

Mechanics and mechanobiology of the wall of the thoracic aorta

Stéphane AVRIL

INSPIRING INNOVATION

a local dilation of the aorta due to aortic wall weakening

ascending normal aorta aneurysm

aortic descendin arch aorta aneurysm aneurysm abdominal aorta aneurysm

Various aortic aneurysms

SOCIETAL AND MEDICAL ISSUES

Thoracic aortic aneurysms per year: 15000 people in the US, +30000 people in Europe with a male preponderance. 50-60% involves the ascending aorta.

How can we predict the aneurysm's rupture?

Romo et al. Journal of Biomechanics - 2014.

I) Aneurysm excised specimen.

Circumferential

II) Media and Adventitia.

Axial

Adventitia & Media

Full-field measurements

Undeformed

Local stress reconstruction

 $div(\boldsymbol{\sigma}) + f = 0$

 $[A] \cdot [\boldsymbol{\sigma}] = [B]$

Local analysis of rupture

Local thickness evolution (mm)

Rupture picture and area of interest

Mesh

MODMAD - 2015/11/09 - Stéphane AVRIL

MINES Saint-Étienne

A. Romo, S. Avril, P. Badel, A Duprey, J.P. Favre. In vitro analysis of localized aneurism rupture. Journal of Biomechanics -2014, vol 47, N°3, pp 607-616.

Local damage initiation

MODMAD - 2015/11/09 - Stéphane AVRIL

Institut Mines-Télécom

Rupture modes

Ultimate stress values

 $\sigma^{Rup} = (\sigma \cdot \overrightarrow{q_{\theta}}) \cdot \overrightarrow{q_{\theta}}$

Fit a strain energy density function at every point

Strain energy function:

$$w = \frac{\mu_1}{2} \left(I_1 - \ln \left(I_2 \right) - 2 \right) + \frac{\mu_2}{4\gamma} \left(e^{\gamma \left(I_k - 1 \right)^2} - 1 \right)$$

Identification of a hyperelastic constitutive model

Davis et al. Biomechanics and Modeling in Mechanobiology - 2015.

Fig. 5 Distribution of the identified material parameters over the ATAA. a μ_1 (N/mm). b μ_2 (N/mm). c γ . d κ . e θ (°)

Fig. 6 Comparison of the geometry constructed from the DIC point clouds (*blue*) and those predicted from the forward finite element analysis using the pointwise material properties (*yellow*) at a 15 kPa, b 30

kPa, c 75 kPa, and d 117 kPa. Note that the geometry is almost a perfect match leading the *blue* and *yellow lines* to overlap

Application to computational retrospective predictions Trabelsi et al. Journal of Biomechanics - 2015.

Image acquisition and 3D reconstruction

5 patients: Dynamic preoperative scanners during cardiac cycle (~ 0.92 s) = 10 phases. CT: (resolution 512x512, slice thickness of 0.5 mm)

Saint-Étienne

16

MODMAD - 2015/11/09 - Stéphane AVRIL

Saint-Étienne

Identification of hyperelastic parameters by calibrating the volume changes

Trabelsi et al. Journal of Biomechanics - 2015.

Patient 1: Variation between predicted and CT systolic and mid-cycle volumes (mm3)

D2

MODMAD - 2015/11/09 - Stéphane AVRIL

MINES Saint-Étienne

Stress analysis and rupture risk estimation

Future work: predicting and stopping aneurism growth

MECHANOBIOLOGY OF THE THORACIC AORTA

PATIENTS WITH ATAA HAVE A DISORGANIZED MEDIA WITH FRAGMENTED ELASTIN AND PRESENCE OF VACUOLES

FUNDAMENTAL STUDY USING A MOUSE « MODEL »

classical

panoramic

PANORAMIC DIGITAL IMAGE CORRELATION

CONSTITUTIVE MODEL

MODMAD - 2015/11/09 - Stéphane AVRIL

Institut Mines-Télécom

PARAMETERS TO BE IDENTIFIED

Strain energy functions:

$$W = \phi^{\mathsf{e}} W^{\mathsf{e}}(\mathbf{F}^{\mathsf{e}}) + \phi^{\mathsf{m}} W^{\mathsf{m}}(\lambda^{\mathsf{m}}) + \sum_{j=1}^{4} \phi^{\mathsf{c}_{j}} W^{\mathsf{c}_{j}}(\lambda^{\mathsf{c}_{j}})$$

$$W^{\mathrm{e}}(\mathrm{F}^{\mathrm{e}}) = \frac{c^{\mathrm{e}}}{2} \left[\mathrm{tr}\left((\mathrm{F}^{\mathrm{e}})^{\mathrm{T}} \mathrm{F}^{\mathrm{e}} \right) - 3 \right]$$

$$W^{\rm m}(\lambda^{\rm m}) = \frac{c_2^{\rm m}}{4c_3^{\rm m}} \left[e^{c_3^{\rm m} \left((\lambda^{\rm m})^2 - 1 \right)^2} - 1 \right]$$

$$W^{c}(\lambda^{c_{j}}) = \frac{c_{2}^{c}}{4c_{3}^{c}} \left[e^{c_{3}^{c} \left((\lambda^{c_{j}})^{2} - 1 \right)^{2}} - 1 \right]$$

EXAMPLE DE RESULTS

EXAMPLE DE RESULTS

EXAMPLE DE RESULTS

CONCLUSIONS - PERSPECTIVES

We can now begin to establish a correlation between regional mechanical properties and the underlying biological expression in murine models of aneurysms.

ACKNOWLEDGEMENT

