Transmission des mesures d’un réseau de capteurs environnementaux en bande ISM. Une approche semi-logicielle

Authors: G. Hellbourg, R. Weber, A. Millot, C. Capdessus

1 ATCOM Telemetrie, 15 rue jean Bertin, BP 79, 45430 Checy, France

2 Observatoire de Paris, Station de radioastronomie, F-18330 Nançay, France

3 Université d’Orléans, PRISME, Site Galilée, 12 rue de Blois, 45067 Orléans cedex 2, France

STIC 2011, St-Etienne, France
Context and Objectives

✓ **Context**
 - Need from the French public institution involved in the Earth Science field
 - Automatic Water quality monitoring

✓ **Current application limitations**
 - Data loggers requiring manual downloading
 - No « real time » sampling (e.g. monthly)

✓ **Objectives**
 - Design of a remote sensor network:
 - Autonomous low cost sensors
 - Central receiver in a urban area (radio frequency interference)
 - Emitter/Receiver range >10 km
 - Daily sampling
 - free Band (no fees)

STIC 2011, St-Etienne, France
Sensor network characteristics

RF transmission
- BPSK (ISM band at 433MHz, baud rate=1200 bit/s)
- TDMA

STIC 2011, St-Etienne, France
RFI monitoring in the 433MHz band

Results

- High RFI occupancy
- 95% RFI < 1s
- Average duration ΔT: 30 ms
- Average bandwidth ΔF: ~1.3 kHz
- Low activity during the night
Our approach: selective acquisition and off-line processing

Specifications
- Short data frame (<100ms)
- Daily transmission
- Don’t need a continuous reception

Concept
- Selective acquisition by detecting sensor transmission
- Data waveform storage
- Antenna array for spatial processing

STIC 2011, St-Etienne, France
Antenna array model

Hypothesis

<table>
<thead>
<tr>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s(t)e^{i(2\pi f_0t+\varphi_0)}$</td>
</tr>
<tr>
<td>$u_k(t) = s(t - k\tau)e^{i(2\pi f_0(t-k\tau)+\varphi_0)}$</td>
</tr>
<tr>
<td>$u_k(t) = s(t)e^{-i2\pi f_0k\tau+i\varphi_0}e^{i2\pi f_0t}$</td>
</tr>
</tbody>
</table>

Antenna output

$z_k(t) = g_k e^{-i2\pi f_0k\tau+i\varphi_0} s(t) + n_k(t)$

Antenna array model

$z(t) = \begin{bmatrix} a_{s0} \\ \vdots \\ a_{sM-1} \end{bmatrix} s(t) + a_r r(t) + n(t)$

1 source $s(t)$
1 RFI $r(t)$

Far field range > 1km
Narrow band $\frac{\Delta f_0}{f_0} << 1$
Cyclostationary detector (1)

Cyclic autocorrelation:

\[R_{x,x^*}^\alpha(\tau) = E\left\{ x(t + \frac{\tau}{2})x^*(t - \frac{\tau}{2})e^{-i2\pi\alpha t} \right\} \]

- **Different cyclic signatures**
 - **Source (BPSK)**
 - Baud rate \(1/T_{\text{sym}}\)
 - \(\alpha_s = \frac{k}{T_{\text{sym}}} \implies R_{s,s^*}^\alpha \neq 0\)
 - **Noise = stationary**
 - \(R_{n,n^*}^\alpha = 0\)
 - **RFI**
 - \(\alpha_r \neq \alpha_s \implies R_{r,r^*}^\alpha = 0\)

- **Multidimensional case**

\[R_{z,z^*}^\alpha = E\left\{ z(t)z^H(t)e^{-i2\pi\alpha t} \right\} = \left(\begin{array}{c} s^H \\ a^H \\ r^H \\ n^H \end{array} \right) \left(\begin{array}{c} R_{s,s^*}^\alpha \\ R_{s,s^*}^\alpha \\ R_{r,r^*}^\alpha \\ R_{r,r^*}^\alpha \end{array} \right) \left(\begin{array}{c} s \\ a \\ r \\ n \end{array} \right) \]

\[R_{z,z^*}^\alpha = a_s a_s^H R_{s,s^*}^\alpha \]

STIC 2011, St-Etienne, France
Cyclostationary detector (2)

Detector criteria

- Singular value decomposition

\[R_\alpha^{z,z^*} = \begin{bmatrix} r_{ij} \end{bmatrix} = U_c \Lambda_c V_c^H \]

- With \(\alpha = \alpha_s \), asymptotically:

\[\Lambda_c = \begin{bmatrix} \lambda_s & 0 \\ 0 & 0 \end{bmatrix} \]

\[\lambda_{\text{max}} \leq \text{threshold} \]

- Frobenius norm

\[\left\| R_\alpha^{z,z^*} \right\|_F^2 = \sum_{i=1}^M \sum_{j=1}^M r_{ij}^2 = \sum_{k=1}^M |\lambda_k|^2 \]

- With \(\alpha = \alpha_s \), asymptotically:

\[\left\| R_\alpha^{z,z^*} \right\|_F^2 = |\lambda_s|^2 \]

\[\left\| R_\alpha^{z,z^*} \right\|_F^2 \leq \text{threshold} \]

STIC 2011, St-Etienne, France
Simulations (1)

Detector performance evaluation

- Hypothesis
 - No transmission: $H_0 \rightarrow z(t) = \sqrt{\rho} a_r r(t) + \sqrt{1-\rho} n(t)$
 - Transmission: $H_1 \rightarrow z(t) = \sigma_s a_s s(t) + \sqrt{\rho} a_r r(t) + \sqrt{1-\rho} n(t)$

- 4 detector criteria:

- $SNR = \sigma_s^2$

- Performance criterion: Fisher criteria

$$F = \frac{(E_{H_1}[T(z)] - E_{H_0}[T(z)])^2}{Var_{H_1}[T(z)] + Var_{H_0}[T(z)]}$$

<table>
<thead>
<tr>
<th>$T(z)$</th>
<th>R^{0}_{z,z^*}</th>
<th>$R^{\alpha_s}_{z,z^*}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_λ</td>
<td>T_λ</td>
<td>Dominant singular value</td>
</tr>
<tr>
<td>T_F</td>
<td>T_F</td>
<td>Frobenius Norm</td>
</tr>
</tbody>
</table>

Classic cyclic

STIC 2011, St-Etienne, France
Simulations (2)

Scenario 1: 1 RFI + calibrated noise
Scenario 2: no RFI + uncalibrated noise

✓ conclusions
 - In practice, $T_F < T_\lambda$
 - Cyclostationary detectors are robust

$\mathbf{R}_{\alpha}^{\alpha_{\text{z,z}}} = \frac{1}{M} \sum_{k=1}^{M} \lambda_{N,k}^2$
Filtrage spatial

Objectifs
- Focaliser le réseau
- Annuler les brouilleurs

Méthode de Capon
- Puissance reçue
 \[y(t) = w^H z(t) \]
 \[P = \langle |y(t)|^2 \rangle = w^H R w \]
- Critère de Capon
 \[\min_w \ w^H R w \]
 avec \(w^H a_s = 1 \)
- Solution
 \[w_o = \frac{R^{-1} a_s}{a_s^H R^{-1} a_s} \]

Simulations
8 antennes, rapport signal sur brouilleur initial (en dB)

STIC 2011, St-Etienne, France
Cyclic approach is robust against RFI and uncalibrated array

Sensor emitter and relay station have been designed

Practical tests with simple receiver (no spatial processing) have shown that long range transmission are very difficult due to RFI

Next step: implementation of the proposed approach

STIC 2011, St-Etienne, France
Mastère Spécialisé Capteurs & Géosciences

Le sol intelligent au service de l'intelligence du sol

% de la thématique dans le MS

Milieux physiques → Capteurs → Acquisition Transmission → Analyse → Modélisation Management

En partenariat avec :

STIC 2011, St-Etienne, France