

THE VIRTUAL FIELDS METHOD

PRINCIPLE, RECENT ADVANCES AND APPLICATIONS

12th April 2007, Université de Technologie de Compiègne

Dr. Stéphane AVRIL

LMPF Research Group, ENSAM Châlons en Champagne, France

OUTLINE

- Introduction and basic concepts;
- Application 1: anisotropic elasticity in composites;
- Application 2: visco-elasticity in PMMA;
- Application 3: elasto-visco-plasticity in metals;
- Application 4: heterogeneous modulus distribution;
- Conclusion and main prospects.

Introduction and basic concepts

Widespread use of full-field optical techniques in experimental mechanics

Largely used for qualitative analyses

Largely used for qualitative analyses

Largely used for qualitative analyses

- Detection of shear bands or cracks;

- Model validation;

- Verification of boundary conditions.

Interest in quantitative use for model identification

Interest in quantitative use for model identification

Interest in quantitative use for model identification

Identification of sophisticated models in one single test;

- Specimen geometry is not a constraint ;
- Localization effects can be handled ;
- Identification of graded properties in the same specimen.

Reason for poor use for model identification

- No standard characterization of uncertainty in full-field optical measurement techniques.

- Large amount of data to process require specific inverse approach.

Resolution of an inverse problem Basic approach: updating

Particular case of full-field measurements: alternative approach

Model *f* is derived from:the constitutive equations,the conservation equations.

 $F(A_i, M)=0$

THE VIRTUAL FIELDS METHOD

Application 1: anisotropic elasticity in composites

The virtual fields method Example in linear elasticity

I Equilibrium equations

 $\sigma_{ij,j} = 0$ + boundary conditions sta

strong (local)

or

$$-\int_{V} \sigma_{ij} \varepsilon_{ij}^{*} dV + \int_{\partial V} T_{i} u_{i}^{*} dS = 0$$

weak (global)

II Constitutive equations

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$$

III Kinematical equations (small strains/displacements)

$$\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$$

The virtual fields method Example in linear elasticity

Eq. I (weak form, static)

$$-\int_{V} \sigma_{ij} \varepsilon_{ij}^{*} dV + \int_{\partial V} T_{i} u_{i}^{*} dS = 0$$

Substitute stress from Eq. II

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$$

$$\longrightarrow_{V} - \int_{V} C_{ijkl} \varepsilon_{kl} \varepsilon_{ij}^{*} dV + \int_{\partial V} T_{i} u_{i}^{*} dS = 0$$

The virtual fields method Example in linear elasticity

 $-C_{ijkl}\int\varepsilon_{kl}\varepsilon_{ij}^{*}dV + \int T_{i}u_{i}^{*}dS = 0$

Equation valid for any KA virtual fields. For each choice of virtual field: 1 equation. Choice of as many VF as unknown parameters.

In elasticity:

 \rightarrow Linear system of equations to be inverted.

→ Optimal choice of virtual fields for minimizing result uncertainty (Avril et al., Comp. Mech., 2004)

→ More robust than updating approach (Avril et al., Int. J. Sol. Struct., 2007) 17/61

Problem presentation

Glass epoxy ring cut from a tube:

$$\begin{pmatrix} \sigma_r \\ \sigma_{\theta} \\ \sigma_s \end{pmatrix} = \begin{bmatrix} Q_{rr} Q_{r\theta} & 0 \\ Q_{r\theta} Q_{\theta\theta} & 0 \\ 0 & 0 & Q_{ss} \end{bmatrix} \begin{pmatrix} \mathcal{E}_r \\ \mathcal{E}_{\theta} \\ \mathcal{E}_s \end{pmatrix}$$

→ 4 parameters to identify → No standard test available

Need of two cameras "back to back"

Deformation maps using two cameras

Polynomial fit, degree 3, transform to cylindrical and analytical differentiation:

Identification

	Q _{rr}	$Q_{\theta\theta}$	$Q_{r\theta}$	Q_{ss}	
Reference* (GPa)	10	40	3	4	
Identified (GPa) Coeff. var (%) – 9 tests	11.4 29	45.4 10	2.62 29	6.78 4	

Moulart R., Avril S., Pierron F., Identification of the through-thickness rigidities of a thick laminated composite tube, *Composites Part A: Applied Science and Manufacturing*, vol. 37, n° 2, pp. 326-336, 2006.

Application 2: visco-elasticity in polycarbonate

Inertial excitation with steady state and linear response.

Experimental arrangements

The deflectometry technique

Slope measurements

Deduced curvatures

Out of resonance 80 Hz

Near resonance 100 Hz

Identification

$$\begin{cases} M_{x} \\ M_{y} \\ M_{s} \end{cases} = \begin{pmatrix} D_{xx} & D_{xy} & 0 \\ D_{xy} & D_{yy} & 0 \\ 0 & 0 & \frac{D_{xx} - D_{xy}}{2} \end{bmatrix} + i\omega \begin{bmatrix} B_{xx} & B_{xy} & 0 \\ B_{xy} & B_{yy} & 0 \\ 0 & 0 & \frac{B_{xx} - B_{xy}}{2} \end{bmatrix} \begin{bmatrix} k_{x} \\ k_{y} \\ k_{s} \end{bmatrix}$$

Four parameters to identify

$$E = \frac{D_{xx}}{(1 - v^2)}; v = \frac{D_{xy}}{D_{xx}} \quad \text{Stiffness}$$
$$\beta_{xx} = \frac{B_{xx}}{D_{xx}}; \beta_{xy} = \frac{B_{xy}}{D_{xy}} \quad \text{Damping}$$
$$VF_1 = x^2(1 + j), \quad VF_2 = y^2(1 + j) \quad 31/61$$

E (GPa)

Reference: clamped beam

 $\boldsymbol{\mathcal{V}}$

Reference: clamped beam

Results

 $\beta_{xy} (10^{-4} s)$

- Improvement of the measurement temporal accuracy.

- Extension to anisotropic plates underway

Giraudeau A., Guo B., Pierron F., Stiffness and Damping Identification from Full Field Measurements on Vibrating Plates, *Experimental Mechanics*, Vol. 46, N°6, pp. 777-787, 2006.

Application 3: elasto-viscoplasticity of metals

 $\dot{\sigma} = g(\sigma, \dot{\varepsilon}, (X))$ Constitutive parameters to identify

Elasto-plasticity with plane stress and Von Mises criterion

$$\dot{\sigma} = Q(\varepsilon - \varepsilon^p)$$

$$\begin{cases} \dot{\sigma}_{x} \\ \dot{\sigma}_{y} \\ \dot{\sigma}_{s} \end{cases} = \frac{E}{1 - \nu^{2}} \begin{bmatrix} 1 & \nu & 0 \\ \nu & \nu & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix} \begin{cases} \dot{\varepsilon}_{x} - \frac{3}{2} \dot{p} \frac{s_{xx}}{\sigma_{s}} \\ \dot{\varepsilon}_{y} - \frac{3}{2} \dot{p} \frac{s_{xy}}{\sigma_{s}} \\ \dot{\varepsilon}_{s} - 3 \dot{p} \frac{s_{xy}}{\sigma_{s}} \end{cases}$$

Perzyna's model for viscoplasticity

Constitutive parameters to identify: E, v, γ , σ_0 , n, dH/dp.

Mechanical arrangement

Average strain rate: 1s⁻¹

Images of the specimen recorded with high speed cameras

Deformation deduced by digital image correlation.

Fields of strain rate

Across the measurement area:

$$u_x^* = 0; u_y^* = -y$$

 \rightarrow minimization of a cost function defined from the principle of virtual work:

$$F(\sigma_0, n, \gamma, E_t) = \sum_{l=1}^N \left(\frac{1}{S} \int_{S} \int_{0}^{t_l} \dot{\sigma}_y(\sigma_0, n, \gamma, E_t, x, y, t) dt dS - \frac{P(t_l)L}{Sh} \right)^2$$

Identification

Prospects

- Numerical issues
- Larger strain rates \rightarrow Hopkinson
- Heterogeneities: microscopic scale, welds...

- Pannier Y., Avril S., Rotinat R., Pierron F., Identification of elasto-plastic constitutive parameters from statically undetermined tests using the virtual fields method, *Experimental Mechanics*, Vol. 46, N°6, pp. 735-755, 2006.
- Avril S., Pierron F., Yan J., Sutton M., Identification of viscoplastic parameters using DIC and the virtual fields method. In Proceedings of the SEM annual conference, Springfield (USA), 2007. 46/61

Heterogeneous modulus distribution

The virtual fields method for heterogeneous solids in linear elasticity

 $-\int C_{ijkl}\varepsilon_{kl}\varepsilon_{ij}^*dV + \int T_iu_i^*dS = 0$

Discretization of the solid

Experimental arrangements

Cube with a stiff inclusion buried in it.

Silicone gel materials mimicking human tissue containing a tumour.

Displacement fields measured by MRI

(mm)

Scanning tomographic method: → 3D bulk measurements!!

Principle of the identification

$$F(x_n) = 0 \Rightarrow \frac{\sigma(X_{n+1}) - \sigma(X_n)}{X_{n+1} - X_n} = 0$$

$$\Rightarrow \sigma(X_{n+1}) - \sigma(X_n) = 0$$

$$\Rightarrow E(X_{n+1})\varepsilon(X_{n+1}) - E(X_n)\varepsilon(X_n) = 0$$

$$\Rightarrow E(X_{n+1})\frac{u(x_{n+1}) - u(x_n)}{x_{n+1} - x_n} - E(X_n)\frac{u(x_n) - u(x_{n-1})}{x_n - x_{n-1}} = 0$$

$$[u(x_{n+1}) - u(x_n)]E(X_{n+1}) - [u(x_n) - u(x_{n-1})]E(X_n) = 0$$

3D Results

Avril S., Huntley J., Pierron F. and Steele D., 3D-Heterogeneous stiffness identification using 3D displacement field data and the virtual fields method, *The Royal Society Interface*, in revision, 2007. 54/61

Conclusions

- Huge potential for some difficult and important engineering issues (heterogeneous materials, high strain rate, micro-scale...);
- Training required on optical FFMT: not a black box, primary influence on identification results
- Full-field processing: noise filtering, displacements to strains...

Key point: field reconstruction

57/61

Model f is derived from:the constitutive equations,the conservation equations.

 $F(A_i, M)=0$

Comparison of two approaches

Comparison of two approaches

Comparison of two approaches

(a) Reconstruction par Éléments Finis

(b) Reconstructin par approximation diffuse

Thank you for attention

