of great interest to 

researchers studying development and progression of glaucoma.  



There are no applications so far to pelvic biomechanics. However, recent developments 

in the VFM for elastography applications [56, 57] are promising for future applications in that 

field. 

5.6 Conclusions and future directions emerging field of pelvic biomechanics 

Inverse problems consist of using the actual result of some measurements to infer the 

values of the parameters that characterize the system such as unknown parameters of the 

material model, unknown elements of the boundary conditions or even sometimes the 

unknown initial geometry of the solid before the application of any mechanical action (loadfree 

configuration in finite deformations). There are many other situations in soft tissue 

biomechanics where inverse problems have to be resolved. For the sake of illustration, the 

current chapter was voluntarily restricted to two main situations: elastography of soft tissue 

biomechanics and nonstandard testing of soft tissues. First we presented in details the FEMU 

technique which is traditionally used to solve inverse problems. We then presented sequential 

method based on the principle of Kalman filters for dynamic problems. Finally, we presented 

in details the VFM and showed different cases of its possible application. 

For each approach, the main objective was to introduce the principles required to 

understand the theory of the methods. This is the first time that a book chapter presents these 

different methods under a unified framework. Specific applications of each method may be 

found in the referred journal publications. 

There are many directions which are the topic of intense research at the moment in 

soft tissue biomechanics and where inverse problems have to be resolved. Without wanting to 

be exhaustive, we can point the 3 following directions which may require research efforts in 

the inverse problem community in the near future and which may have a significant impact in 

reproduction biomechanics: 

1. Development of robust inversion techniques to estimate the viscoelastic properties 

from elastography imaging data. This is an ongoing area of research, as this is an inherently 

ill-conditioned numerical problem. Poor quality datasets with low signal-to-noise ratio tend to 

provide unreliable tissue property estimates, with different biases depending on the inversion 

algorithms applied. The viscoelastic properties of the pubovisceral muscle or other soft tissues 

of the pelvic system are likely to be important for organ support and probably affect progress 

in labor [58]. 

2. Development of robust inversion techniques to estimate the parameters of growth 

and remodeling models. The migration of cells through the fibrous network of the extracellular 

matrix is an integral part of many biological processes, including tissue morphogenesis, wound 

healing and cancer metastasis. For instance, the dramatic changes in the material behavior of 

the cervix over the normal period of gestation by considering the turnover of collagen from 

mature crosslinked fibers to immature loosely connected fibrils [59]. Accurate measurements 



of constitutive parameters for models aimed at predicting these effects will deserve significant 

research efforts in the future. 

3. representation of the data uncertainties. The most general (and simple) theory is 

obtained when using a probabilistic point of view, where the a priori information on the model 

parameters is represented by a probability distribution over the ‘model space.’ A great 

challenge of computational soft tissue biomechanics is to transform this a priori probability 

distribution into a range of uncertainty in the predictions. This may be important for treatment 

planning based on biomechanical deformable image registration for instance [60]. 
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