





1

# 1. Identification of 3D heterogeneous modulus distribution with the virtual fields method

Dr. Stéphane AVRIL, Prof. Jonathan M. Huntley, Prof. Fabrice PIERRON and Dr. Derek D. Steele

2. In-vivo measurement of blood viscosity and and wall stiffness in the carotid using PC-MRI

Dr. Stéphane AVRIL, Prof. Jonathan M. Huntley, and Dr. Rhodri Cusack







## Identification of 3D heterogeneous modulus distribution with the virtual fields method

Dr. Stéphane AVRIL, Prof. Jonathan M. Huntley, Prof. Fabrice PIERRON and Dr. Derek D. Steele



## **Principle of elastography**







#### (Manduca et al., 2001)



## **Issues to solve in static**





- Ill posed inverse problems with boundary conditions ;
- $E=\sigma/\epsilon$  is not correct locally because 3D problem ;
- Large difference between hydrostatic and deviatoric strains because of quasi incompressibility.
- Postprocessing time must be low for real time visualization ;
- Real human tissues have a nonlinear behavior ;

- Measurement issues in medical imaging: noise, synchronisation with loading, magnetic requirements with MRI...



### **Measurement issues**





#### Breast:





## Canine liver:



(Ophir et al., 2001)





## The virtual fields method: principle









## **Discretization of the solid**





7







$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \\ \sigma_{yz} \\ \sigma_{yz} \end{cases} = \begin{bmatrix} 1 - \nu \\ (1 + \nu)(1 - 2\nu) \end{bmatrix} \begin{bmatrix} 1 & \frac{\nu}{1 - \nu} & \frac{\nu}{1 - \nu} & 0 & 0 & 0 \\ \frac{\nu}{1 - \nu} & 1 & \frac{\nu}{1 - \nu} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1 - 2\nu}{2(1 - \nu)} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1 - 2\nu}{2(1 - \nu)} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1 - 2\nu}{2(1 - \nu)} \end{bmatrix} \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{xz} \\ \varepsilon_{yz} \\ \varepsilon_{yz} \end{cases}$$
  
**Constant across**  
the solid  
Piecewise constant

$$\sum_{n} \sum_{V_{n}} \sum_{V_{n$$



## **Choice of virtual fields**











## **Construction of a N x 3N<sub>n</sub> linear system of equations**









## **Physical interpretation in 1D**





| $(u_2 - u_1)/L_1$ | $(u_3 - u_2)/L_2$                                 | 0                                                 | 0                 |   | E <sub>1</sub> |   | 0  |
|-------------------|---------------------------------------------------|---------------------------------------------------|-------------------|---|----------------|---|----|
| 0                 | -(u <sub>3</sub> -u <sub>2</sub> )/L <sub>2</sub> | $(u_4 - u_3)/L_3$                                 | 0                 | - | E <sub>2</sub> | = | 0  |
| 0                 | 0                                                 | -(u <sub>4</sub> -u <sub>3</sub> )/L <sub>3</sub> | $(u_5 - u_4)/L_5$ | - | $E_4$          |   | 10 |



## **Numerical resolution**





- More equations than unknowns:  $3N_n > N$
- Large sparse system: >100000 unknowns
- Resolution in the least square sense
- Iterative resolution using the conjugate gradient method.

- Limited number of iterations of the conjugate gradient method: fast and regularizing.







## **Experimental arrangements**



Cube with a stiff inclusion buried in it.

Silicone gel materials mimicking human tissue containing a tumour.





## **MRI: RF pulse**





**Figure 2.** Displacement encoding, stimulated echo pulse sequence waveforms. RF = radio frequency,  $G_d$  = displacement encoding gradient, and  $G_{ro}$  = read-out ( $x_1$ ),  $G_{pe}$  = phase-encode ( $x_2$ ) and  $G_{sl}$  = slice ( $x_3$ ) directed gradient waveforms.  $T_M$  is the mixing time,  $T_E$  is the echo time and  $\tau$  is the duration of the displacement encoding gradient. Note that the displacement encoding gradient may be applied to any of the directional waveforms.







### 



## Scanning tomographic method: → 3D bulk measurements!!





## **Strain fields**

















#### **Strain fields**







$$\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}$$

#### $\rightarrow$ incompressibility

## → Hooke's law for incompressible materials



### **3D Results**







18











Obtained results after 500iterations of the CGM = 2 minutes.



Reference using the actual geometry of the specimen and its properties. 19



### **3D Results**





#### Results after median filtering



20





## **Conclusion and prospects**



- Developement of the virtual fields method for reconstruction modulus distribution from ful-field data

- Application to post-processing of medical images.
- Implementation of regularizing approaches in progress.







## In-vivo measurement of blood viscosity and and wall stiffness in the carotid using PC-MRI

Dr. Stéphane AVRIL, Prof. Jonathan M. Huntley, and Dr. Rhodri Cusack







## MRI applied to a cross section of the neck



(a) Whole neck cross-section (blackblood sequence)







## **Principle of time resolved PC-MRI**



RF pulse sequence



#### Principel of velocity encoding







## **Time resolved PC-MRI applied to a patient's neck: signal magnitude**



(b) Frames of signal magnitude







## **Time resolved PC-MRI applied to a patient's neck: velocity maps**









# Model calibration for deducing the blood viscosity



(b) Profiles of the velocity for a few frames.

 $\mu = 0.0073$  Pa.s







## Model calibration for deducing the pulse wave velocity









## Model calibration for deducing the pulse wave velocity



c = 2.7 m/s (right) c = 4.1 m/s (left)







## Identification of the wall stiffness using the Moens-Korteweg equation

$$E = \frac{2\rho c^2 R_0}{h}$$



E = 99 kPa (right)E = 150 kPa (left)







## Prospects: extension to plaques = heterogeneous mechanical properties



