Ex 1 (similar to course 4 but we used B instead of Bd — we redo it here with Bd to illustrate compressible
hyperelasticity)

An element of an incompressible material (in the reference state, a cube
€ x € x £) 1s placed in a Cartesian xyz-coordinate system as given in the
figure below. Because of a load in the z-direction, the height of the element
is reduced to 2€/3. In the x-direction, the displacement is suppressed. The
element can expand freely in the y-direction. The deformation is assumed
to be homogeneous.

The material behaviour is described by a neo-Hookean relation, according
to:

o = —pl+GB*,

with o the stress matrix, p the hydrostatic pressure (to be determined), / the
unit matrix, (& the shear modulus and B the left Cauchy—Green deformation
martrix.
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Determine the compressive force F,, in the z-direction that 1s necessary to
realize this deformation.
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Ex 2.

A popular device in tissue engineering is a cell stretching device, using
membranes (see the figure). Cells are seeded on a circular membrane that
rests on a cylindrically shaped post. On applying a vacuum pressure, the
membrane is sucked into the gap between the post and the outer cylinder,
and in this way the area with the monolayer of cells is equally stretched
in the plane of the membrane (in this case the xy-plane). The layer can be
considered to be in a state of plane stress (0;; = 0y; = 0y; = 0).
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The deformation tensor for this state of strain can be given as:

with A the stretch ratio in the x- and y-directions and p the stretch ratio in
the z-direction. The material behaviour of the membrane and the monolayer
is modelled by:

o =x(J—1)+ GB*
with « the bulk modulus, G the shear modulus and J = det(F) and

B =B — luB)I.

Derive an expression for g as a function of A, k¥ and .
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https://en.wikipedia.org/wiki/Young%27s_modulus



Ex 3.

During a percutaneous angioplasty, the vessel wall is expanded by inflat-
ing a balloon. At a certain moment during inflation, the internal pressure
pi = 0.2 [MPa], and the internal radius R; of the vessel is increased by
[0%. Assume that the length of the balloon and the length of the ves-
sel wall in contact with the balloon do not change. Further, it is known
that the wall behaviour can be modelled according to Hooke’s law, with
Young’s modulus of the wall £ = 8 [MPa] and the Poisson’s ratio of the
wall v = 1/3. er
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(a) Calculate the strain in the circumferential direction at the inner side
of the wall.

(b) Calculate the strain in the e,-direction at point A at the inner side of
the vessel wall.

(¢) Calculate the stress in circumferential direction at point A.

(d) for course 6 -> Repeat the same exercise with a non compressible
NeoHookean model (parameter G) and a compressible NeoHookan model
(parameters G and K).
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