

Coupling continuum mechanics and biology to assist clinicians in the management of aortic aneurysms

SAINBIOSE SAnté INgéniérie BIOlogie Saint-Etienne U1059 · INSERM · SAINT-ETIENNE

de la santé et de la recherche médicale

TECHNISCHE UNIVERSITÄT WIEN Vienna | Austria

Prof Stéphane AVRIL

- PART I: Can continuum mechanics models predict human health?
- PART II: The need of combining data driven and continuum mechanics models in cardiovascular mechanobiology
- PART III: Continuum mechanics of tensional homeostasis down to the subcellular level

avril@emse.fr

Stéphane Avril - 2021 Fev 4 - LMS

PART I: Can continuum mechanics models predict human health

- PART II: The need of combining data driven and continuum mechanics models in cardiovascular mechanobiology
- PART III: Continuum mechanics of tensional homeostasis down to the subcellular level

Numerical simulation was commonplace in automotive and aeronautics industry

In any other industrial sector

X ✓

Testing is now done mostly with computer simulation

Standard test for safety and efficacy of new products is by trial and error

Continuum mechanics can predict health!! It even enables decisions everyday in healthcare combined with ROM and AI

2014: FDA allows marketing of HeartFlow vFFR-CT tool for optimal treatment of coronary stenosis

Gaus S, et al, JCCT 2013, 7(5):279-88.

2019: FEops HEARTguide in silico tool for planning transcatheter aortic valve implantation is CE-marked

El Faquir N, et al Int J Cardiov Img 2019

2013: Sensome

2014: Sim&Cure

2017: Predisurge

Une école de l'IMT

SAINBIOSE SAnté INgéniérie BIOlogie Saint-Etienne UI059 · INSERM · SAINT-ETIENNE

Institut national de la santé et de la recherche médicale

PrediSurge

My own experience on aortic aneurysms is the result of strong and historical collaborations with clinicians

Une école de l'IMT

Stéphane Avril - 2021 Fev 4 - LMS

avril@emse.fr

7

Aneurysms and Dissections of the aorta

== Devastating complications!

Stéphane Avril - 2021 Fev 4 - LMS

avril@emse.fr

PrediSurge **Planification / sizing of fenestrated** stent grafts in EVAR procedures

() PrediSurge

Simulation of stent-graft deployment

Clinically validated for FEVAR Zenith® Cook Medical

avril@emse.fr

Stéphane Avril - 2021 Fev 4 - LMS

- Computational models using continuum mechanics are now used commonly in healthcare for developing medical devices
- Major challenges still need to be overcome to go beyond the virtual patient and establish digital twins of oneself integrating <u>time evolutions</u>.

Challenges are related to **biology**.

PART I: Can continuum mechanics models predict human health

PART II: The need of combining data driven and continuum mechanics models in cardiovascular mechanobiology

PART III: From computer models to digital twins enabling precision medicine

Aneurysms and Dissections of the aorta

Challenge: decision making to avoid aortic dissections!

Stéphane Avril - 2021 Fev 4 - LMS

Continuum mechanics approach

ATAAs are triggered by local proteolytic injury, which induce adaptation in the ascending thoracic aorta

Guzzardi et al, JACC (2014), Condemi et al, IEEE TBME (2019)

Stéphane Avril - 2021 Fev 4 - LMS

Une école de l'IMT

Layer-specific constitutive model

Strain-energy function based on the constrained mixture theory

$$W = \varrho_t^{\mathbf{e}} \left(\overline{W}^{\mathbf{e}}(\overline{I}_1^{\mathbf{e}}) + U(J_{\mathrm{el}}^{\mathbf{e}}) \right) + \sum_{j=1}^n \varrho_t^{\mathbf{c}_j} W^{\mathbf{c}_j}(I_4^{\mathbf{c}_j}) + \varrho_t^{\mathbf{m}} W^{\mathbf{m}}(I_4^{\mathbf{m}})$$

Humphrey & Rajagopal, Math Models Methods Appl Sci. (2002) ; Bellini et al, ABME (2014), Mousavi & Avril, BMMB (2017)

	avril@emse.fr	Stéphane Avril - 2021 Fev 4 - LMS	MINES Saint-Étienne Une école de l'IMT
--	---------------	-----------------------------------	--

Growth and Remodeling in homogenized constrained mixture

Collagen mass production

$$\dot{\varrho}^{j}(t) = \varrho^{j}(t)k_{\sigma}^{j}\frac{\sigma^{j}(t) - \sigma_{h}^{j}}{\sigma_{h}^{j}} + \dot{\xi}^{j}(t)$$

avril@emse.fr

Cyron et al, BMBB (2016), Braeu et al, BMMB (2017), Laubrie et al, IJNMBE (2019)

Continuum mechanics approach

Elastic and inelastic decomposition of deformation gradient

Continuum mechanics approach

Growth and remodeling of a two-layer patient-specific human ATAAs due to elastin loss

$$W = \varrho_t^{\mathbf{e}} \left(\overline{W}^{\mathbf{e}}(\overline{I}_1^{\mathbf{e}}) + U(J_{\mathrm{el}}^{\mathbf{e}}) \right) + \sum_{j=1}^n \varrho_t^{\mathbf{c}_j} W^{\mathbf{c}_j}(I_4^{\mathbf{c}_j}) + \varrho_t^{\mathbf{m}} W^{\mathbf{m}}(I_4^{\mathbf{m}})$$

Saint-Étienne

Patient-specific predictions

Growth and remodeling of a two–layer patient– specific human ATAAs due to elastin loss

Small growth parameter

Difficulties related to the inter-individual variability of aortic dissections => <u>uncertain</u> boundary and initial conditions

Stéphane Avril - 2021 Fev 4 - LMS

Solution: combining statistical models and the continuum mechanics approach

a1) Patient-specific electromechanical computer simulations

a2) A strain-based parameter
 based on myofiber mechanics
 simulations can help to predict
 CRT therapy response

b2) Unsupervised machine learning can integrate clinical data to predict outcomes and categorize patients based on similarity

b1) Automatic cardiac MR segmentation using a deep learning neural network

Learn boundary conditions, material properties and initial conditions from image analysis

Une école de l'IMT

Learn boundary conditions, material properties and initial conditions from image analysis

MINES

Saint-Étienne

Al model of rupture criterion...

He et al. BMMB - 2020 (Just accepted!)

Sample 4

26

Stéphane Avril - 2021 Fev 4 - LMS

Defining patient subgroups depending on genetic factors

$$\dot{\varrho}^{j}(t) = \varrho^{j}(t)k_{\sigma}^{j}\frac{\sigma^{j}(t) - \chi * \sigma_{h}^{j}}{\chi * \sigma_{h}^{j}} + \dot{\xi}^{j}(t)$$

Tangent stiffness after 10 years

Une école de l'IMT

Include SMC tensional state into the computational models of aneurysm progression

Towards clinical applications – drugs affecting SMCs locally

Pressing need to decipher the link between cytoskeletal SMC mechanics and mechanoregulation in aortic aneurysms

PART I: Can continuum mechanics models predict human health

PART II: The need of combining data driven and continuum mechanics models in cardiovascular mechanobiology

PART III: Continuum mechanics of tensional homeostasis down to the subcellular level

Challenges posed by molecular and cellular biology

Monitoring mechanobiology in vivo

Aortic SMCs from human primary culture (AoSMC, Lonza), passages 5-7, cultured in a differenciating medium (SmBM, Lonza)

- Fluorescent microscopy + DIC : track the displacement of fluorescent microbeads
- **Cell unbinding method (with trypsin)** : assess the homeostatic state of single SMCs

Aneurysmal SMCs tend to apply larger traction forces

Une école de l'IMT

Finite-Element model of the SMC

Stress fibers:

- $E_{SF} = 50$ MPa
- Truss-like elements, diameter = $0.2 \ \mu m$

Cell membrane and nuclear envelope:

- Neo-Hookean, shear modulus = 600 kPa
- Poisson's ratio = 0.49

Cytoplasm and nucleus:

- Neo-Hookean, shear modulus = 100 Pa
- Poisson's ratio = 0.49

Substrate:

• Linear elastic, $E = \{4, 8, 12, 25\}$ kPa and $\nu = 0.45$

Gouget et al., BMMB (2016)

Simulating the cytoskeleton tension

$$\Delta T = 0.132$$

 $\alpha = 0.034$
 $\xi = 0.68$
 $E'_{SF} = -19.9$ MPa

Stéphane Avril - 2021 Fev 4 - LMS

AFM nanoindentation of the cytoskeleton

Une école de l'IMT

Linking cytoskeletal tension and tissue properties

SUMMARY AND FUTURE WORK

There is a variety of smooth muscle cells with stronger ones responsible for tissue maintenance

Cytoskeletal forces are linked to the tension of the extracellular matrix and to its stiffness

Need to understand the internal mechanoregulation of the cell.

Need to monitor the biological counterpart

avril@emse.fr

38

Stéphane Avril - 2021 Fev 4 - LMS

Une école de l'IMT

Collaborative initiatives

https://meditate-project.eu/

European Heart Journal (2020) 0, 1–11 European Society doi:10.1093/eurheart/eart/eaa159

CLINICAL REVIEW Frontiers in cardiovascular medicine

The 'Digital Twin' to enable the vision of precision cardiology

Jorge Corral-Acero¹, Francesca Margara ², Maciej Marciniak ³, Cristobal Rodero ³, Filip Loncaric ⁴, Yingjing Feng ^{5,6}, Andrew Gilbert ⁷, Joao F. Fernandes ³, Hassaan A. Bukhari^{6,8}, Ali Wajdan⁹, Manuel Villegas Martinez⁹, Mariana Sousa Santos¹⁰, Mehrdad Shamohammdi¹¹, Hongxing Luo ¹¹, Philip Westphal¹², Paul Leeson ¹³, Paolo DiAchille ¹⁴, Viatcheslav Gurev ¹⁴, Manuel Mayr ¹⁵, Liesbet Geris ¹⁶, Pras Pathmanathan¹⁷, Tina Morrison¹⁷, Richard Cornelussen¹², First Prinzen¹¹, Tammo Delhaas ¹¹, Ada Doltra ⁴, Marta Sitges ^{4,18}, Edward J. Vigmond ^{5,6}, Ernesto Zacur ¹, Vicente Grau ⁶¹, Blanca Rodriguez ², Espen W. Remme⁹, Steven Niederer ³, Peter Mortier¹⁰, Kristin McLeod ⁷, Mark Potse ^{5,6,19}, Esther Pueyo ^{8,20}, Alfonso Bueno-Orovio ⁶, and Pablo Lamata ³*

npj | Digital Medicine

Integrating machine learning and multiscale modeling perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences

Mark Alber¹, Adrian Buganza Tepole², William R. Cannon ¹⁰, Suvranu De⁴, Salvador Dura-Bernal⁵, Krishna Garikipati⁶, George Karniadakis⁷, William W. Lytton⁵, Paris Perdikaris⁸, Linda Petzold⁹ and Ellen Kuhl ¹⁰

Systems pharmacology-based integration of human and mouse data for drug repurposing to treat thoracic aneurysms

JCI insight

Α

D

Acknowledgements

- Olfa Trabelsi
- Aaron Romo
- Jin Kim
- Pierre Badel
- **Frances Davis**
- Victor Acosta
- Jamal Mousavi
- Solmaz Farzeneh
- Francesca Condemi
- **Cristina Cavinato**
- Jérôme Molimard
- **Baptiste Pierrat**
- Laurent Navarro
- Joan Laubrie
- **Claudie Petit**
- **Miguel Aguirre**
- Ali Kharkaneh
- Ataollah Ghavamian
- **Tristan Maguart**

Ambroise Duprey

- Jean-Pierre Favre
- Jean-Noël Albertini
- Salvatore Campisi
- **Magalie Viallon**
- **Pierre Croisille**

- Chiara Bellini
- Matthew Bersi
- Jay Humphrey
- Jia Lu
- George Karniadakis
- Katia Genovese

erc

European Research Council

Funding: **ERC-2014-CoG BIOLOCHANICS**

Stéphane Avril - 2021 Fev 4 - LMS