

SAINBIOSE SAnté INgéniérie BIOlogie Saint-Etienne

U1059 • INSERM • SAINT-ETIENNE

Institut national de la santé et de la recherche médicale

Rupture risk assessment of thoracic aortic aneurisms using advanced experimental and computational mechanics

Prof. Stéphane AVRIL

Computational mechanics in the OR for vascular surgery?

www.predisurge.com

Arterial biomechanics and mechanobiology – Introduction

Stéphane Avril - 2018 May 29 - Santiago de Chile

Schematic representation of aortic structure

Functional biomechanical behavior

Material characterization and constitutive modeling

$$W = C_{10} \left(\overline{I}_1 - 3 \right) + \frac{1}{D} \left(\frac{J^2 - 1}{2} - \ln J \right) + \frac{k_1}{2k_2} \sum_{\alpha = 1}^{N} \left\{ \exp \left[k_2 \left(\overline{E}_{\alpha} \right)^2 \right] - 1 \right\}$$

MEASUREMENT OF THE RESPONSE USING DIGITAL IMAGE CORRELATION

classical

Badel et al. CMBBE, 15, p 37-48, 2012.

panoramic

Genovese. Optics Lasers Eng, 47, p 995-1008, 2009.

avril@emse.fr

Bulge inflation test

Saint-Étienne

Prediction of risk of rupture and dissection

Context

- More and more aneurysms are detected at an early stage (incidence >8% for males >65 years old).
- An intervention is recommended if the aneurysm grows more >1cm/year or it is >5.5cm. This represents >90000 interventions per year in Europe and USA

BUT:

- 25% aneurysms <5.5cm rupture : 15000 deaths^{**}!
- 60% of aneurysms >5.5 cm never experience rupture!
- In summary: very high rate of inappropriate decisions and misprogramed surgical interventions!!

** Pape et al, Aortic Diameter ≥5.5 cm Is Not a Good Predictor of Type A Aortic Dissection Observations From the International Registry of Acute Aortic Dissection (IRAD), Circulation, 2007

Saint-Étienne

Altered mechanics induce biological responses, including gene expression, protein activation and cell phenotype

Stéphane Avril - 2018 May 29 - Santiago de Chile

avril@emse.fr

Study Design

MINES Saint-Étienne

Stéphane Avril - 2018 May 29 - Santiago de Chile

pDIC measurements

Measurement of bulk deformation fields by Digital Volume Correlation on OCT images

Stéphane Avril - 2018 May 29 - Santiago de Chile

DCT Lasel

 \bigcirc

OCT-DVC validation – Rigid Motion

Stéphane Avril - 2018 May 29 - Santiago de Chile

Stéphane Avril - 2018 May 29 - Santiago de Chile

28

 $W^{c}(\lambda^{c_{j}}) = \frac{c_{2}^{c}}{4c_{3}^{c}} \left[e^{c_{3}^{c} \left((\lambda^{c_{j}})^{2} - 1 \right)^{2}} - 1 \right]$

 $W^{\rm m}(\lambda^{\rm m}) = \frac{c_2^{\rm m}}{4c_3^{\rm m}} \left[e^{c_3^{\rm m} \left((\lambda^{\rm m})^2 - 1 \right)^2} - 1 \right]$

 $W^{\rm e}(\mathbf{F}^{\rm e}) = \frac{c^{\rm e}}{2} \left[{\rm tr} \left((\mathbf{F}^{\rm e})^{\rm T} \mathbf{F}^{\rm e} \right) - 3 \right]$

$$W = \phi^{\mathsf{e}} W^{\mathsf{e}}(\mathbf{F}^{\mathsf{e}}) + \phi^{\mathsf{m}} W^{\mathsf{m}}(\lambda^{\mathsf{m}}) + \sum_{j=1} \phi^{\mathsf{c}_j} W^{\mathsf{m}}(\lambda^{\mathsf{m}}) + \sum_{j=1} \phi^{\mathsf{c}_j} W^{\mathsf{m}}(\lambda^{\mathsf{m}}) + \sum_{j=1} \phi^{\mathsf{m}} W^{\mathsf{m}}(\lambda^{\mathsf{m}})$$

$$W = \phi^{\mathrm{e}} W^{\mathrm{e}}(\mathbf{F}^{\mathrm{e}}) + \phi^{\mathrm{m}} W^{\mathrm{m}}(\lambda^{\mathrm{m}}) + \sum_{j=1}^{4} \phi^{\mathrm{c}_{j}} W^{\mathrm{c}_{j}}(\lambda^{\mathrm{c}_{j}})$$

Strain energy functions:

CONSTITUTIVE MODEL

Bellini, et al., Ann. Biomed. Eng., 42(3), pp. 488-502, 2014

CONSTITUTIVE MODEL

Bellini, et al., Ann. Biomed. Eng., **42**(3), pp. 488–502, 2014

ay 29 - Santiago de Chile

PARAMETERS TO BE IDENTIFIED

$$W = \phi^{\mathsf{e}} W^{\mathsf{e}}(\mathbf{F}^{\mathsf{e}}) + \phi^{\mathsf{m}} W^{\mathsf{m}}(\lambda^{\mathsf{m}}) + \sum_{j=1}^{4} \phi^{\mathsf{c}_{j}} W^{\mathsf{c}_{j}}(\lambda^{\mathsf{c}_{j}})$$

$$W^{e}(\mathbf{F}^{e}) = \frac{C^{e}}{2} \left[tr \left((\mathbf{F}^{e})^{T} \mathbf{F}^{e} \right) - 3 \right]$$

$$W^{\mathrm{m}}(\lambda^{\mathrm{m}}) = \frac{c_{2}^{\mathrm{m}}}{4c_{3}^{\mathrm{m}}} \left[\underbrace{c_{3}^{\mathrm{m}}}_{(\lambda^{\mathrm{m}})^{2}-1}^{(\lambda^{\mathrm{m}})^{2}} - 1 \right]$$

$$W^{c}(\lambda^{c_{j}}) = \frac{c_{2}^{c}}{4c_{3}^{c}} \left[\underbrace{c_{3}^{c}}_{\lambda^{c_{j}}}(\lambda^{c_{j}})^{2} - 1 \right]$$

Stéphane Avril - 2018 May 29 - Santiago de Chile

Inverse approach – traditional approach

Stéphane Avril - 2018 May 29 - Santiago de Chile

Saint-Étienne

resolution using the BFGS algorithm

Inverse approach – FEMU approach Oberai et al., Inverse problems, 19, Set of initialization pp. 297-313, 2003 materials properties **Resolution of** forward problem Deviation between measurements predictions and $J(\mu) = \|T(u) - T(u^{exp})\|^2 + \frac{\alpha}{2}B(\mu)$ measurements

Stéphane Avril - 2018 May 29 - Santiago de Chile

MINES

Saint-Étienne

avril@emse.fr

Inverse approach – FEMU approach

Identification of material properties

- 1. Use a gradient based method (steepest descent or BFGS)
- Need to derive the gradient of J with respect to µ at each iteration. With the adjoint method, this requires the resolution of 2 forward problems
- 3. Very unstable with hyperelastic models: many risks that the forward problems have a poor convergence

Alternative inverse approach: the virtual fields method

36

Saint-Étienne

Full-field stress reconstruction

Minimization of the equilibrium gap using the principle of virtual power

minimization
$$J = \sum_{p \ \lambda} \left[\underbrace{-\int_{\omega(t)} \underline{\underline{\sigma}}: \left(\underline{\nabla} \otimes \underline{\underline{\xi}}^*\right) d\omega}_{P_{int}^*} + \underbrace{\oint_{\partial \omega(t)} \underline{\underline{T}}: \underline{\underline{\xi}}^* ds}_{P_{ext}^*} \right]^2$$

Bersi et al., J Biomech Eng, 2016

MINES Saint-Étienne

How to obtain 3D full-field strain measurements? Set of Full-field strain materials measurements properties 3D 3D estimation of stresses surface ??? Posterior Anterior MINES Saint-Étienne avril@emse.fr Stéphane Avril - 2018 May 29 - Santiago de Chile

Measurement of bulk deformation fields by Digital Volume Correlation on OCT images

Stéphane Avril - 2018 May 29 - Santiago de Chile

avril@emse.fr

DCT Lasel

 \bigcirc

Derivation of stress tensor using layer specific constitutive behavior

Stéphane Avril - 2018 May 29 - Santiago de Chile

Minimizing the equilibrium gap

minimization
$$J = \sum_{p \ \lambda} \left[\underbrace{-\int_{\omega(t)} \underline{\sigma} : \left(\underline{\nabla} \otimes \underline{\xi}^*\right) d\omega}_{P_{int}^*} + \underbrace{\oint_{\partial \omega(t)} \underline{T} : \underline{\xi}^* ds}_{P_{ext}^*} \right]^2$$

Bersi et al., J Biomech Eng, 2016

MINES

Saint-Étienne

Similar to material fitting at every position

Crosses represent external virtual work for every pressure and axial stretch Solid lines represent internal virtual work The goodness of fit is evaluated with the R² value

Summary of the inverse approach

Saint-Étienne

Results - Highlights

Stéphane Avril - 2018 May 29 - Santiago de Chile

avril@emse.fr

Full-Field Material Parameter Estimation vs thickness distribution

Full-Field Material Parameter Estimation vs local stress

Correlation with tissue µstructure

Our vision is that the evolution of the strength and of the wall stress of the aorta during the growth of an aneurysm can be predicted on a patient-specific basis by a <u>computational model</u>.

Joan Laubrie

Some other projects in vascular mechanobiology

Stéphane Avril - 2018 May 29 - Santiago de Chile

avril@emse.fr

Non invasive reconstruction of in vivo stiffness distribution

Gated CT scan

Stiffness map

Stéphane Avril - 2018 March 14 - Strasbourg Icube

Correlation with flow descriptors

Traction force microscopy of vascular smooth muscle cells

Stéphane Avril - 2018 May 29 - Santiago de Chile

Acknowledgements

- Olfa Trabelsi
- Aaron Romo
- Jin Kim
- Pierre Badel
- Frances Davis
- Victor Acosta
- Jamal Mousavi
- Solmaz Farzeneh
- Francesca Condemi
- Cristina Cavinato
- Jérôme Molimard
- Baptiste Pierrat
- Joan Laubrie
- Claudie Petit

- Ambroise Duprey
- Jean-Pierre Favre
- Jean-Noël Albertini
- Salvatore Campisi
- Magalie Viallon
- Pierre Croisille

- Chiara Bellini
- Matthew Bersi
- Jay Humphrey
- Katia Genovese

Funding: ERC-2014-CoG BIOLOCHANICS

European Research Council Established by the European Commission

MINES Saint-Étienne