## Diagnostic de fonctionnement, à base de multimodèles, d'une station d'épuration

### A. M. Nagy-Kiss, B. Marx, G. Mourot, J. RAGOT

Institut National Polytechnique de Lorraine (INPL) Centre de Recherche en Automatique de Nancy (CNRS) 2, avenue de la forêt de Haye, 54 516 Vandœuvre les Nancy, France





### Introduction. Contexte de l'étude



- Processus liés à l'environnement Pollution de l'air, pollution de l'eau, stations d'épuration d'eau, réseaux de transport d'eau, bassins versants et écoulement, pluviométrie ...
- Diagnostic de fonctionnement de systèmes Validation de mesures, détection et localisation de défauts, commande tolérante aux défauts . . .
- Modèles des processus environnementaux Phénomènes difficiles à modéliser, perturbations à effets critiques, variables de concentration difficiles à mesurer ...
- Enjeux fondamentaux
   Protection de l'environnement, protection du citoyen...

# 1. Eléments méthodologiques

3/19

### 1.1 - Obtention d'un multi-modèle

• Système non linéaire

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ y(t) = g(x(t), u(t)) \end{cases}$$

• Système quasi-LPV

$$\begin{cases} \dot{x} = A(x, u)x + B(x, u)u\\ y = C(x, u)x + D(x, u)u\end{cases}$$

• Décomposition par secteurs

$$\begin{aligned} f & A(x,u) = \sum_{\substack{i=1 \\ r}}^{r} \mu_i(x,u) A_i \\ & B(x,u) = \sum_{\substack{i=1 \\ i=1}}^{r} \mu_i(x,u) B_i \\ & \dots \end{aligned}$$

Multi-modèle

$$\dot{x} = \sum_{i=1}^{r} \mu_i(x, u) [A_i x + B_i u]$$
  

$$y = \sum_{i=1}^{r} \mu_i(x, u) [C_i x + D_i u]$$
  

$$\sum_{i=1}^{r} \mu_i(x, u) = 1 \quad \text{et} \quad \mu_i(x, u) \ge 0, \forall (x, u) \in \mathbb{R}^n \times \mathbb{R}^m$$

5/19

1.2 - Systèmes à plusieurs échelles de tempes, systèmes singuliers

► Forme standard des systèmes singuliers à deux échelles de temps :

$$\begin{aligned} \varepsilon \dot{x}_f(t) &= f_f(x_s(t), x_f(t), u(t), \varepsilon) \\ \dot{x}_s(t) &= f_s(x_s(t), x_f(t), u(t), \varepsilon) \end{aligned}$$

où  $x_s \in \mathbb{R}^{n_s}$  et  $x_f \in \mathbb{R}^{n_f}$  sont respectivement les variables lentes et rapides et  $\varepsilon$  est un petit paramètre positif, connu sous le nom de *paramètre de perturbation singulière*.

- Dans le cas limite où  $\varepsilon 
ightarrow$  0, le système devient :

$$0 = f_f(x_s(t), x_f(t), u(t), 0)$$
  
$$\dot{x}_s(t) = f_s(x_s(t), x_f(t), u(t), 0)$$

Système réduit :

$$\begin{aligned} x_f(t) &= \varphi(x_s(t), u(t)) \\ \dot{x}_s(t) &= f_s(x_s(t), \varphi(x_s(t), u(t)), u(t)) \end{aligned}$$

# 1.3 - Multi-modèle sous forme de système singulier

• Forme MM avec variables d'état lentes et rapides

$$\begin{array}{rcl}
0 &=& \sum_{i=1}^{r} \mu_{i}(x, u) \left[ A_{ff}^{i} x_{f}(t) + A_{fs}^{i} x_{s}(t) + B_{f}^{i} u(t) \right] \\
\dot{x}_{s}(t) &=& \sum_{i=1}^{r} \mu_{i}(x, u) \left[ A_{sf}^{i} x_{f}(t) + A_{ss}^{i} x_{s}(t) + B_{s}^{i} u(t) \right] \\
y(t) &=& C_{f} x_{f}(t) + C_{s} x_{s}(t)
\end{array}$$

• Forme MM avec variables d'état lentes et perturbations

$$y_{a}(t) = \begin{bmatrix} -B_{f}(u(t))u(t) \\ y(t) \end{bmatrix} \rightarrow \begin{cases} \dot{x}_{s}(t) = \sum_{\substack{i=1 \\ r \\ y_{a}(t) = \sum_{\substack{i=1 \\ r \\ i=1}}^{r} \mu_{i}(x,u) \left[A_{ss}^{i}x_{s}(t) + B_{s}^{i}u(t) + A_{sf}^{i}x_{f}(t)\right] \end{cases}$$

• Forme MM perturbée à état augmenté

$$x_{a}(t) = \begin{bmatrix} x_{s}(t) \\ x_{f}(t) \end{bmatrix} \rightarrow \begin{cases} \dot{x}_{a}(t) = \sum_{i=1}^{r} \mu_{i}(x_{a}(t), u(t)) \begin{bmatrix} \tilde{A}_{i} x_{a}(t) + \tilde{B}_{i} u(t) \end{bmatrix} \\ y_{a}(t) = \sum_{i=1}^{r} \mu_{i}(x_{a}(t), u(t)) \tilde{C}_{i} x_{a}(t) \end{cases}$$

• Observateur proportionnel

$$\begin{cases} \dot{\hat{x}}_{a}(t) = \sum_{\substack{i=1 \ r}}^{r} \mu_{i}(\hat{x}_{a}, u) \left[ \tilde{A}_{i} \hat{x}_{a}(t) + \tilde{B}_{i} u(t) + K_{i}(y_{a}(t) - \hat{y}_{a}(t)) \right] \\ \hat{y}_{a}(t) = \sum_{\substack{i=1 \ r}}^{r} \mu_{i}(\hat{x}_{a}, u) \tilde{C}_{i} \hat{x}_{a}(t) \end{cases}$$

7/19

1.4 - Orgranigramme

$$\dot{x} = f(x, u)$$
Factorisation
$$\dot{x} = f(x, u)$$
Factorisation
$$\dot{x} = A(x, u).x + B(x, u).u$$
Transformation par secteurs
$$\dot{x} = \sum_{i=1}^{r} \mu_i(x, u)(A_i.x + B_i.u)$$
Séparation de modes
$$\dot{x}_s = \sum_{i=1}^{r} \mu_i(x, u)(A_{sf,i}.x_f + A_{ss,i}.x_s + B_i.u)$$
O =  $\sum_{i=1}^{r} \mu_i(x, u)(A_{ff,i}.x_f + A_{fs,i}.x_s + B_i.u)$ 
Perturbations singuières
$$\dot{x}_s = \sum_{i=1}^{r} \mu_i(x, u)(A_{sf,i}.x_f + A_{ss,i}.x_s + B_i.u)$$

$$\mu_{\text{Perturbations singuières}}$$

$$\dot{x}_s = \sum_{i=1}^{r} \mu_i(x, u)(A_{sf,i}.x_f + A_{ss,i}.x_s + B_i.u)$$

$$\mu_{\text{Perturbations singuières}}$$

$$\dot{x}_s = \sum_{i=1}^{r} \mu_i(x, u)(A_{sf,i}.x_f + A_{ss,i}.x_s + B_i.u)$$





# 2.1 - Schéma et modèle de fonctionnement



|                |                 | Entrée réacteur    | Sortie réacteur        | Recyclé               |
|----------------|-----------------|--------------------|------------------------|-----------------------|
| biomasse hété. | X <sub>BH</sub> | X <sub>BH,in</sub> | X <sub>BH,out</sub>    | $X_{BH,R}$            |
| biomasse auto. | $X_{BH}$        | X <sub>BA,in</sub> | X <sub>BA,out</sub>    | $X_{BA,R}$            |
| substrat       | $S_S$           | S <sub>S,in</sub>  | S <sub>S,out</sub>     | $S_{S,R}$             |
| oxygène        | S <sub>O</sub>  | S <sub>O,in</sub>  | S <sub>O,out</sub>     | $S_{O,R}$             |
| azote amo.     | S <sub>NH</sub> | S <sub>NH,in</sub> | S <sub>NH,out</sub>    | $S_{NH,R}$            |
| nitrates       | $S_{NO}$        | S <sub>NO,in</sub> | S <sub>NO,out</sub>    | $S_{NO,R}$            |
| azote solu.    | $S_{ND}$        | S <sub>ND,in</sub> | S <sub>ND,out</sub>    | $S_{ND,R}$            |
| amonium        | S <sub>NH</sub> | S <sub>NH,in</sub> | S <sub>NH,out</sub>    | $S_{NH,R}$            |
| Débit effluent | q               | 9 <sub>in</sub>    | <i>q<sub>out</sub></i> | <b>q</b> <sub>R</sub> |
| Débit air      | <b>q</b> a      |                    |                        |                       |
| Volume         | V               |                    |                        |                       |

11/19

# 2.3 - Modèle de fonctionnement

$$\begin{split} \left( \begin{array}{ll} \dot{S}_{S}(t) &= -\frac{1}{Y_{H}} \mu_{H} \frac{S_{S}(t)}{K_{S} + S_{S}(t)} \frac{S_{O}(t)}{K_{OH} + S_{O}(t)} X_{BH}(t) + (1 - f_{P}) b_{H} X_{BH}(t) + \\ & \frac{q_{in}(t)}{V} \left[ S_{S,in}(t) - S_{S}(t) \right] \\ \dot{S}_{O}(t) &= \frac{Y_{H} - 1}{Y_{H}} \mu_{H} \frac{S_{S}(t)}{K_{S} + S_{S}(t)} \frac{S_{O}(t)}{K_{OH} + S_{O}(t)} X_{BH}(t) + \\ & \frac{q_{in}(t)}{V} \left[ S_{O,in}(t) - S_{O}(t) \right] + Kq_{a}(t) \left[ S_{O,sat} - S_{O}(t) \right] \\ \dot{X}_{BH}(t) &= \mu_{H} \frac{S_{S}(t)}{K_{S} + S_{S}(t)} \frac{S_{O}(t)}{K_{OH} + S_{O}(t)} X_{BH}(t) - b_{H} X_{BH}(t) + \\ & \frac{q_{in}(t)}{V} \left[ X_{BH,in}(t) - X_{BH}(t) + f_{R} \frac{1 - f_{W}}{f_{R} + f_{W}} X_{BH}(t) \right] \end{split}$$

### 2.4 - Modes de fonctionnement rapides et lents

• Linéarisation du système non linéaire autour de plusieurs points de fonctionnement  $(x_0, u_0)$  :

où

$$A_{0} = \frac{\partial f(x, u)}{\partial x} \Big|_{(x_{0}, u_{0})}$$
$$B_{0} = \frac{\partial f(x, u)}{\partial u} \Big|_{(x_{0}, u_{0})}$$

 $\dot{x}(t) = A_0 x(t) + B_0 u(t)$ 

• Soient  $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$  les valeurs propres ordonnées de  $A_0$ , la plus grande (respectivement petite) valeur propre correspond à la dynamique la plus lente (respectivement rapide).

• Cette séparation est réalisée en fixant un seuil  $\tau$  de séparation des deux échelles de temps :

$$\lambda_1 \leq \ldots \leq \lambda_{n_f} << \tau \leq \lambda_{n_f+1} \leq \ldots \leq \lambda_n$$

13/19

### 2.4 - Modes de fonctionnement

• La séparation des dynamiques lentes et rapides est confirmée par les valeurs propres du jacobien  $A_0$ , comme on peut le remarquer à la figure ci-dessous qui présente ces valeurs propres pour quarante points de fonctionnement.

• Deux valeurs propres ( $\lambda_2$  et  $\lambda_3$ ) sont incluses entre -50 et -0.4 et l'autre ( $\lambda_1$ ) autour de -250. En fixant un seuil à  $\tau = 70$ , on peut déduire que le système a une dynamique rapide ( $x_f = S_S$ ) et deux dynamiques lentes ( $x_s = [S_O \ X_{BH}]^T$ ).



FIGURE: Valeurs propres du jacobien  $A_0$  calculées pour plusieurs points de l'espace de fonctionnement

$$\dot{S}_{S}(t) = -\frac{1}{Y_{H}} \mu_{H} \frac{S_{S}(t)}{K_{S} + S_{S}(t)} \frac{S_{O}(t)}{K_{OH} + S_{O}(t)} X_{BH}(t) + (1 - f_{P}) b_{H} X_{BH}(t) + \frac{q_{in}(t)}{V} [S_{S,in}(t) - S_{S}(t)]$$

$$\dot{S}_{O}(t) = \frac{Y_{H} - 1}{Y_{H}} \mu_{H} \frac{S_{S}(t)}{K_{S} + S_{S}(t)} \frac{S_{O}(t)}{K_{OH} + S_{O}(t)} X_{BH}(t) + \frac{q_{in}(t)}{V} [S_{O,in}(t) - S_{O}(t)] + Kq_{a}(t) [S_{O,sat} - S_{O}(t)]$$

$$\dot{X}_{BH}(t) = \mu_{H} \frac{S_{S}(t)}{K_{S} + S_{S}(t)} \frac{S_{O}(t)}{K_{OH} + S_{O}(t)} X_{BH}(t) - b_{H} X_{BH}(t) + \frac{q_{in}(t)}{V} \left[ X_{BH,in}(t) - X_{BH}(t) + f_{R} \frac{1 - f_{W}}{f_{R} + f_{W}} X_{BH}(t) \right]$$

• Variables de prémisse  

$$\begin{cases}
z_1(u(t)) = \frac{q_{in}(t)}{V} \\
z_2(x(t)) = \frac{1}{K_S + S_S(t)} \frac{S_O(t)}{K_{OH} + S_O(t)} X_{BH}(t) \\
z_3(u(t)) = q_a(t)
\end{cases}$$
• Transformation des variables de prémisse  

$$z_i(t) = \frac{z_i(t) - z_{i,min}}{z_{i,max} - z_{i,min}} z_{i,max} + \frac{z_{i,max} - z_i(t)}{z_{i,max} - z_{i,min}} z_{i,min}$$

15/19

# 2.6 - Décomposition en modes de fonctionnement

Forme quasi-LPV du modèle : les matrices A(t) = A(x(t), u(t)) et B(t) = B(u(t)) sont décomposées sous la forme :

$$A(t) = \begin{bmatrix} A_{ff}(t) & A_{fs}(t) \\ A_{sf}(t) & A_{ss}(t) \end{bmatrix} \qquad B(t) = \begin{bmatrix} B_f(t) \\ B_s(t) \end{bmatrix}$$

où

$$\begin{cases} A_{ff}(t) = -z_1(t) - \frac{1}{Y_H} \mu_H z_2(t) & A_{fs}(t) = \begin{bmatrix} 0 & (1 - f_P) b_H \end{bmatrix} \\ A_{sf}(t) = \begin{bmatrix} \frac{Y_H - 1}{Y_H} \mu_H z_2(t) \\ \mu_H z_2(t) \end{bmatrix} & A_{ss}(t) = \begin{bmatrix} -K z_3(t) - z_1(t) & 0 \\ 0 & -\frac{f_W(1 + f_R)}{f_W + f_R} z_1(t) - b_H \end{bmatrix} \\ \begin{cases} B_f(t) = \begin{bmatrix} z_1(t) & 0 & 0 \end{bmatrix} \\ B_s(t) = \begin{bmatrix} 0 & K So_{sat} & 0 \\ 0 & 0 & z_1(t) \end{bmatrix} \end{cases}$$

### 2.7 - Observateur d'état

En appliquant l'observateur au modèle ASM1, représenté sous une forme MM équivalente, les résultats d'estimation d'état sont tout à fait pertinents. Le gain  $\mathscr{L}_2$  de  $\omega(t)$  vers  $e_a(t)$  est bornée par  $\gamma = 1.203$ .





17/19

2.8 - Sorties estimées



FIGURE: Sorties et sorties estimées

#### Apports

- Observateur de systèmes non linéaires
- Réduction de complexité sans perte d'information
- Séparation des modes lents et rapides
- Observateur à entrées inconnues pour l'estimation d'état

### Perspectives

- Optimisation de la transformation  $SNL \rightarrow MM$
- Prise en compte du système complet avec le décanteur

19/19