

SAINBIOSE SAnté INgéniérie BIOlogie Saint-Etienne

U1059 • INSERM • SAINT-ETIENNE

Institut national de la santé et de la recherche médicale

Mechanobiology of aortic aneurysms: novel approach using finite-element modeling and multimodality imaging

Prof. Stéphane AVRIL

Numerical simulation in the OR for vascular surgery?

www.predisurge.com

Basis of arterial biomechanics and mechanobiology

Stéphane Avril - 2018 March 14 - Strasbourg Icube

Schematic representation of aortic structure

Humphrey JD (2002) Cardiovascular Solid Mechanics: Cells, Tissues, and Organs, Springer-Verlag, NY

Functional biomechanical behavior

Material characterization and constitutive modeling

$$W = C_{10} \left(\overline{I}_1 - 3 \right) + \frac{1}{D} \left(\frac{J^2 - 1}{2} - \ln J \right) + \frac{k_1}{2k_2} \sum_{\alpha = 1}^{N} \left\{ \exp \left[k_2 \left(\overline{E}_{\alpha} \right)^2 \right] - 1 \right\}$$

Prediction of risk of rupture and dissection

Context

- More and more aneurysms are detected at an early stage (incidence >8% for males >65 years old).
- An intervention is recommended if the aneurysm grows more >1cm/year or it is >5.5cm. This represents >90000 interventions per year in Europe and USA

BUT:

- 25% aneurysms <5.5cm rupture : 15000 deaths^{**}!
- 60% of aneurysms >5.5 cm never experience rupture!
- In summary: very high rate of inappropriate decisions and misprogramed surgical interventions!!

** Pape et al, Aortic Diameter ≥5.5 cm Is Not a Good Predictor of Type A Aortic Dissection Observations From the International Registry of Acute Aortic Dissection (IRAD), Circulation, 2007

Challenges raised by rupture prediction

O. Trabelsi, et al, Patient specific stress and rupture analysis of ascending thoracic aneurysms, J. Biomech. (2015).
G. Martufi, et al, Is There a Role for Biomechanical Engineering in Helping to Elucidate the Risk Profile of the Thoracic Aorta?, Ann. Thorac. Surg. 101 (2016) 390–398.
S. Pasta et al., Constitutive modeling of ascending thoracic aortic aneurysms using microstructural parameters, Med. Eng. Phys. 38 (2016) 121–130.

Peak Wall Stress
Index of public for the Thoracic Aorta?, Ann. Thorac. Surg. 101 (2016)

Finite-element modeling

Strength

Collection of the samples

10 11 12 13

R

18

Romo et al. Journal of Biomechanics -2014.

Full-field measurements using sDIC

Undeformed

Deformed

Rupture profiles

Rupture risk estimation

Correlation between the stretch-based rupture risk and the tangent elastic modulus

Duprey A, et al. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomaterialia 2016.

Measurement of aortic DISTENSIBILITY

Aortic wall - 3D reconstruction from gated CT

Dynamic preoperative scanners during cardiac cycle (~ 0.92 s) = 10 phases. CT: (resolution 512x512, slice thickness of 0.5 mm)

Saint-Étienne

Methodology for non invasive reconstruction of in vivo stiffness distribution

Stiffness distributions for 10 patients

Correlation between stretch and membrane stiffness

In vivo

In vitro

Stéphane Avril - 2018 March 14 - Strasbourg Icube

Two examples of soft and stiff ascending aorta

Stéphane Avril - 2018 March 14 - Strasbourg Icube

- 2 ways of defining rupture:
 - PWS but unknown patient-specific strength
 - γ_{stretch} correlated with in vivo circumferential stiffness
- Higher distensibility \Rightarrow less risk because the aneurysm can more easily withstand volume variation

Martin et al., Acta Biomater. 2013, Duprey et al., Acta Biomater. 2016.

Role of hemodynamics in rupture risk

29

RESULTS- Flow_{eccentricity} calculated from the CFD studies against the 4D MRI results

RESULTS- OSI and TAWSS

RESULTS- TAWSS versus wall properties

Stéphane Avril - 2018 March 14 - Strasbourg Icube

Saint-Étienne

avril@emse.fr

Understanding aneurysm growth using mechanobiology and multimodal imaging

Altered mechanics induce biological responses, including gene expression, protein activation and cell phenotype

Stéphane Avril - 2018 March 14 - Strasbourg Icube

Study Design

MINES Saint-Étienne

The pDIC technique

1

pDIC measurements

Bulk strain measurement and identification

Optical Coherence Tomography (OCT) data are available from the experiments

Digital volume correlation

Full-Field Material Parameter Estimation vs thickness distribution

Full-Field Material Parameter Estimation vs local stress

Correlation with tissue µstructure

Predictions of vascular adaptation and disease development

Cyron et al, BMMB, 2016, Mousavi et al, IJNMBE, 2018

Vision

- Our vision is that the evolution of the strength and of the wall stress of the aorta during the growth of an aneurysm can be predicted on a patient-specific basis by a <u>computational model</u>.
- On the basis of an MRI examination, our computational model, accessible by surgeons as an interactive intuitive user interface, would permit to predict when an aortic aneurysm is going to reach a critical size or a critical rupture risk.

Acknowledgements

- Olfa Trabelsi
- Aaron Romo
- Jin Kim
- Pierre Badel
- Frances Davis
- Victor Acosta
- Jamal Mousavi
- Solmaz Farzeneh
- Francesca Condemi
- Cristina Cavinato
- Jérôme Molimard
- Baptiste Pierrat
- Miguel Angel Gutierrez
- Oscar Alberto Mendoza

- Ambroise Duprey
- Jean-Pierre Favre
- Jean-Noël Albertini
- Salvatore Campisi
- Magalie Viallon
- Pierre Croisille

- Chiara Bellini
- Matthew Bersi
- Jay Humphrey
- Katia Genovese

Funding: ERC-2014-CoG BIOLOCHANICS

European Research Council

Established by the European Commission

